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Abstract In this chapter we review the use of an information channel as a unified
framework for viewpoint selection, mesh saliency and geometry simplification. Tak-
ing the viewpoint distribution as input and object mesh polygons as output vectors,
the channel is given by the projected areas of the polygons over the different view-
points. From this channel, viewpoint entropy and viewpoint mutual information can
be defined in a natural way. Reversing this channel, polygonal mutual information
is obtained, which is interpreted as an ambient occlusion-like quantity, and from the
variation of this polygonal mutual information mesh saliency is defined. Viewpoint
entropy, viewpoint Kullback-Leibler distance, and viewpoint mutual information
are then applied to mesh simplification, and shown to compare well with a classical
geometrical simplification method.

1 Introduction

In computer graphics, several viewpoint quality measures have been applied in areas
such as scene understanding [29, 36, 30, 9], scene exploration [15, 33], image-based
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modeling [37], and volume visualization [2, 34, 38]. The basic question underlying
the viewpoint selection study and application is “what is a ‘good’ scene viewpoint?”
Obviously, this question does not have a simple answer. Palmer et al. [28] and Blanz
et al. [1] have presented different experiments demonstrating that observers prefer
views (called canonical views) that avoid occlusions and that are off-axis, salient,
stable, and with a large number of visible surfaces. In this chapter, the quality of a
viewpoint is associated to the idea of representativeness.
Most common polygonal simplification methods use some technique based on

a geometric distance as a measure of quality between an original mesh and the
one obtained from simplification [16, 17, 10, 11, 7]. With these methods we can
achieve meshes that are very similar to the original. In general, one of the most im-
portant advantages of geometry-oriented methods is their low temporal cost. This
fact makes them suitable for scanned models, since these models are composed
of thousands or even millions of polygons. In contrast, image-based simplification
methods carry out a simplification guided by differences between images more than
by geometric distances. In other words, their goal is to create simplified meshes that
appear similar according to visual criteria [24, 20, 26, 39]. These methods present
a high temporal cost compared to geometric ones. The applications that can ben-
efit from image-based methods are those in which the main requirement is visual
similarity. Examples of such applications are video games, vehicle simulations and
walkthroughs.
In this chapter, several viewpoint measures (viewpoint entropy, viewpoint mu-

tual information, and viewpoint Kullback-Leibler distance) [36, 9, 32] that can be
defined from an information-theoretic framework are presented to deal with view-
point selection, mesh saliency, and polygonal simplification.

2 Related Work

We briefly summarize some related work that is not based on information theory
since information-theoretic measures are analyzed in the next section. In Plemenos
and Benayada [29], the quality of a viewpoint v of a scene is computed using a
heuristic measure. Polonsky et al. [30] describe a number of different ways to mea-
sure the goodness of a view of an object. Sokolov et al. [33] present two different
exploration algorithms guided by the total curvature of a visible surface. Based on
the investigation on canonical views, Gooch et al. [14] present a new method for
constructing images, where the viewpoint is chosen to be off-axis, and Lu et al. [25]
obtain the viewing direction from the combination of factors such as saliency, occlu-
sion, stability and familiarity. Lee and Varshney [23] have introduced the saliency as
a measure for regional importance for graphics meshes and Kim and Varshney [21]
presented a visual-saliency-based operator to enhance selected regions of a volume.
Ruiz et al. [31] presented a voxel saliency measure based on the gradient of voxel
obscurances.
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In recent years, the most important improvement in geometry-oriented simplifi-
cation methods was the incorporation of mesh attributes such as color, normals and
textures [16, 17, 10, 11, 7, 12]. With respect to the image-based simplification meth-
ods, Lindstrom et al. [24] was the first to address the problem of visual similarity by
developing a pure image-based metric. Basically, their method determines the cost
of an edge collapse operation by rendering the model from several viewpoints. The
algorithm compares the rendered images to the original ones and adds the mean-
square error in luminance across all the pixels of all the images. Then, all edges
are sorted by the total error induced in the images and after that the edge collapse
that produces the least error is chosen. Lindstrom et al. used 20 viewpoints in their
implementation to compute that error. The main advantage of this method is that the
metric provides a natural way to balance the geometric and shading properties with-
out requiring the user to perform an arbitrary weighting of them. On the other hand,
its main disadvantage is the high temporal cost. Karni et al. [20] proposed a metric to
capture the visual difference between two approximations, the average of the norm
of the geometric distance between models and the norm of the Laplacian difference.
Luebke et al. [26] presented a method to perform a view-dependent polygonal sim-
plification using perceptual metrics. Zhang et al. [39] proposed a new algorithm that
takes visibility into account. This approach defines a visibility function between the
surfaces of a model and a surrounding sphere of cameras.

