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A B S T R A C T   

Models that simulate water flow and quality, particularly related to nitrate ions, are commonly used on a 
catchment-scale. However, tracking nitrate ions is a challenging task due to the intricate processes that affect 
them, such as phase exchanges, transformations, and interactions with various environmental media. In general, 
models capable of carrying out all tasks required to simulate water flow and quality at the same time, are rare. 
Additionally, most available models focus only on specific compartments of the watershed, such as surface water, 
topsoil, unsaturated zone, or groundwater. Taken together, these two challenges can lead to oversimplified 
representations of a system’s hydrology, as catchment internal processes become neglected due to missing in
formation (lack of informative measurements, or models not focusing on all watershed compartments). 
Attempting to combine these models or to couple different watershed compartments results in complex calcu
lations, increased run times, and a large number of parameters to estimate. Artificial Intelligence (AI) models 
have been massively used in environmental studies but, so far, the majority of them have been tested theoret
ically and not under real conditions. To overcome these challenges, stable isotope data are often employed to 
calibrate and validate internal catchment processes of these models. While water stable isotopes (δ18O and δ2H of 
H2O) have been extensively used in many water flow models, the use of nitrate isotopes (δ15N and δ18O of NO3

–) 
in water quality models remains poorly explored. Nitrate isotopes can help trace the origin of NO3

– contamination 
and disentangle the complex reactions and dynamics that nitrate undergoes during transport. Hence, we propose 
that incorporating nitrate isotopes into catchment-scale water flow and quality models can substantially enhance 
the accuracy of these models. This review provides an overview of the current use of catchment hydrological 
models in predicting flow and fate of solutes. We discuss their limitations and highlight the potential of 
combining these models with nitrate isotopes. Ultimately, this approach may reduce prediction uncertainties and 
provide more effective guidance for water management decisions.   
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1. Introduction 

The SDG6 (Sustainable Development Goal 6) “Clean Water and 
Sanitation” is a global goal adopted by the United Nations General As
sembly in 2015. It aims to ensure access to clean water and sanitation for 
all people, as well as improving water quality and increasing water-use 
efficiency. However, the global nitrogen (N) delivery to surface waters 
has increased from 44 to 71 Tg N/yr during the period 1970–2015, 
which is the result of a global increase in anthropogenic source contri
bution from 60 to 74 % (Beusen and Bouwman, 2022). Furthermore, 
~20 % of global studied aquifers were found to be highly contaminated 
on nitrate (NO3

–), making nitrates as one the most widely spread 
contaminant among N-species (Abascal et al., 2022). 

Nitrate (NO3
–) pollution in aquatic systems is a major environmental 

problem primarily as a result of anthropogenic activities, such as agri
cultural activities through the use of N-containing fertilizers, sewage 
disposal, and animal breeding operations (Fig. 1). Nitrate is known for 
its detrimental effects on surface water ecosystems, particularly causing 
eutrophication and hypertrophication in rivers, lakes and coastal areas 
(Townsend-Small et al., 2007; Romanelli et al., 2020). These conditions 
often lead to algae blooms, fish kills, and other ecosystem-scale changes 
(Kharbush et al., 2023). On the other hand, exceedance of threshold 
levels of nitrate in drinking water can lead to a condition called 
methemoglobinemia, or “blue baby syndrome,” which can be fatal for 
infants (Fan and Steinberg, 1996). Nitrate is also a precursor in the 
formation of N-nitroso compounds (NOC), which are carcinogens and 
teratogens, and may result in cancer, birth defects, or other adverse 
health effects (Schullehner et al., 2018; Ward et al., 2018; Picetti et al., 
2022). Overall, nitrate pollution in aquatic systems is a problem of 
global concern that requires effective strategies to control. 

Increased N availability enhances terrestrial productivity; however, 
excessive soil N input often leads to nitrate leaching into ground- and 
surface waters. For example, nitrate leaching can originate from forestry 
activities (harvest, litter, etc.), and especially drainage operations for 
organic soils in Nordic conditions (Marttila et al., 2018). However, 
nitrogenous species undergo changes in various environments, such as 
in soils and the subsurface (saturated and unsaturated zone), surface 
water, in the hyporheic zone, at the suspended particles of the overlying 
water above the sediment, and in riparian zones. These nitrogen 

transformations are heavily influenced by the presence of oxygen and 
can vary depending on the location. For example, in oxic conditions, 
organic tissue is broken down and released as ammonium (NH4

+), which 
can then be transformed into nitrite (NO2

–) and nitrate (NO3
–) through a 

process called nitrification (Taillardat et al., 2019). However, in anoxic 
conditions, nitrate can be reduced to non-reactive N2 through denitri
fication (Li et al., 2019a). Denitrification is mediated by heterotrophic 
bacteria and occurs mostly at higher than the topsoil depths and at the 
water–sediment interfaces. In topsoils where oxygen levels vary, both 
nitrification and denitrification can potentially take place at the same 
time (Hall et al., 2016). Additionally, nitrate can also undergo other 
transformations, such as dissimilatory anaerobic reduction to ammo
nium (DNRA), while ammonium in the presence of nitrite may undergo 
anaerobic oxidation to N2 through the anammox process (Zhou et al., 
2014). These transformations are controlled by a combination of factors, 
such as the presence of electron donors, e.g., organic carbon (Trudell 
et al., 1986; Steiness et al., 2021), sulfides (Postma et al., 1991; Böhlke 
et al., 2007), and ferrous iron (Postma, 1990; Korom et al., 2012), the 
presence of a microbial community to transform nitrogen (Juncher 
Jørgensen et al., 2009; Torrentó et al., 2010), and the residence time of 
water (Petersen et al., 2020a,b; Steiness et al., 2021), which links it to 
catchment water flow. 

Nitrate concentration levels in water bodies can be the result of N 
sources and biogeochemical transformations. For instance, lysimeters 
experiments in soils showed that the nitrate that leaches under the sub- 
root zone is not directly the combination of the sources of nitrogen but 
mostly reflects a “new” nitrate produced from the mineralization/ 
nitrification of the soil organic matter (Sebilo et al., 2013). Furthermore, 
N accumulation in the root zones and the soils, particularly in long-term 
fertilized areas, creates a time lag in the response of any land-use 
changes and the N concentrations in the water bodies. Moreover, the 
inherent delay of N transport through the unsaturated and saturated 
zone creates another time lag (Baillieux et al., 2015). The delay in the 
transport of water and nutrients in surface waters and groundwater 
through soil and the unsaturated zone depends on their hydraulic 
properties and heterogeneity (e.g., hydraulic conductivity, porosity, 
thickness of the unsaturated zone), known as hydraulic legacy, and the 
occurrence of biogeochemical processes (e.g., rates of organic N 
mineralization), known as biogeochemical legacy (Van Meter et al., 

Fig. 1. Conceptual overview of nitrate dynamics in a water catchment with potentially large spatial and temporal variations. The white arrows indicate different 
pathways for pollution to enter into surface waters, including emissions (1) from beneath the surface; (2) from forested areas, agricultural and urban sources; and (3) 
through atmospheric deposition (note that this is an illustrative selection, not an exhaustive list of possible nitrate sources). Further in-stream biogeochemical 
transformations (e.g., nitrification) and variations in the water flow itself (red arrows) affect the nitrate levels along the stream. Nitrate isotopes (δ15N, δ17O, δ18O) 
are sensitive to the different pollution sources and cycling histories and can, possibly combined with water isotopes, provide additional constraints for models. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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2016; Vero et al., 2018). 
The efficient monitoring and forecasting of the amount, flow, and 

quality of water, particularly regarding nitrate pollution levels, is 
necessary for sustainable water resources management (Burri et al., 
2019). Using models to simulate water quantity (including flow) and 
quality (including solute and reactive transport) in a river catchment 
under different scenarios can help to anticipate the effects of different 
water and nutrient management strategies and provide stakeholders 
with information on how to protect the water resources and remedy the 
negative impact on them (e.g., Gong et al., 2019; Peña-Arancibia et al., 
2019; Zhang et al., 2020a; Hrachowitz et al., 2021; Son et al., 2022). The 
different scenarios of interest are diverse, such as changing climatic 
conditions (Fu et al., 2019), land use management and change (Lei et al., 
2022) or the impact of dams (Zhang et al., 2011). In a broad sense, a 
distinction can be made between water quality and water quantity (or 
synonymous used water flow) models to describe two different envi
ronmental processes. Water quantity (or flow) models describe water 
flow through, for example, the integrated land surface, surface water 
and groundwater, whereas water quality models attempt to simulate 
changes in pollutant concentrations as they move through the environ
ment, including water quantity. This can be done on a smaller scale or, 
as we consider, mostly on a catchment scale and therefore represent 
catchment models. We use the term catchment models to encompass 
models that simulate and predict water quality and quantity (including 
flow) in streams or rivers, groundwater and soil at a catchment-scale. 
Modeling the flow of water through a catchment and the transport 
and reaction of solutes regarding water quality is becoming an 
increasingly interdisciplinary field. Due to this complexity, there are 
various models and concepts for simulating processes within a catch
ment, which are overall divided into physically-based models and con
ceptual models. The definition and examples of these different model 
concepts are provided in section 3. 