3 Viewpoint Information Channel

In this section, an information channel between a set of viewpoints and the set of
polygons of an object is introduced to define a set of viewpoint measures.
A viewpoint selection framework is constructed from an information channel

V → Z between the random variables V (input) and Z (output), which represent,
respectively, a set of viewpoints V and the set of polygonsZ of an object [9]. This
channel, called viewpoint channel, is defined by a conditional probability matrix ob-
tained from the projected areas of polygons at each viewpoint and can be interpreted
as an observation channel where the conditional probabilities represent the proba-
bility of “seeing” a determined polygon from a given viewpoint. Viewpoints will be
indexed by v and polygons by z. The capital letters V and Z as arguments of p(.)
will be used to denote probability distributions. For instance, while p(v) will denote
the probability of a single viewpoint v, p(V ) will represent the input distribution of
the set of viewpoints. The three basic elements of the viewpoint channel are:

• Conditional probability matrix p(Z|V ), where each element p(z|v) = az(v)
at is de-

fined by the normalized projected area of polygon z over the sphere of directions
centered at viewpoint v (az(v) is the projected area of polygon z at viewpoint v
and at is the total projected area of all polygons over the sphere of directions).
Conditional probabilities fulfil ∑z∈Z p(z|v) = 1. The background is not taken
into account but it could be considered as another polygon.
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• Input distribution p(V ), which represents the probability of selecting each view-
point, will be obtained from the normalization of the projected area of the object
at each viewpoint. This can be interpreted as the probability that a random ray
originated at v hits (or “sees”) the object. The input distribution can also be in-
terpreted as the importance assigned to each viewpoint v.

• Output distribution p(Z), given by

p(z) = ∑
v∈V

p(v)p(z|v), (1)

which represents the average projected area of polygon z (i.e., the probability of
polygon z to be hit (or “seen”) by a random ray cast from the viewpoint sphere).

From the previous definitions, the viewpoint entropy [36] and viewpoint mutual
information [9] can be defined. The viewpoint entropy (VE) of viewpoint v is de-
fined by

H(Z|v) = − ∑
z∈Z

p(z|v) log p(z|v). (2)

VE measures the degree of uniformity of the projected area distribution at viewpoint
v. The maximum viewpoint entropy is obtained when a certain viewpoint can see
all the polygons with the same projected area. The best viewpoint is defined as the
one that has maximum VE [36]. The conditional entropy H(Z|V ) of the viewpoint
channel is given by the average of all viewpoint entropies. Both entropies H(Z|v)
and H(Z|V ) tend to infinity when polygons are infinitely refined. This makes these
measures very sensitive to the discretization of the object [9].
The mutual information of channel V → Z, that expresses the degree of depen-

dence or correlation between the set of viewpoints and the object [9], is defined
by

I(V ;Z) = ∑
v∈V

p(v) ∑
z∈Z

p(z|v) log p(z|v)
p(z)

= ∑
v∈V

p(v)I(v;Z), (3)

where I(v;Z) is the viewpoint mutual information (VMI) given by

I(v;Z) = ∑
z∈Z

p(z|v) log p(z|v)
p(z)

. (4)

VMI gives us the degree of dependence between the viewpoint v and the set of poly-
gons, and it is interpreted as a measure of the quality of viewpoint v. Consequently,
mutual information I(V ;Z) gives us the average quality of the set of viewpoints.
Quality is considered here equivalent to representativeness. In this context, the best
viewpoint is defined as the one that has minimum VMI. High values of the measure
mean a high dependence between viewpoint v and the object, indicating a highly
coupled view (for instance, between the viewpoint and a small number of polygons
with low average visibility). On the other hand, the lowest values correspond to the
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most representative or relevant views, showing the maximum possible number of
polygons in a balanced way.
In Viola et al. [38], it has been shown that the main advantage of VMI over VE is

its robustness to deal with any type of discretisation or resolution of the volumetric
dataset. The same advantage can be observed for polygonal data. Thus, while a
highly refined mesh will attract the attention of VE, VMI will be almost insensitive
to changes in the mesh resolution [8, 9]. In the volume rendering field, Bordoloi et
al. [2] and Takahashi et al. [34] used an extended version of viewpoint entropy and
Viola et al. [38] introduced the viewpoint mutual information.
The behavior of VMI (4) is now compared with the one of VE (2). To com-

pute these viewpoint quality measures, we need a preprocess step to estimate the
projected area of the visible polygons of the object at each viewpoint. In all the
experiments, the objects are centered in a sphere of 642 viewpoints built from the
recursive discretisation of an icosahedron and the camera is looking at the center
of this sphere. Note that all the measures analyzed here are sensitive to the relative
size of the viewpoint sphere with respect to the object. The viewpoint sphere is built
in the following way: first, the smallest bounding sphere of the model is obtained
and, then, the viewpoint sphere adopts the same center as the bounding sphere and
a radius three times the radius of the bounding sphere. To show the behavior of the
measures analyzed, the sphere of viewpoints is represented by a color map, where
red and blue colors correspond respectively to the best and worst views. Note that a
good viewpoint corresponds to a high value for VE and to a low value for VMI.
Figure 1 shows the behavior of VE and VMI measures. Columns (a) and (b)

show, respectively, the best and worst views, and columns (c) and (d) show two
different projections of the viewpoint spheres. Observe how VE chooses to “see”
the most highly discretised parts of the cow, such as head and legs. While the worst
views for the VE measure correspond to the ones that see the less discretised parts,
in the VMI case a true restricted view is obtained [9].

(i.a) (i.b) (i.c) (i.d)

(ii.a) (ii.b) (ii.c) (ii.d)

Fig. 1 (a) The most representative and (b) the most restricted views, and (c-d) the viewpoint
spheres obtained respectively from the (i) VE and (ii) VMI measures. Red colors on the sphere
represent the highest quality viewpoints and blue colors represent the lowest quality viewpoints.
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Another information-theoreticmeasure, the viewpoint Kullback-Leibler distance,
can also be introduced [32]. The viewpoint Kullback-Leibler distance (VKL) of
viewpoint v is defined by

DKL(p(Z|v),a(Z)) = ∑
z∈Z

p(z|v) log p(z|v)
a(z)

, (5)

where a(z) is the normalized area of polygon z obtained from the area of polygon z
divided by the total area of the object.
The VKL measure is interpreted as the distance between the normalized distri-

bution of projected areas and the “ideal” projection, given by the normalized distri-
bution of the actual areas. Note that, in this case, the background could not be taken
into account. The minimum value 0 is obtained when the normalized distribution of
projected areas is equal to the normalized distribution of actual areas. Thus, select-
ing views of high representativeness means to minimize VKL. Note the difference
between VMI (4) and VKL (5), due to the fact that in the last case the distance is
taken with respect to the actual areas.
The different behavior between VKL and VMI is shown in Figure 2. As we have

noted, the main difference between VMI and VKL is that while the former computes
the distance between the projected areas of the polygons and the average area “seen”
by the set of viewpoints, the later calculates the distance with respect to the actual
areas of polygons. Due to this fact, the behavior of VKL is outstandingly affected
by the existence of many non visible or poorly visible polygons, as in the case of
the lady of Elche model.

(a) (b) (c) (d)

Fig. 2 Viewpoint spheres obtained respectively from the (a-b) VKL and (c-d) VMI measures.

4 Best View Selection

In order to understand or model an object, we are interested in selecting a set of
representative views which provides a complete representation of the object. In this
section, a VMI-based algorithm is applied to the selection of the N best representa-
tive views. This algorithm can also be applied to object exploration [9]. Other algo-
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rithms of viewpoint selection and scene exploration based on viewpoint entropy can
be seen in [36, 35, 37, 15].
With the goal of obtaining the best representation of the object using the mini-

mum number of views, a viewpoint selection algorithm based on VMI is presented.
If we look for a good set of views within the set of viewpoints, we will obtain the
most representative set by selecting the views such that their mixing (merging) min-
imizes the VMI, that is, the distance between p(z|v) and the target distribution p(Z).
This mixing provide us with a balanced view of the object.
Thus, the algorithm proposed should select the N viewpoints so that their merg-