To make well-informed decisions, it is important to use models that 
are validated against real-world measurements of fluxes (e.g., runoff, 
and nutrient/pollutant loads) and state variables (such as soil water 
content and groundwater levels). In recent years, modern sensors have 
led to obtaining high frequency solute data (Bogena et al., 2018; Men
nekes et al., 2021). This has increased data availability and amount for 
model evaluation, allowing models to have a high spatiotemporal res
olution when estimating catchment water flow and solute transport. 
Despite the wide variety of methods for measuring fluxes and state 
variables as well as modern sensors, catchment heterogeneity can never 
be investigated in all its detail and thus, uncertainty in the obtained 
results remains (Moeck et al., 2020). Furthermore, many catchments do 
not have spatiotemporal high-resolution data and suffer from a lack of 
data that is especially an issue when trying to predict water flow or 
solute transport in regions where monitoring is difficult or not possible 
(Razavi and Coulibaly, 2013; Ramón et al., 2021). In addition to data- 
related challenges with model validation, it is important to choose the 
‘right model’, as different models are suited for different processes and 
locations, especially when simplified models are used (e.g., Baginska 
et al., 2003; García et al., 2016; Smith et al., 2016; Akanegbu et al., 
2018). 

Different types of transport and reaction models can be used to study 
water quality dynamics at different scales and levels of complexity. For 
example, geochemical models, which are typically used to analyse the 
chemical reactions in natural or engineered geological systems quanti
tatively based on a set of mathematical equations, help to predict at how 
water, soil, and rock interact to determine the main reactions and 
changes that affect water quality on commonly small-scale model ap
plications. In contrast, catchment models often use descriptions of 
chemical and biological processes to predict water quality at the 
catchment or hydrological response unit (HRU) level (Neitsch et al., 
2011; Nguyen et al., 2019). Similarly, models that focus on simulating 
water flow throughout a catchment vary in complexity from simple 
models that fit a sine wave to tracer data (such as δ18O and δ2H of H2O) 

to obtain fast runoff components (Jasechko et al., 2016; Kirchner, 2016) 
to complex, soil water flow models (Fang et al., 2015; Saari et al., 2020), 
and integrated models that fully couple surface and groundwater com
ponents (Brunner and Simmons, 2012; Ala-Aho et al., 2015; Moeck 
et al., 2015; Schilling et al., 2019). Both water flow and quality models 
operate at different temporal and spatial scales. Hydrological water flow 
studies for example focus on short-term flow dynamics (e.g., peak 
flows), short- and long-term water age dynamics (Stockinger et al., 
2014; Birkel et al., 2020), and the long-term impact of different land 
uses on flow dynamics (e.g., Orlowski et al., 2016; Zaherpour et al., 
2018). Similarly, water quality models can be used to predict water 
chemistry over a range of timescales and from various sources, 
depending on the solute of interest. For example, nitrate studies often 
focus on longer timescales (Frind et al., 1990; Zhang et al., 2013; Jessen 
et al., 2017; Matiatos et al., 2019), while studies of phosphorous or 
pesticide dynamics tend to focus on short-term storm dynamics (Paudel 
et al., 2010; Rosenbom et al., 2014; Rosenbom et al., 2015; Dupas et al., 
2018; Gassmann, 2021; Dagès et al., 2023). 

There is a wide range of catchment-scale models for both water 
quality and flow modeling. This is partly because of new scientific dis
coveries that have led to improved or completely new models, and partly 
because of the specific environmental conditions at the sites where the 
models have been developed. Different physiographical and climatic 
conditions require different descriptions of processes for various hy
drological compartments, especially for simplified models, which in
creases the computational power required. A common approach is to 
simplify less important, secondary processes, which has led to a relative 
disconnection between the catchment hydrological (water flow) and 
water quality (solute transport) scientific communities and their 
respective models (Hrachowitz et al., 2016). Models that focus on solute 
transport tend to rely on simplified representations of hydrological 
processes through water flow routines, while water flow models are not 
designed for routing solutes through a catchment or modeling their 
biogeochemical dynamics. While many water flow models at the 
catchment scale use water stable isotopes (δ18O, δ2H) as tracers to 
explicitly account for both effects of pressure propagation and actual 
water flow (Beven and Germann, 2013), they do not account for the 
transport or concentration changes of nutrients or contaminants due to 
biogeochemical reactions (O’Donnell and Hotchkiss, 2019). Water sta
ble isotopes are regularly used as tracers in water flow models because 
they provide additional information regarding actual water transport. 
For example, they can help differentiate between water from precipi
tation, snowmelt, and groundwater discharge, and quantify the relative 
contributions of each source to a stream or aquifer, and also give esti
mation of the water age in the catchment. In this regard, they are 
valuable tools for refining these models by ruling out unrealistic solu
tions (e.g., Stadnyk et al., 2013; Tetzlaff et al., 2018; He et al., 2019). 

On the other hand, AI models (i.e., Machine Learning (ML) and Deep 
Learning (DL)), have been increasingly used in river water quality and 
other environmental-related (e.g., climatology, agriculture) studies 
(Tiyasha et al., 2021). AI models are inspired by the learning mecha
nisms of the human brain and were initially introduced in the 1950′s 
(McCarthy, 1956). Machine Learning (ML) techniques are reliable tools 
in delivering exceptional predictive accuracy, making them particularly 
valuable for applications involving uncertain processes (Zhang et al., 
2020b). These applications are often called “black-box” predictions, 
offering accurate results but lacking in providing a mechanistic under
standing of the systems under study (e.g., Kim et al., 2021; 
Muñoz-Carpena et al, 2023). Beyond their predictive accuracy 
compared to mechanistic models (Adnan et al., 2021) ML techniques can 
help unveil the fundamental principles governing hydrological systems 
(e.g., Chang and Zhang, 2019; Bortnik and Camporeale, 2021; Nearing 
et al., 2021), identifying key factors within datasets (e.g., Vystavna 
et al., 2021), imputation of missing data (e.g., Sahoo and Ghose, 2022), 
emulating computationally intensive models (e.g., Lim and Wang, 
2022), or enhancing the resolution of remote sensing products (e.g., 
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Srivastava et al., 2013). 
Modeling the transport of nitrate (NO3

–) is a complex task due to the 
various reactions and dynamics that need to be taken into account. Ni
trogen transport models, similar to those for other contaminants, are 
typically based on a hydrological model, since water serves as the 
transport medium for NO3

–. However, the non-conservative nature of 
nitrate and its biogeochemical transformations present challenges for 
these models. Disregarding changes to nitrate concentrations due to 
biogeochemical reactions, most of the observed spatiotemporal vari
ability of nitrate is an effect of hydrological variability. In this regard, 
the movement of nitrate is governed by hydrological transport princi
pally through advection, dispersion and less through molecular 
diffusion. 