ing v̂ minimizes the viewpoint mutual information I(v̂;Z). Due to the fact that this
optimization algorithm is NP-complete, a greedy strategy is adopted by selecting
successive viewpoints that minimize I(v̂;Z). This algorithm permits us to find in an
automated and efficient way the minimal set of views which represent the object or
scene.
The algorithm proceeds as follows. First, we select the best viewpoint v1 with

distribution p(Z|v1) corresponding to the minimum I(v;Z). Next, we select v2 such
that the mixed distribution p(v1)

p(v̂) p(Z|v1)+ p(v2)
p(v̂) p(Z|v2) will minimize I(v̂;Z), where

v̂ represents the clustering of v1 and v2 and p(v̂) = p(v1) + p(v2). At each step,
a new mixed distribution p(v1)

p(v̂) p(Z|v1) + p(v2)
p(v̂) p(Z|v2) + . . . + p(vn)

p(v̂) p(Z|vn), where

p(v̂) = p(v1)+ p(v2)+ . . .+ p(vn), is produced until the VMI-ratio given by I(v̂;Z)
I(V ;Z)

is lower than a given threshold or a fixed number of views is achieved. This ratio
can be interpreted as a measure of the goodness or representativeness of the selected
viewpoints. Figure 3 show the six best views obtained with the VMI-based selec-
tion algorithm for two different models. It is important to note that the best views
for the selected models (Figure 3(a)) are not the ones our intuition would expect as
more representative. This is due to the fact that, from a purely geometric approach,
the best views of Figure 3 correspond to the viewpoints that their projected area
distribution is more similar to the average projected area distribution (target distri-
bution). This problem can be tackled by introducing perceptual criteria to select the
best views (see [9]).

5 View-based Polygonal Information and Saliency

As we have seen in Section 3, the information associated with each viewpoint has
been obtained from the definition of the channel between the sphere of viewpoints
and the polygons of the object. Now, the information associated with a polygon
will be defined as the contribution of this polygon to the mutual information of that
channel. To illustrate this new approach, the reversed channel Z→V is considered,
so that Z is now the input and V the output [9, 13].
From the Bayes theorem p(v,z) = p(v)p(z|v) = p(z)p(v|z), the mutual informa-

tion (3) can be rewritten as
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(i)

(ii)

Fig. 3 From (a) to (f), the six most representative views selected by the VMI-based algorithm for
the (i) coffee-cup-and-dish and (ii) armadillo models.

I(Z;V ) = ∑
z∈Z

p(z) ∑
v∈V

p(v|z) log p(v|z)
p(v)

= ∑
z∈Z

p(z)I(z;V ), (6)

where I(z;V ) is the polygonal mutual information (PMI) of polygon z, defined by

I(z;V ) = ∑
v∈V

p(v|z) log
p(v|z)
p(v)

. (7)

PMI represents the degree of correlation between the polygon z and the set of view-
points, and can be interpreted as the information associated with polygon z. Anal-
ogous to VMI, low values of PMI correspond to polygons that “see” the maximum
number of viewpoints in a balanced way, i.e., p(V |z) is close to p(V ). The opposite
happens for high values.

(a) (b) (c) (d)

Fig. 4 View-based polygonal information for the (a) coffee-cup-and-dish, (b) mini, (c) Hebe and
(d) lady of Elche models.
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In Figure 4, we show the polygonal information maps of (i) the coffee-cup-and-
dish, (ii) mini, (iii) Hebe and (iv) lady of Elche models. To obtain these images,
the PMI has been normalized between 0 and 1 and subtracted from 1. Thus, low
values of PMI, corresponding to non-occluded or visible (from many viewpoints)
polygons, are represented by values near 1 in the grey-map, while high values of
PMI, corresponding to occluded polygons, are represented by values near 0 in the
grey-map. Observe that these maps look as an ambient occlusion or obscurancemap
(see [22, 6, 40, 18]). For more details see [13].
Itti et al. [19] maintain that visual attention is saliency-dependent and use a

saliency map to represent the conspicuity or saliency at every location in the visual
field by a scalar quantity and to guide the selection of attended locations. In [23],
mesh saliency is captured from surface curvatures and is considered as a perception-
inspired measure of regional importance and has been used in graphics applications
such as mesh simplification and viewpoint selection.
In our framework, the view-based mesh saliency of a polygon is defined as the

average dissimilarity between this polygon and its neighbors, where the dissimilarity
between two polygons is obtained from the variation of mutual information when
two polygons are clustered [9]. The polygonal dissimilarity between zi and z j is
defined by

D(zi,z j) = JS
(
p(zi)
p(ẑ)

,

p(z j)
p(ẑ)

; p(V |zi), p(V |z j)
)

, (8)

where the second term is the Jensen-Shannon divergence 1 between p(V |zi) and
p(V |z j)with weights p(zi)

p(ẑ) and
p(z j)
p(ẑ) , respectively. Hence, two polygons are “similar”

when the JS-divergence between them is small.
The saliency of a polygon zi is defined by

S(zi) =
1
No

No
∑
j=1

D(zi,z j) ≥ 0, (10)

where z j is a neighbor polygon of zi and No is the number of neighbor polygons of
zi. A polygon z will be salient if the average of JS-divergences between z and its
neighbors is high. On the other hand, a polygon at the center of a smooth region
will have probably low saliency since the polygons of this region will present small
visibility differences with respect to the set of viewpoints.

1 The Jensen-Shannon (JS) divergence is defined by

JS(π1,π2, . . . ,πn; p1, p2, . . . , pn) = H

(
n

∑
i=1

πi pi

)

−
n

∑
i=1

πiH(pi), (9)

where H(.) is the entropy of a probability distribution, and p1, p2, . . . , pn are a set of probabil-
ity distributions defined over the same alphabet with prior probabilities or weights π1,π2, . . . ,πn,
fulfilling ∑n

i=1πi = 1. The JS-divergence measures how “far” are the probabilities pi from their
mixing distribution ∑n

i=1πi pi , and equals zero if and only if all the pi are equal [3].
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Figure 5 shows the behavior of the saliency measure. The most salient parts are
represented in red and the least salient ones in blue. For instance, the handle of the
coffee cup and the nose, mouth and eyes of the other models are the most salient
surfaces.

(a) (b) (c) (d)

Fig. 5 Mesh saliency for the (a) coffee-cup-and-dish, (b) armadillo, (c) Hebe, and (d) lady of Elche
models.

Similarly to Lee et al. [23], where mesh saliency was used to select the best
views, a method to calculate the saliency of a viewpoint is now proposed. Up to
now we have calculated the saliency of a polygon, however we can convey this
information to the sphere of viewpoints, using the conditional probabilities of the
inverse channel.
The viewpoint saliency is defined by

S(v) = ∑
z∈Z

S(z)p(v|z). (11)

Figure 6 shows the most and least salient views for the coffee-cup-and-dish and
armadillo models. Observe how the most salient views show us the most salient
parts of each object.

(a) (b) (c) (d)

Fig. 6 The (a,c) most salient and (b,d) least salient views for the coffee-cup-and-dish and armadillo
models.
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6 Viewpoint-Based Error Metric

In this section, an error metric based on viewpoint selection measures is presented
for polygonal simplification [4, 5]. This metric can be used to evaluate the cost of
a decimation operation. The edge collapse is chosen as the decimation operation,
although any other simplification operation could be performed such as removing a
vertex, replacing a cluster of vertices by a single one and contracting an edge.
Taking into account that the viewpoint selection measures express the accessible

information about an object from a particular viewpoint, the variation of a given
viewpoint measure can provide us with an error metric to guide the simplification
process. Thus the simplification error deviation for edge collapse e from all view-
points V is defined by

Ce = ∑
v∈V

|Iv− I′v|, (12)

where Iv represents the viewpoint selection measure before the edge collapse e and
I′v afterwards.
To test our simplification method, we use VE, VKL, and VMI. As we have seen,

these measures are based on the distribution of areas of polygons seen from a view-
point. The area of the background is included as the polygon number 0. This fact
allows us to preserve the silhouette better. Note that the main implication of con-
sidering the projected areas is that the hidden geometry will be initially removed,
because if a polygon is not seen from any point of view, its simplification will not
introduce error.

Fig. 7 An example of 8 camera positions surrounding the Test Model. Camera positions corre-
spond to the 8 vertices of the cube. This allows covering the whole object because the viewpoints
are equidistant from each other.