Nitrate isotopes constitute a powerful tool to trace the origin of ni
trate pollution in aquatic systems given that conventional chemical in
dicators are incapable of unravelling what NO3

– concentrations in rivers 
or aquifers embody at any point in time, apart from regulatory pollutant 
exceedances (Xue et al., 2009; Nestler et al., 2011; Fenech et al., 2012; 
Blarasin et al., 2021). This is because different natural and anthropo
genic sources of nitrate pollution, such as agricultural runoff, sewage 
wastes, and atmospheric deposition, have relatively distinct isotopic 
signatures (section 2) and are closely linked to land use practises. For 
example, Voss et al. (2006) found an increasing contribution from 
manure and septic wastes in water quality degradation as the percent of 
agricultural and urban land in the rivers of the Baltic Sea catchment 
increased. In another study, Yue et al. (2017) used nitrate isotopes to 
show that the Yellow River catchment undergoes nitrate pollution from 
variable sources; soil N in the upper section and chemical fertilizer and 
manure wastes in the lower section, particularly in the low flow season. 
Using nitrate isotopes, Li et al. (2019b) showed that fertilizer application 
accounted for 43 % of the total anthropogenic solute inputs to the Wei 
River, the largest tributary of the Yellow River. More recently, nitrate 
isotope techniques showed that organic wastes from point and non-point 
sources are the dominant source of nitrate pollution in many European 
rivers (Matiatos et al., 2023). 

Nitrate isotopes provide insights into complex nitrogen-related pro
cesses (e.g., nitrification, denitrification), which help disentangle the 
system’s resilience to pollution and the fate of nitrogen contaminants in 
the catchment. For example, Suárez et al. (2019) applied nitrate isotope 
techniques in an agricultural catchment and revealed that soil microbial 
nitrification was the most important contributor to the nitrate in the 
river runoff compared to direct leaching of nitrate from mineral fertil
izers and atmospheric nitrate deposition. Wang et al. (2021a) found that 
biogeochemical processes, such as nitrification and sedimentary deni
trification, co-existed in different parts of the Jiulong River Estuary, with 
variable dominance of the first over the latter depending on the hy
drological conditions. In a global survey, Matiatos et al. (2021) showed 
that N-cycling processes are temperature and climate dependent and 
that sources of nitrate pollution are more probable to be detected during 
winter. 

Despite being a powerful tool in hydrological studies, nitrate isotopes 
have never been used as part of catchment hydrology models. Similar to 
water stable isotopes being used in water flow models to improve the 
representation of catchment-internal processes, we argue that nitrate 
stable isotopes can be useful tools in improving the transport and 
biogeochemical reaction routines of water quality models. In this regard, 
here we provide a general overview of nitrate isotope characteristics and 
reactions, and various catchment water flow and quality models and AI 
models, before discussing the limitations of these models and what 
would be needed for nitrate stable isotopes to be incorporated into 
models to improve results. We do this by synthesising both recent papers 
that reflect the current development in the field, and some older key 
papers that have had a major impact and are still relevant to date. In 
doing so, we highlight both modelling and observational methods, and 
also reflect on potential ways forward for this field. In the following 
sections, the principles, and uses of nitrate isotopes (section 2) and 

catchment-scale water quality models (section 3) will be discussed, as 
well as limitations of these models and how nitrate isotopes could help 
overcome them (sections 4, 5). 

2. Nitrate isotopes 

NO3
– is composed of nitrogen (N) and oxygen (O). Nitrogen has two 

stable isotopes, 14N and 15N, which have a relative abundance of 99.63 
% and 0.37 %, respectively (Rosman and Taylor, 1998). Oxygen has 
three stable isotopes, 16O, 17O, and 18O, with a relative abundance of 
99.76 %, 0.037 %, and 0.20 %, respectively. The “δ” (delta) notation, 
which expresses the relative difference of the ratio of the rare-to- 
common stable isotope to an international standard, is given in per 
mil (‰). Thus, the delta value of isotopes is given by: 

δsample(‰) =

(
Rsample − Rstd

Rstd

)

× 1000 ‰ (1)  

where R is the absolute ratio of 15N/14N for nitrogen and 18O/16O or 
17O/16O for oxygen of the sample Rsample and the reference material Rstd, 
respectively. The international standard for N is atmospheric nitrogen 
(Mariotti, 1983), for which the ratio 15N/14N is 0.003673, whereas for 
oxygen isotopes it is VSMOW with values 18O/16O = 2005.2 × 10-6 

(Baertschi, 1976) and 17O/16O = 382.7 × 10-6 (Kaiser, 2008). 
Nitrate isotopes (δ15N, δ18O of NO3

− ) can help to identify the origin of 
NO3

– contamination given each NO3
– source shows an expected range of 

“δ” values (Fig. 2). For example, the δ15N-NO3
− values typically exceed 

+ 15 ‰ when originating solely from manure or sewage wastes, δ15N- 
NO3

− values range from 0 ‰ to + 15 ‰, when originating from soil and 
are < 0 ‰ when originating solely from nitrified synthetic fertilizers or 
NH4

+ in rain (Heaton, 1986; Mariotti et al., 1988; Fogg et al., 1998; 
Kendall, 1998; Bateman and Kelly, 2007). The δ18O-NO3

− values are 
typically >+25 ‰ or <+20 ‰ when nitrate synthetic fertilizers are 
present or any other terrestrial source, respectively, and >+60 ‰, when 
nitrate originates from atmospheric deposition (Wassenaar, 1995; Ken
dall, 1998; Mayer et al., 2002). On a global scale the δ15N-NO3

− values in 
river waters and groundwater typically vary between ~ -10.0 ‰ and +
30 ‰ due to multiple nitrate pollution sources and N-cycling processes 
(Matiatos et al., 2021). On the other hand, the δ15N-NO3

− values in 
precipitation typically range between ~ -15.0 ‰ and ~+15.0 ‰ due to 
the influence of a variety of factors, including the sources of nitrogen (e. 
g., power generators, vehicles, agriculture), the mechanisms by which it 
is transformed and transported in the atmosphere, and the conditions 
under which it is deposited on the surface (Song et al., 2021). 

In addition to tracing the origin of nitrate contamination, nitrate 
isotopes also provide insights into the fate of nitrogen contaminants. 
Microbial processes, such as nitrification, denitrification, or volatiliza
tion can alter the concentration of nitrate and other nitrogen species, 
depending on the physical and chemical conditions. This can lead to 
changes in the isotopic fractionation of 15N and 18O of NO3

– (Böttcher 
et al., 1990; Matiatos et al., 2021). The isotopic fractionation factor a, 
which is defined as the ratio of the reaction rate for two isotopes, is a key 
measure of these processes (Sebilo et al., 2006): 

For nitrogen 

aN =
k15N
k14N

(2) 

For oxygen, 

ao =
k18O
k16O

(3)  

where a is the isotopic fractionation factor, and k15N, k14N, k18O, k16O 
are the instantaneous reaction rates for the molecules containing 15N, 
14N, 18O and 16O, respectively. 

The isotopic enrichment factor, ε (for nitrogen εN and for oxygen εO), 
expressed in ‰ is defined as: 
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ε = 1000(a − 1) (4) 

The following relationship between the rate of production of the 
isotopic forms of the product can be derived: 
(

d15Np
dt

)

(
d14Np

dt

) =
(
10− 3ε + 1

)
(15Ns

14Ns

)

(5) 

(NS nitrogen in the substrate and NP nitrogen in the product) or 
(

d18Op
dt

)

(
d16Op

dt

) =
(
10− 3ε + 1

)
( 18Os

16Os

)

(6) 

Denitrification with the reduction of nitrate (NO3
–) and nitrite (NO2

–) 
to gaseous nitrogen (N2) and nitrous oxide (N2O) is a strongly frac
tionating process that results in a significant increase of the δ15N and 
δ18O values of the residual nitrate with a typical δ15N:δ18O ratio of 1:2 
(Kendall, 1998). Thus, denitrification is a reactive loss of NO3

− , which 
generates higher nitrate isotope values than those of a simple dilution by 
hydrological dispersion processes, which are non-fractionating (Sem
aoune et al., 2012). Another fractionation process is assimilation, which 
refers to the transformation of oxidized N species, like NO3

− , to NH4
+

before being consumed by aquatic organisms. The isotope fractionation 
of the NO3

− substrate due to assimilation typically yields a change to 
approximately 1:1 in the δ15N:δ18O ratio of NO3

− (Kendall et al., 2007), 
which is larger than that of the denitrification process. Lastly, nitrifi
cation is described by two partial oxidation reactions mediated by 
autotrophic organisms, which result in the production of intermediate 
species, such as nitrite (NO2

− ), and has nitrate (NO3
− ) as its final product. 