Figure 7 shows the original Test model and how the viewpoints are distributed
around it. These viewpoints are associated with the vertices of the Cube in which
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the object is inscribed. Figure 8 shows the VMI for the original Test model using
the 8 viewpoints shown in Figure 7. As can be seen, the different viewpoints have
the same VMI. This is because the object is wholly seen from every viewpoint and
each viewpoint sees the same as any other. Note that this is a very special situation
because the object is quite simple and regular. Normally, in more complex models
every viewpoint will have a different VMI.
Figures 9 and 10 illustrate how VMI can be employed to conduct the simplifica-

tion. Figure 9 shows the Test model after performing the best edge collapse e and
Figure 10 after performing the worst edge collapse e′. The best edge collapse be-
longs to the lowest simplification error Ce (12) and the worst to the highest. As can
be observed all the VMI values for every viewpoint decreased after an edge collapse
(see for instance Figure 8(a) compared to Figure 9(a) or 10(a)). This is because the
visible area did not increase in both cases and also the complexity is always reduced
during the simplification process. But in a more general case, it is possible that af-
ter an edge collapse some previously hidden parts of the mesh may now appear,
thus increasing the visible area. If we pay attention to Figure 8(b) and compare this
same viewpoint after the best edge collapse (see Figure 9(b)), it can be appreciated
that although the number of triangles is reduced (T=8), the visible area remains
the same. The simplification error for this viewpoint using VMI is Ce=0.004097-
0.003651=0.000446. If we analyze the same viewpoint in the worst edge collapse
operation (see Figure 10(b)), it can be seen that although the number of triangles is
less reduced, the total visible area is somewhat decreased. The simplification error
for this viewpoint is Ce′=0.004097-0.003372=0.000725, which is higher than the
error committed in the best edge collapse.

(a) (b) (c) (d)

Fig. 8 Original Test model. T=10. I(v,O)=0.004097 where v = {1, ..,8}. Only 4 viewpoints are
shown because the rest are symmetric.

Nevertheless, due to the fact that VKL considers the actual area of polygons, after
an edge collapse, normally one or two polygons will be removed, thus decreasing
the total actual area. This will change the value for VKL after an edge collapse.
Therefore the error committed will be distinct from zero. The consequence is that
even hidden polygons will have error when simplifying and will not be completely
removed during the initial steps of the algorithm. Hidden polygons will be removed
according to their actual area. Thus, the smallest polygons will be simplified before,
preserving the main features of the object in its internal parts.
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(a) (b) (c) (d)

Fig. 9 Test model after performing the best edge collapse e using VMI. T=8. Ce=0.002573.

(a) (b) (c) (d)

Fig. 10 Test model after performing the worst edge collapse e′ using VMI. T=9. Ce′=0.006228.

7 Simplification Algorithm

The simplification process, like many other simplification algorithms, is based on
the edge collapse operation. However, we use the half-edge collapse operation. Ac-
cording to this, the remaining vertex for an edge collapse e(u,v) is vertex u or v
(see Figure 11(a)). By using half-edge collapses it is possible to reuse the simpli-
fication process in order to generate multiresolution models. These models can use
the current hardware in a more efficient way because no new vertices are added
to the original model. Furthermore, the half-edge representation is useful for pro-
gressive transmission. The main disadvantage is a slight loss of quality of the final
mesh, although the complexity of the simplification algorithm is reduced because
we do not have to compute the position of the new vertex v′ resulting from the edge
collapse. In any case, the general edge collapse operation can be applied to our al-
gorithm. However, a strategy is required to compute the position of the resulting
vertex. Brute force selection of edges can introduce mesh inconsistencies. In order
to avoid these artifacts, we only take into account the edges which have at most two
adjacent polygons, that is, 2-manifold edges. And we also consider boundary edges,
i.e. edges which have one single adjacent polygon.
The best half-edge collapse is the decimation operation chosen in our algorithm.

Note that the cost of collapsing vertex u to v may be different than the cost of col-
lapsing v to u. In our strategy in order to determine the best orientation of an edge
collapse, we would have to render the two possibilities and compute that error. How-
ever, this would increase considerably the number of renderings and consequently
the number of framebuffer readings. Therefore the temporal cost would be penal-
ized. To avoid that, we used the approach developed by Melax [27] that takes into
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(a) The half-edge collapse operation (b) Edges adjacent to
vertices adjacent to vertex v.