The influence of 18O in water and molecular O2 on the 18O of NO3
−

produced during nitrification is typically described using a simple 
isotope mass balance equation (Kendall, 1998): 

δ18O − NO−
3 =

2
3
δ18O − H2O+

1
3
δ18O − O2 (7) 

N transformation processes are associated with different degrees of 
isotopic fractionation. For example, incubation experiments showed 
that nitrate reduction during denitrification can range between − 52.8 
and − 10.0 ‰ depending on the bacteria culture, the temperature, the 
moisture and the substrate availability (Denk et al., 2017; Rohe et al., 
2014; Snider et al., 2009; Lewicka-Szczebak et al., 2014). The isotopic 
fractionation due to nitrification is variable depending on the oxidation 
stage. For example, the oxidation of NH4

+ oxidation to the intermediate 
product of NO2

– can induce an isotopic fractionation from − 38 to − 24 ‰ 
(Casciotti et al., 2003; Mariotti et al., 1981), whereas the oxidation of 
NO2

– to NO3
– triggers an enrichment of + 13 ‰ (Casciotti, 2009). Granger 

et al. (2010) showed that the isotope effect of assimilation can vary 
between + 0.4 to 8.6 ‰ depending on the plankton strains. 

Due to the different impacts of the transformation processes on ni
trate isotope ratios, isotopic fractionation may give insights into the 
relative importance of individual nitrogen cycling processes at the 
catchment scale when aided by water quality models, in particular by 
reactive solute transport models. The results of those models are 
strongly linked to water flow models, as the travel time distribution of 
water flows (transit times, see section 3) controls the reaction time at the 
water-substrate interfaces, with longer transit times favoring nitrate 
removal (Tanner and Kadlec, 2013; Yang et al., 2021). 

Besides these relatively traditional tracers, Δ17O (= δ17O – 0.52 ×
δ18O, also referred to as the 17O-excess) tracks the mass-independent 
fractionation through systems (Michalski et al., 2003) and can provide 
additional constraints on nitrate dynamics in watersheds. Δ17O is 
particularly sensitive to the atmospheric deposition of nitrate and was 
used by Liu et al. (2013) to estimate a contribution of 0–7 % from at
mospheric deposition to the nitrate in the Yellow River in China. More 
recently, Ji et al. (2022) used the tracers 17O, 18O and 15N to study the 
relative contributions from atmospheric deposition, nitrogen fertilizer, 
soil nitrogen, and municipal sewage to a river network in eastern China. 

Fig. 2. Expected ranges of values of δ15N and δ18O of nitrate from various N sources. The arrows show indicative trajectories resulting from the denitrification of 
nitrate (modified from Kendall et al., 2007). 
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Further, 17O was used as a natural tracer for the gross nitrification rate of 
a temperate forest leaching nitrate into the stream (Huang et al., 2020). 
In addition, 17O in water can be used to better quantify water flow, and 
measurements of 17O in water have recently become more feasible due 
to developments in isotope measurement techniques (Kim et al., 2022; 
Terzer-Wassmuth et al., 2023; Xia et al., 2023). 

So far, nitrate isotopes have been commonly used in statistical 
mixing models to calculate the proportional contributions of nitrate 
sources in water samples based on the assumption that any change in 
isotopic composition is the direct result of mixing of two or more sources 
of known composition (Xu et al., 2016). Source apportionment models, 
such as IsoSource (Phillips and Gregg, 2003), IsoError (Phillips and 
Gregg, 2001), and IsoConc (Phillips and Koch, 2002), have been applied 
in the past but do not consider possible changes in the isotopic 
composition due to fractionation-related processes. More recently, the 
MixSIAR model (Parnell et al., 2010) can better constraint the un
certainties (seasonal variation of isotopes, multiple sources > 3, and 
isotope fractionation). In brief, the MixSIAR model computes the pro
portional contributions of potential sources to the mixtures (samples) 
through their tracers (stable isotopes) after applying a Marchain Monte 
Carlo method to estimate the probability distribution (Stock et al., 
2018). The overlap of isotope composition between different nitrate 
sources and the spatial variability in the isotope value of mixing water 
decrease the accuracy of these models. Some studies have successfully 

used these models to quantify nitrate sources in water environments 
(Xue et al., 2012; Matiatos, 2016; Re et al., 2021; Torres-Martínez et al., 
2021; He et al., 2022; Yuan et al., 2023). More recent studies (e.g., Ji 
et al., 2022; Wu et al., 2023) have coupled these Bayesian mixing models 
with uncertainty analysis based on a probability statistical method 
introduced by Ji et al. (2017). 

3. Catchment-scale water flow and quality models 

Modeling the flow of water through a catchment and the transport of 
solutes is becoming an increasingly interdisciplinary field. New chal
lenges arise from the need to keep the description of multiple interacting 
processes across different scales and parts of a catchment physically and 
numerically consistent. Due to this complexity, there are various models 
and concepts for simulating processes within a catchment, which are 
overall divided into physically-based models and conceptual models 
(Fig. 3). 

Physically-based models are based on an understanding of the 
physical processes involved, and incorporate mass conservation princi
ples (e.g., the Richards equation used in the ParFlow or HydroGeo
Sphere model (Brunner and Simmons, 2012; Maxwell et al., 2014) or the 
advection–dispersion equation as applied in the PHAST or MT3D-USGS 
models (Parkhurst et al., 2010; Bedekar et al., 2016). These models 
require robust numerical techniques to solve the equations and provide 

Fig. 3. Examples of water quality models with applications for nutrients transport. SW: Surface water, S: Soil, GW: Groundwater, UZ: Unsaturated zone, SZ: 
Saturated zone. 
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high-resolution spatiotemporal outputs (Ashby and Falgout, 1996). 
Physically-based models are continually evolving, driven by advances in 
computational methods and power, laboratory and field experiments, 
and the need to better understand and predict impacts on water flow and 
solute transport due to, for example, changes in land use changes cli
matic conditions. 

Conceptual models, unlike physically-based models, use transfer 
functions that are not necessarily based on physical knowledge but 
describe flow and transport in a physical meaningful (conceptual) way 
to convert a measured input signal to an output signal. For example, the 
TRANSEP model uses gamma and beta distributions as transfer functions 
to transform precipitation into runoff (Schmieder et al., 2019), whereas 
the DYNAMIT model uses process-based StorAge Selection (SAS)-func
tions to link the age distribution of water stored in a catchment to the 
age distribution of water in runoff (Hrachowitz et al., 2013, 2021). 
Conceptual models can also be further classified into subclasses such as 
“lumped”, “black-box” or “white-box”, and “semi-mechanistic” models 
(Braake et al., 1999). However, in practice, model types often overlap. 
For example, physically-based models use simplifications due to the 
limited spatiotemporal resolution of soil and geological structures and 
hydrometeorological measurements needed to calibrate them, while 
knowledge of physical processes is incorporated into conceptual models. 
For a detailed overview of recent model developments using 
time-variable water flow we refer to Benettin et al. (2022). 

Models at the catchment scale often consist of a combination of in
dividual models for the simulation of environmental subareas such as 
the root zone, groundwater, and surface water (Fu et al., 2019). The 
couplings between these single environmental subarea models can range 
from sequential to fully coupled with complete feedback mechanisms 
between the different environmental domains. Integrated catchment 
models may consist of a single model approach or a combination for the 
whole catchment. An example of a stand-alone integrated conceptual 
model is the Soil and Water Assessment Tool (SWAT) model. Examples 
of a combined approach are STONE (Wolf et al., 2003), with a chain of 
many model codes; the Hydrologiska Byrans Vattenbalansavdelning 
(HBV)-N (Arheimer and Wittgren, 2002) model, where the 
physically-based root zone model SOIL-N is used together with a lumped 
conceptual catchment model HBV (Bergstrom, 1995; Lindström et al., 
1997); a compound approach of Styczen and Storm (1993a,b) where the 
physical based root zone model (DAISY) was coupled with the distrib
uted physically-based catchment model (MIKE SHE); and an integrated 
approach is the SWATMOD model (Sophocleous et al., 1999; Bailey 
et al., 2017), which uses the root zone part of SWAT together with the 
physically-based groundwater model MODFLOW. In the study of Conan 
et al. (2003) this latter model was used together with MT3DMS (Zheng 
and Wang, 1999) for nitrate transport modeling. 

As a relatively new alternative to the aforementioned model-types, 
machine learning (ML) models (as part of Artificial Intelligence) are 
emerging in environmental sciences (Beven, 2020; Gonzales-Inca et al., 
2022; Mosaffa et al., 2022) (Fig. 3). ML methods are being applied to 
large data sets to improve scientific understanding and increase the ef
ficiency of data processing and management, though their full potential 
has not yet been completely exploited (Beven, 2020). For example, 
Bhattarai et al. (2021) evaluated nine different ML algorithms for 
simulating nitrate and phosphorus concentrations in five different wa
tersheds. Their analysis revealed that land use and related nitrate inputs 
(diffuse vs point sources) were determinant in the quality of results, 
having obvious implications for the prediction of nitrate fate. Artificial 
Neural Networks (ANN) performed best for rivers/streams in urban and 
agricultural watersheds, while Regression Trees with Bayesian Optimi
zation (RT-BO) performed best for the forested watershed. Similarly, 
Wang et al. (2021b) applied ML methods to simulate nitrate concen
trations and other contaminants in streams for the Texas Gulf Region, 
assessing the effect of urbanization in the region. These above- 
mentioned model types profit from advancements in satellite data 
availability, sensor technology and rapid transfer of data, improved 

computational power and increasing availability of data from “uncom
mon” measurements such as nitrate isotopes. 

3.1. Conceptual models 

Conceptual models use transfer functions that do not necessarily 
have a physical process basis to turn an input signal into an output 
response. The transfer functions may simulate the variable(s) of interest 
even if the function itself is not based on any physical process. The 
catchment is often represented as a black box, meaning that the spatial 
process distribution in the catchment is not represented. These models 
usually do not have spatial variation in model parameters or results, so 
they “lump together” the spatial and sometimes temporal heterogeneity 
of a catchment (lumped models). However, these “lumps” can be smaller 
than the total catchment area when using the concept of hydrological 
response units (HRU), which are areas of a catchment that produce the 
same output response to an input signal. These semi-distributed models 
allow for some variability but have less spatiotemporal resolution than a 
fully distributed physically-based model. 

One example of a simple water flow model is the fraction of young 
water approach (Kirchner, 2016). This approach uses the ratio of sine 
wave amplitudes fitted to δ18O or δ2H tracer input and output signals to 
estimate the percentage of river water that is younger than approxi
mately three months. The only input variables are the input and output 
tracer signals, as well as precipitation and streamflow measurements for 
weighing the tracer signals. The advantage of this approach is its ease of 
use, even in data scarce catchments. However, the temporal resolution 
of the tracer data has been shown to influence the obtained results 
(Stockinger et al., 2016). It can be used to derive temporally varying 
results (Stockinger et al., 2019) or runoff-dependent results (von Frey
berg et al., 2018). The main disadvantage is that it does not provide any 
insight into process knowledge for the obtained results and it does not 
include equations or storage components representing catchment flows 
and storages, so it cannot be used for detailed solute transport. The only 
way it can be linked to solute transport is by the general conclusion that 
on average a certain percentage of river water is younger than three 
months, which allows for a rough estimate of solutes quickly passing 
through the catchment. However, this approach does not consider re
action dynamics in the soil, making it unsuitable for coupling with 
(reactive) solute transport, especially for nitrate transport. Nitrate is not 
a conservative tracer and reacts during nitrification and denitrification 
processes. Thus, even if the input and output of nitrate were perfectly 
well defined, incomplete knowledge about the biogeochemical trans
formations nitrate is exposed to would lead to errors in estimating ni
trate transport through a catchment. Since the fraction of young water 
approach features no conceptual boxes that represent the unsaturated 
zone or the groundwater zone, it cannot be directly improved by 
equations describing nitrification and denitrification in those catchment 
domains. The sole result of the fraction of young water is a percentage 
estimate of water younger than three months in streamflow, and any 
modifications of the nitrate input signal must be computed separately. 

Another simple approach is the use of a convolution integral. The 
convolution integral approach is a mathematical method that is similar 
to cross-correlation of two time series, with one of the time series being 
reversed. It is commonly used in hydrology, particularly in the analysis 
of precipitation time series. The approach involves convolving the pre
cipitation time series with a transfer function that can take on various 
mathematical shapes, such as a beta or gamma distribution. The transfer 
function represents the proportion of a past rainfall event that arrives at 
a certain point in time, effectively modeling the transit time distribution 
(TTD) of a catchment (Botter et al., 2013). The convolution integral 
approach is included in many conceptual box models, such as the 
TRANSEP model (Weiler et al., 2003), and is relatively easy to imple
ment, however, subjective choice has to be made about the shape of the 
transfer function. Previous studies have used the approach as a time- 
invariant TTD (Stockinger et al., 2014), even though transit times can 
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vary over time (Basso et al., 2015). SAS functions (Harman, 2015; 
Rinaldo et al., 2015) have been proposed as an alternative to capture 
time-variance in transit times more effectively (see next paragraph for 
more details). The ability to couple the TTDs derived from the convo
lution integral approach to nitrate transport depends on the model 
structure used. Simplistic model structures make it difficult to incorpo
rate solute transport, as they cannot account for spatial heterogeneity in 
nitrate reaction dynamics, both horizontally from a point in space to 
another that might have different land use or nitrate inputs, and verti
cally, through different soil depths where the soil water content and thus 
nitrification and denitrification conditions might strongly differ. An 
alternative approach would be to incorporate reaction equations into 
the water flow model itself, modifying the nitrate concentrations based 
on biogeochemical processes occurring in the conceptual box, prior to 
transportation of the nitrate input signal by the water with transit times 
defined by the TTD. Yang et al. (2021) already used nitrate as an 
additional tracer to constrain estimates for water flow and incorporated 
simple nitrate reaction dynamics. 

SAS functions connect the age distribution of water (i.e., water ages 
are often defined as specific metrics, such as travel time, residence time 
or young water fractions to provide insights into mechanisms of varia
tions in flow paths, Kirchner et al., 2000; Botter, 2012; McDonnell and 
Beven, 2014) stored in catchments to the age distribution of the river 
water at any given point in time. Thus, these functions show when and 
under which conditions a catchment mainly releases water of a specific 
age (e.g., dominantly releasing young water from soil storage to become 
streamflow). For example, Hrachowitz et al. (2021) used SAS functions 
to demonstrate that after deforestation, the catchment released a larger 
proportion of young water compared to before deforestation. Under
standing the concept of different water ages within catchments is 
important because water transports nitrate, and nitrate concentrations 
can vary with water age. For example, old fractions of groundwater can 
be more enriched in nitrates due to legacy effects from long-term fer
tilizer application or depleted in nitrate due to denitrification (Wang 
et al., 2013; Erostate et al., 2018; Lutz et al., 2022; Matiatos et al., 2022). 
With the time-variant nature of SAS functions, it is theoretically possible 
to incorporate time-varying nitrate dynamics, making SAS functions 
even more suitable for adding nitrate information to water flow models 
compared to convolution integral approaches. 

So far only water stable isotopes and no nitrate isotopes have been 
used in conceptual models to elucidate hydrological processes, such as 
the fractions of water composing the runoff. For example, Weiler et al. 
(2003) coupled a TRANSEP model with water stable isotopes to separate 
the storm hydrograph. In another study, Segura et al. (2012) modelled 
catchment rainfall-runoff and stable isotope tracer response using a 
lumped conceptual model that integrates the unit hydrograph and 
isotope hydrograph separation methodologies. A more detailed review 
of the use of water stable isotopes in hydrograph separation can be found 
in Klaus and McDonnell (2013). On the other hand, Benettin et al. 
(2017) applied a transport model through the “direct-SAS” approach to 
reproduce the observed δ2H values and unravel travel time distributions 
in a river catchment. In the same work, the authors highlight the chal
lenge of using SAS functions in the application to large-scale transport of 
harmful chemicals like nitrates, and in the proper estimation of solute 
mass loads exiting a catchment. 