Fig. 11 In this example edge e is collapsed into vertex u (see e(v,u)), but it is also collapsed into v
(see e(u,v)). Triangles t10 and t5 are removed.

account polygon normals. Within this approach, the two orientations e(u,v) and
e(v,u) are calculated and finally the orientation that produces a minor change in the
curvature of the local region around the edge collapse is applied. Hence the simpli-
fication error deviation is only computed for that orientation. In Figure 12 we show
a summary of the simplification algorithm.
Both VE and VMI can be calculated iteratively allowing us to speed up their cal-

culation in the algorithm. VE and VMI are computed from the projected areas and
the total projected area. The background is considered to be another polygon, and
thus the total projected area is always the image resolution. Moreover, only a few
polygons change after an edge collapse. Therefore VE and VMI can be computed
for the entire object at the beginning and then their initial values can be updated
successively. VKL considers the projected areas and one more distribution, the ac-
tual area of polygons. In this case, VKL cannot be computed iteratively because the
background plays no role, that is, it is not considered as another polygon. The total
projected area is always the image resolution. However, the total actual area is not
a constant value. This means that after an edge collapse the total actual area will
change because some polygons were removed.
The simplification algorithm maintains a heap of edge collapses, sorted by the

simplification error cost. In fact, it is an iterative method, so the edge collapse oper-
ation is applied until the desired approximation is obtained. At each operation, the
edge collapse e that has the least deviationCe (12) is chosen.
At each iteration, the edge cost must be evaluated for the entire set of remaining

edges. An edge collapse in our algorithm could, in principle, affect the cost of any
remaining edge. But this case does not always happen to each edge. At each step, we
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only choose a small group of edges affected by an edge collapse and then the cost is
recalculated for this set of edges. These edges are the ones adjacent to the vertices
adjacent to the vertex v resulting from a half-edge collapse (see Figure 11(b)). In
order to avoid performing unnecessary edge collapse calculations, after applying an
edge collapse, each edge that should be recalculated is simply marked as dirty. Such
edges are really recalculated only when they reach the top of the heap. If the edge
extracted from the heap is dirty, it is simply discarded. Then, its cost is recomputed
and inserted into the heap again.

// Compute initial viewpoint selection
// measure for mesh M
Compute Iv, where v= {1, ..,n}

// Build initial heap of edge collapses
for(e ∈M )

Choose the best orientation of e
Perform collapse e
Compute Iv, where v= {1, ..,n}
Compute collapse cost Ce = ∑nv=1 |Iv− I′v|
Insert the duple (e,Ce) in heap h
Undo collapse e

end for

// Update mesh M
while (heap h not empty)

Delete from heap h edge e with lowest Ce
Perform collapse e
Recalculate cost for the neighborhood of e
and update their location in heap h

end while

Fig. 12 Pseudo-code of the viewpoint-based simplification algorithm.

Our experiments were performed with low complexity models from CAD pro-
grams. All models were simplified on an Intel Xeon 2.8GHz with 4GB RAM and an
NVIDIA 8800 GT 512MB graphics card from 20 viewpoints using 256x256 resolu-
tion images. The results obtained with the viewpoint-driven simplification method
were compared to the results with QSlim v2.1 [10], using the best half-edge col-
lapse, at the same level of simplification. We chose QSlim because it is a well-
known purely geometric algorithm, freely available, which produces high quality
simplifications.
We have implemented the root mean square error (RMSE) of the pixel-to-pixel

image difference defined in [24] to measure the mean visual error between the origi-
nal and the simplified model. This error was taken using 24 viewpoints and 512x512
resolution images. We must emphasize that each viewpoint was different from the
one used during the simplification and the resolution was higher.
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(a) Original Fish model
T=815

(b) QSlim.T=100 (c) VE.V=20.T=100

(d) Original Galleon model
T=4698

(e) QSlim.T=500 (f) VE.V=20.T=500

Fig. 13 Results for Fish and Galleon models. V indicates the number of viewpoints and T the
number of triangles.