3.2. Physically-based models 

In physically-based hydrological models water flow and solute 
transport in both the surface and subsurface domain, including soils, are 
typically governed by the Richard equation and advection–dispersion 
equations, which consider flow and sorption/desorption of contami
nant, but also contaminant exchange between surface and subsurface 
due to infiltration, diffusion and bed exchange (Frey et al., 2021; 
Schilling et al., 2022; Peel et al., 2023). 

Physically-based models can cover only a single environmental 

subarea, such as the root zone, or the entire catchment using spatially 
distributed catchment models, seeking to describe the water and nitrate 
processes using numerical solutions for partial differential equations. To 
name a few examples of root zone models are DAISY (Hansen et al., 
1991; Abrahamsen and Hansen, 2000), SOIL-N (Johnsson et al., 1987), 
and ANIMO (Rijtema and Kroes, 1991). Examples of river and lake 
oriented models are AQAUSIM (Reichert, 1994) and CE-QUAL (Buchak 
et al., 1982). Due to the complex behaviour of nitrogen in soils, several 
models have been specifically developed for modeling nitrogen trans
formations and nitrate leaching. Examples are LEACHN as part of the 
LEACHM model (Wagenet and Hutson, 1989), WAVE (Vanclooster et al., 
1995), NLEAP (Shaffer et al., 1991), Agriflux (Banton and Larocque, 
1997), and Coupmodel (Jansson and Karlberg, 2004). An intercompar
ison of these models can be found in Diekkrüger et al. (1995) and Smith 
et al. (1997). One-dimensional models, such as SWAP (Kroes and Van 
Dam, 2003) or DRAINMOD (Skaggs, 1978; Moursi et al., 2022) have 
been widely used for simulating flow and solute transport through the 
saturated and unsaturated zones, whereas an example of 2D models to 
simulate unsaturated and saturated water flow is ANTHROPOG (Carluer 
and de Marsily, 2004). 

To upscale results, catchment scale models are typically used. The 
physically-based, semi-distributed and process-oriented SWAT model 
(Arnold et al., 1998; Abbaspour et al., 2015; Nguyen et al., 2022) used 
the representative elementary watershed concept by dividing the 
simulation domain in hydrologic response units to simulate water flow, 
solute transport, and sediment transport in agricultural catchments. 
Nitrogen transformations can be simulated with SHETRAN, a physically- 
based, spatially distributed river catchment model, that can be used in 
three-dimensions for coupled flow and nitrate transport (Birkinshaw and 
Ewen, 2000). For example, in SHETRAN, the subsurface is a variably 
saturated heterogeneous region, comprising perched, unconfined and 
confined aquifers, and unsaturated zones, and at the surface there is 
vegetation, overland flow and stream networks. The advec
tion–dispersion equations are used for nitrate transport simulations with 
terms added for adsorption. The nitrogen transformations taking place 
are modelled using NITS (Nitrate Integrated Transformation component 
for SHETRAN). NITS has pools for both carbon and nitrogen in manure, 
litter and humus, further pools for ammonium and nitrate, and involves 
the simultaneous solution of seven ordinary differential equations plus 
several auxiliary equations. 

A coupling between more mechanistic models for nitrogen trans
formation with more complex models for subsequent flow and transport 
models is quite common. For example, Bonton et al. (2012) combined 
the Agriflux (Banton and Larocque, 1997) and HydroGeoSphere (Brun
ner and Simmons, 2012) models to simulate transformation and trans
port of nitrogen compounds under variably-saturated flow conditions. 
The simulation for different agricultural parcels used the Agriflux model 
(Banton and Larocque, 1997) to simulate one-dimensional vertical flow 
and nitrate transport in the unsaturated zone and nitrogen trans
formation, where subsequently the HydroGeoSphere model is used to 
simulate transient groundwater flow and subsurface nitrate transport 
below the root zone. Zang et al. (2022) applied a quasi-3D feedback 
integrated model, accomplished by Hydrus 1D, MODFLOW, and 
MT3DMS. Overall, a small number of models have the capability for 
studying nitrate pollution in river catchments, including: CWSS (Reiche, 
1994), DAISY/MIKE-SHE (Styczen and Storm, 1993a,b; Refsgaard et al., 
1999; Seidenfaden et al., 2022), NMS (Lunn et al., 1996) and INCA 
(Whitehead et al., 1998). However, considerable advances have been 
made in physically-based spatially distributed river catchment modeling 
in the past few years, especially in relation to subsurface modeling, 
resulting in the development of SHETRAN (Ewen et al., 2000). 

Further examples for comprehensive three-dimensional models are 
the physically-based catchment models HMSMOD (Panday and Huya
korn, 2004), MIKE SHE (Refsgaard and Storm, 1996), CATFLOW 
(Maurer, 1997; Klaus and Zehe, 2011), HydroGeoSphere (Therrien et al., 
2006; Brunner and Simmons, 2012), Parflow (Maxwell et al., 2014), and 
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to some extent the finite-difference groundwater model MODFLOW 
(McDonald and Harbaugh, 1988; Harbaugh and McDonald, 1996) where 
surface water simulations typically have been based on simpler con
ceptual approaches. Moreover, the HYDRUS model can be applied in one 
to three dimensional simulations (Šimůnek et al., 2006, 2016). The 
coupled surface and subsurface HydroGeoSphere model (Brunner and 
Simmons, 2012) was used for example by Rozemeijer et al. (2010) to 
simulate the impact of drains in a 3D model to test an experimental tile 
drainage network in a Dutch agricultural sub-catchment, where nitrate 
transport occurred. Yang et al. (2022) investigated the dynamics of 
catchment-scale solute export from diffuse nitrogen sources. They 
highlighted that previous data driven studies suggested that the catch
ment topographic slope has strong impacts on the age composition of 
streamflow and consequently on in-stream solute concentrations. Yang 
et al. (2022) used the fully coupled surface and subsurface numerical 
HydroGeoSphere (HGS) to model groundwater, overland flow, and ni
trate transport. 

Another example is the SWAT model (Abbaspour et al., 2015). The 
physical processes associated with water and sediment movement, crop 
growth, and nutrient cycling are modelled at the HRU scale; runoff and 
pollutants exported from the different HRUs are routed downstream. 
SWAT simulates N cycling, which is influenced by specified manage
ment practices, such as planting, harvesting, tillage passes, and nutrient 
applications, among others. N is divided in the soil into two parts, each 
associated with organic and inorganic N transport and transformations, 
where N is added to the soil by fertilizers, manure or residue application, 
fixation by legumes, and rain. In the SWAT model nitrification is 
calculated as a function of soil temperature and soil water content, while 
volatilization as a function of soil temperature, depth, and cation ex
change capacity. Plant uptake of N is calculated as the difference be
tween the actual concentration of the elements in the plant and the 
optimal concentration, following a supply and demand approach. 
Denitrification that takes place in the nitrate pool is a flux of N to the 
atmosphere and is calculated as a function of soil water content, tem
perature, organic carbon content, and available mineral N. Overall, N 
cycle and N species transformations and transport in catchment models, 
such as SWAT, are governed by the hydrological cycle and are modelled 
based on simulation routines of natural processes and agricultural 
management that incorporate predefined parameters and coefficients. 

Unlike nitrate isotopes, water stable isotopes have been extensively 
used in physically-based models. For example, Jafari et al. (2021) 
simulated surface-ground water interactions using a SWAT-MODFLOW 
model by integrating insights from water isotopes. The use of isotope 
allowed determining the relative contribution from different sources of 
water into aquifer recharge and identifying areas with high surface- 
ground water interactions. Manna et al. (2019) validated the results of 
a spatially distributed numerical model (MIKE SHE), which was used to 
simulate the responses to precipitation in a catchment, by comparing the 
water stable isotopes in groundwater with those of precipitation. In a 
more recent study, Zhou et al. (2021) used the HYDRUS-1D model to 
simulate variably-saturated water flow and solute transport in porous 
media, by including an option to simulate water stable isotope fate and 
transport while accounting for evaporation fractionation. 

3.3. Artificial intelligence models 

Artificial intelligence (AI) and ML are used to generate models from 
databases or to develop logic-based training algorithms. AI can sort and 
interpret massive amounts of hydrological and water quality data from 
various sources to carry out a wide range of tasks in data analysis to 
guide water management. The extracted information form databases 
using AI tools can help water related processes, validate conceptual and 
numerical hydrological and water quality models and develop non- 
parametric prediction tools (Singh and Gupta, 2012; Aldhyani et al., 
2020). With regard to water quality models, a recent survey on the use of 
AI models showed that N-species are among the most preferred chemical 

variables to be simulated in river water quality (Tiyasha et al., 2021). 
Among the AI model types, the artificial neural networks (ANN), the 
fuzzy logic, the kernel based, the wavelet and the hybrid models are the 
ones that, till present, have been mostly used in the assessment of water 
quality in rivers using different types of architectures. 

The ANN models typically use three or more layers (input, hidden 
and output) and the training is done using learning algorithms, such as 
backpropagation, generalized regression and Bayesian regularization 
(McCulloch and Pitts, 1943; Maier and Dandy, 1999; Gümrah et al., 
2000; Antanasijević et al., 2014). There are several types of ANNs (e.g., 
feedforward networks, recurrent networks, convolutional networks), 
with feedforward networks being the simplest type, which consists of a 
series of layers of neurons, with each layer connected to the next, from 
the input layer to the output layer. For example, Stamenković et al. 
(2020) used a three-layer ANN model to predict the concentration of 
nitrates in the Danube River based on other water quality data. 

On the other hand, fuzzy logic-based models are powerful tools for 
dealing with uncertainty and imprecision in systems that are complex or 
difficult to model using traditional mathematical methods (Jang, 1993; 
Altunkaynak et al., 2005; Tutmez et al., 2006). Fuzzy logic-based models 
rely on fuzzy sets, which are defined by a membership function that 
assigns a degree of membership to an element of a set. These models 
allow for the incorporation of human expertise and intuition into the 
modeling process, which can improve the accuracy of the model. For 
example, Scannapieco et al. (2012) used fuzzy-logic based models to 
assess the water quality in rivers relation to achieving good ecological 
status as mandated by the 2000/60/EC, or Water Framework Directive 
(WFD). 

Kernel-based models are a powerful AI tool particularly when 
working with complex, nonlinear data sets used for pattern recognition, 
regression analysis, and other tasks. They are based on the concept of 
kernel functions, which transform input data into a higher-dimensional 
feature space, where it may be easier to identify patterns and relation
ships (Hao et al., 2011; Wang et al., 2011). They work by finding a 
decision boundary that separates the data into different classes or re
gions and they are generally more robust to noise and outliers and less 
prone to overfitting (Vapnik, 1998). For example, Kamyab-Talesh et al. 
(2019) used kernel-based models to predict the water quality index in 
rivers and identified nitrate as the most influential parameter on the 
index. In another example, Sajedi-Hosseini et al. (2018) used 
Kernel-based and other AI models to predict nitrate contamination in 
groundwater in Iran. 

Other AI-related methods are wavelet algorithm models (e.g., Kang 
and Lin, 2007; Sreekanth and Datta, 2011; Yaseen et al., 2018), which 
are able to decompose a signal at specific scales and positions, which 
allows for the extraction of information from different frequency bands, 
and hybrid models, which are a combination of two or more different AI 
techniques capable of solving complex problems (e.g., Zhao et al., 2005; 
Tutmez et al., 2006; Nourani et al., 2014). These models aim to leverage 
the strengths of different AI techniques and overcome their limitations 
to create more efficient and accurate solutions. AI is also able to 
recognize patterns and analyse high resolution images on land use (e.g., 
deforestation) and water status (e.g., eutrophication) from satellites and 
drones to detect regional and global changes (e.g., Das et al., 2022). 
Often AI and ML are used in hybrid models that combined physics-based 
and data-driven models (IAEA, 2022). This is also done at a more 
fundamental level to model the small-scale turbulent structures that can 
be present in fluid flows (Stoffer et al., 2021) and ultimately affect the 
main flow and dispersion of the suspended or dissolved substances, 
including nitrate in hydrological catchments. 

Efforts to use AI techniques in isotope-related studies are still scarce 
and focus mostly on water stable isotopes. For example, Nelson et al. 
(2021) used an AI model to predict water stable isotope time series in 
precipitation in Europe with the aim to address the lack of sufficient 
measurements spatially and in the long-term, which limits the use of the 
available values to assess hydrological and meteorological processes. 
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Cemek et al. (2022) used different AI techniques to predict the isotopic 
composition (δ18O and δ2H) in groundwater, whereas, more recently, 
Erdélyi et al. (2023) combined conventional regression techniques with 
Random Forest to predict the water stable isotope composition of pre
cipitation in areas with large spatial data variability. Sahraei et al. 
(2021) used AI techniques and physical and hydrological variables (e.g., 
meteorological data, catchment wetness, water temperature, pH) to 
predict water stable isotopes in streams and groundwater. In relation to 
nitrate isotopes, Yang et al. (2021) developed an AI model to predict the 
δ15N-NO3

− values in surface waters by using conventional hydrochemical 
variables, that could enhance the interpretation of δ15N-NO3

− data and 
potentially improve water quality management. However, at present the 
accuracy of ML based prediction is often insufficient to allow for 
autonomous decisions and is subject to data accessibility. 

In the adjacent field of air quality and atmospheric pollution, ma
chine learning methods were used inside an ‘emulator’ that mimics the 
behaviour of computationally demanding models, to find sources of 
pollution (Fillola et al., 2022). Many of the machine learning methods 
used for such models are not domain-specific and development of 
similar models for pollution in hydrological catchments could benefit 
from these existing models from other domains. Single application or in 
combination with other tools, ML provides new insight into the rela
tionship of variables that enable to account for highly non-linear and 
non-homogenous models and in non-stationary and dynamic environ
ments. For example, Vystavna et al. (2021) showed that relative hu
midity, air temperature and variables related to energy processes (e.g., 
solar radiation), control the water stable isotopic composition in lakes 
and consequently their evaporation rates. 

4. Model limitations and uncertainties 

Each model type has its advantages and limitations, and the chal
lenges posed to the model user that wants to represent both water flow 
and solute transport through a catchment are multifaceted (Fig. 4). 
Many modeling studies rely on simple empirical models when simu
lating nitrate pollution at the catchment scale because these model 
concepts can reflect their judgments and uncertainties (Quinn, 2004). 

Another approach is to apply physically-based, distributed models 
within complex, three-dimensional heterogeneous landscapes, poten
tially inducing equifinality (Beven, 2006 and reference therein) and 
predictive uncertainty problems. In physically-based models, a large 
amount of model parameters must be either provided from measure
ments or calibrated to characterize processes in all components of the 
water balance. For example, model parameters related to the interaction 
between surface, soil and ground waters, or those related to transport 
mechanisms and reaction rates of solutes must be provided, but existing 
measurements are often only available as sparse field or literature 
information. 

Furthermore, the challenges in developing reliable and efficient 
models are associated with spatiotemporal heterogeneity in parameters 
and state variables, data quality uncertainties, nonlinearities, and scale 
effects in process dynamics, as well as complex initial system states and 
boundary conditions, which might be poorly understood (e.g., Gauthier 
et al., 2009). Although these models are physically-based and can 
simulate complex environmental processes, model parameters cannot be 
uniquely determined due to the uncertainty in state variables (e.g., 
observed discharge rates, groundwater levels) or because these state 
variables have not enough information content to uniquely calibrate 
model parameters. This can lead to large predictive uncertainty or nu
merical overfitting and errors, strongly impacting water management 
decisions (Sordo-Ward et al., 2016). 