(a) Original Shark model
T=734

(b) QSlim.T=80 (c) VMI.T=80

(d) Original Galo model
T=6592

(e) QSlim.T=500 (f) VMI.T=500

Fig. 14 Results for Shark and Galo models.
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We perform a comparison between QSlim, viewpoint entropy, and mutual infor-
mation for several models, the results of which appear in Figures 13 and 14 as well
as in Table 1.

(a) Original model T=6592 (b) VE.T=500 (c) VMI.T=500

Fig. 15 Galo model rendered in wireframe.

(a) Original model T=11136 (b) VE.T=600

(c) VMI.T=600 (d) VKL.T=600

Fig. 16 Simpletree model rendered in transparency.
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Figure 15 shows how VE and VMI work when they are applied to simplifica-
tion. VE tends to balance the size of triangles. This means that all triangles in the
simplified model will have more or less the same area. However, VMI increases the
simplification in flat regions such as the base and the tail. This behavior is desirable
and allows VMI to reduce the simplification in other parts of the model, preserving
better the visual similarity of the simplified model. In Figure 16, we also show how
VE and VMI behave when the object has hidden parts, for instance the Simpletree
model which has some branches hidden by the treetop. As can be seen in this fig-
ure, both VE and VMI simplify those hidden branches more deeply whereas VKL
preserves them better.
Figures 17, 18, and 19 show the results for different models, a more detailed de-

scription of these results can also be found in Table 1. For the models analyzed, VE,
VMI and VKL achieve much better simplification than QSlim. The difference be-
tween both VMI and VEwith respect to QSlim is muchmore significant if the model
presents lots of hidden interiors, in which case VMI and VE can accomplish much
better simplifications than QSlim and even than VKL, because as we explained pre-
viously, VKL preserves better those internal parts. However, this implies a visual
error slightly higher in VKL than in VE and VMI.

(a) Original model T=4204 (b) VE.T=500 (c) VMI.T=500

(d) VKL.T=500 (e) QSlim.T=500

Fig. 17 Footbones model.

In Table 1, we observe that for all the cases the visual error is much higher for
QSlim than for VE, VMI and VKL. As shown in this table the visual error is lower
in the VMI case for most models. An analysis of the temporal cost is also shown in
this table. This cost is proportional to the complexity of the model and to the final



Viewpoint Selection, Mesh Saliency and Geometry Simplification 19

(a) Original model T=3634 (b) VE.T=500 (c) VMI.T=500

(d) VKL.T=500 (e) QSlim.T=500

Fig. 18 Tennis shoe model.

(a) Original model T=9286 (b) VE.T=2000 (c) VMI.T=2000

(d) VKL.T=2000 (e) QSlim.T=2000

Fig. 19 Big spider model.
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number of triangles demanded. However, the QSlim algorithm is extremely fast. Its
times for these models are less than a second. In any case, our method produces high
quality simplifications according to visual similarity. The time difference between
VMI and VE lies in the calculation performed to obtain the mean projected area of
polygons, which is not necessary in VE. Therefore, the temporal cost of VE is a bit
lower. The temporal cost of VKL is higher than the temporal cost of VE and VMI
because we cannot exploit the iterative calculation for VKL as we carried out in the
case of VE and VMI.

Table 1 Results for QSlim (QS), VE, and VMI measuring visual error (RMSE) and simplification
time in seconds.

Model Triangles RMSE Time
Initial Final QS VE VMI VKL QS VE VMI VKL

Shark 734 80 33.4 14.8 14.7 18.3 0.02 14.48 15.09 14.42
Fish 815 100 22.9 12.1 13.9 13.8 0.03 15.71 16.67 16.54
Tennis shoe 3634 500 9.8 8.9 8.3 8.4 0.04 83.01 95.08 145.36
Footbones 4204 500 14.5 14.3 14.5 14.3 0.04 83.65 84.11 140.87
Galleon 4698 500 36.8 23.4 17.1 17.9 0.04 96.05 100.20 120.60
Galo 6592 500 12.4 9.4 8.4 10.8 0.08 137.61 142.24 182.63
Big spider 9286 2000 11.5 10.1 10.6 11.4 0.12 228.08 251.92 323.23
Simpletree 11136 600 20.7 17.2 16.6 17.8 0.20 321.06 332.49 427.24
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12. C. González, P. Castelló, and M. Chover. A texture-based metric extension for simplification
methods. In Proc. of GRAPP 2007, Barcelona, Spain, pages 69–77, 2007.
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