In contrast, a conceptual model approach relies on the simplification 
of a model structure, which on one hand limits the capability of the 
model to inform about catchment internal processes, but on the other 
hand it allows for a much more robust parameter optimization using 
millions of model-runs in inverse modeling with a limited number of 
available measurements of hydrometeorological variables. Thus, con
ceptual models are easily calibrated, with the caveat that multiple 
equally feasible parameter sets can be found (equifinality). Some studies 
(e.g., Orth et al., 2015; Moeck et al., 2016) have shown that a simple 
model could simulate discharge and other variables equally well and, in 
some cases even better. However, if an event (e.g., an extreme runoff 
event, or unseen drought) has not been observed in the historical cali
bration dataset, it cannot likely be simulated as the model lacks 

Fig. 4. Model limitations and perspectives of combining stable isotopes with modeling techniques.  
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information about the processes leading to this event. 
ML tools can sort and process massive amounts of data from various 

sources, generate models from datasets or logic-based algorithms and 
carry out a wide range of tasks with high predictive accuracy (Xu and 
Liang, 2021). However, they are still not easily interpretable. Although 
high predictive accuracy is crucial to all modeling tasks, it is often not 
the only purpose. Especially when dealing with complex systems, as is 
the case in catchment modeling, learning about the system behavior and 
understanding its internal and external interrelationships are essential. 
However, research on explainable AI or “interpretable machine 
learning” (e.g., Montavon et al., 2018; Samek et al., 2019; Molnar et al., 
2020) has strongly advanced in recent years, and catchment modeling 
and ties between internal model states and hydrological processes are 
being elucidated (Lees et al., 2021). A promising ML algorithm, SHapley 
Additive exPlanations (SHAP), which measures the impact of variables 
considering the interaction with other variables, has been applied 
recently as an interpretable machine learning approach. SHAP algo
rithm calculates the importance of a feature by comparing what a model 
predicts with and without the feature (Aydin and Iban, 2022). 

No matter which model and approach is used, another often-ignored 
limitation is the time lag, which is difficult to simulate. As mentioned 
earlier this time lag of water and solute transport through the unsatu
rated and saturated zone paired with biochemical lag time must be 
quantified to obtain realistic and sound model predictions (van Meter 
et al., 2016). The specific time lag is, however, very scale and location 
dependent and can differ according to climate, pedology, landscape and 
land use management (Vero et al., 2018). The spatial and temporal 
heterogeneity of the physical properties of the watershed, the extent of 
chemical processes and transformations, the length of residence times 
throughout the subsurface, and the influence of climatic and meteoro
logical conditions that affect the overall time lag pose further challenges 
in producing sound simulations (Baillieux et al., 2015; Hocking and 
Kelly, 2016; Hrachowitz et al., 2016; Osenbrück et al., 2006; Van Meter 
et al., 2016; Vero et al., 2014, 2018). This is especially true for models 
that simulate only one or two compartments of the catchment and 
oversimplify other processes. Developing an approach that incorporates 
unsaturated, saturated, and surface components, biochemical factors, 
and appropriate scales would likely be helpful, but may be too 
data-intensive (Hrachowitz et al., 2016) This can lead again to model 
simplification or not enough data are available to determine model 
parameters in a trustworthy way. 

In general, models capable of carrying out all tasks required to 
simulate and predict water quantity and quality, properly representing 
water flow and solute transport at the same time, are difficult to find in 
literature. Generally, the aim of many water flow models is to accurately 
predict runoff, which can be quite easily achieved with simple models. 
However, often several model setups and parameter sets can lead to 
similarly well-simulated runoff curves (the equifinality concept), mak
ing predictions outside of the calibration period difficult. Another issue 
with too simple models is their inability to aid in understanding 
catchment-internal processes if they do not contain elements in their 
structure that represent those processes. 

5. The way forward and conclusions 

Similar to coupling of water flow models with water stable isotopes 
to constrain their solution of water transit times, we propose coupling of 
solute transport models with nitrate isotopes to constrain the transport 
routines. For example, Yang et al. (2021) combined a simplified water 
quality model, in particular a nitrate reaction model of the soil zone, 
with a time-variable water flow routine and used, among other data, the 
measured nitrate concentrations in stream flow to calibrate the water 
flow routine. Since they used a nitrate reaction model, we argue that 
additionally using nitrate isotope data informing about nitrate reactions 
can additionally constrain the model, potentially leading to an even 
further improved estimate of water flow and transport. Changes in 

nitrate levels in various domains, such as the unsaturated zone, 
groundwater, and riverbed, could result in similar nitrate concentrations 
in runoff. However, to the best of our knowledge, nitrate isotopes have 
yet to be utilized in water quality models for simulating solute transport. 
This points to the necessity to further explore their applicability. 

N loading input: Nitrate isotopes have the potential to enhance our 
understanding of not only the source, but also the fate of the initial ni
trate or other N-species concentrations. They can help in determining 
the N loading input in a catchment and in understanding the dynamics of 
biogeochemical processes. For example, transport models like SWAT, 
often require users to select from a myriad of parameter combinations, 
making it challenging to ascertain which set of parameters accurately 
reflects a catchment’s characteristics (Panagopoulos et al., 2011). Here, 
nitrate isotopes have a certain limit in the application but their role can 
be explored for the nitrate source tracing. Employing nitrate isotopes 
could greatly enhance our understanding of the total N output, when 
aggregating loads from different land use types and point sources. Using 
isotopic data to estimate the proportional contribution of nitrate sources 
assist modellers in conducting a more precise parameterization across 
the catchment, considering land cover types and topographical zones. 
This will help in the appropriate initialization and definition of N related 
parameters and coefficients. The problem of equifinality, the possibility 
of multiple plausible solutions, can thus be effectively mitigated by 
narrowing the solution space of spatially varying parameter combina
tions. This, in turn, would lead to more accurate model estimates of N 
loading at specific river locations, where observational data are avail
able. For example, Husic et al. (2020) introduced nitrate isotope data in 
a statistical mixing model (MixSIAR) and coupled it with a transport 
model to apportion nitrate loading sources (soil, fertilizer, and manure) 
across three pathways (quick, intermediate, and slow) in a karst 
watershed. They found that approximately 60 % of nitrate is exported 
from the catchment, facilitated by the quick-fertilizer (16 %), the 
intermediate-manure (15 %), and slow-soil (27 %) pathways. 

Biogeochemical processes: Additionally, nitrate isotopes can pro
vide estimates of biogeochemical processes rates, such as of denitrifi
cation, thereby allowing for more precise calibration of the parameters 
used to simulate these processes. This can lead to more accurate model 
predictions of the actual N availability in soil that can be used by plants 
or can migrate to surface and groundwater. Models simulating the ni
trogen cycle, like HSPF (Bicknell et al., 1996), can be suitable to use 
nitrate isotopes in order to validate and quantify the biogeochemical 
processes. On the contrary, models, which assume an unlimited nitrogen 
pool and thus biogeochemical transformation are overlooked, like INCA, 
seem more appropriate to benefit from the use of nitrate isotopes as 
tracers of origin. 

Nitrate isotopes can also help to locate the hot spots of biogeo
chemical processes within catchments. The occurrence of biogeochem
ical processes may vary spatially and temporally. This implies that 
nitrate concentrations may be influenced not only by different nitrate 
pollution sources but also by varying N-cycling histories. Deutsch et al. 
(2009), for example, demonstrated that N-transformation processes 
(denitrification and assimilation) occurred along the Elbe River, which 
led to changes in nitrate concentration, thus showing in-stream N- 
transformations. Li et al. (2019a) found that around 12 % of nitrate was 
removed by denitrification in the Xijiang River during the dry season. N- 
transformation processes in the unsaturated and saturated zones may 
further complicate the modeling of nitrate concentrations, since rivers 
fed by groundwater may receive waters already subject to denitrification 
and with nitrate concentrations that do not truly reflect the origin of 
nitrate pollution. Riparian zones are also hot spots of NO3

− trans
formation and removal, especially in agricultural catchments. A nitrate 
isotope survey in the Seine River Basin (France) found that riparian 
denitrification accounted for up to 50 % of NO3

− removal in the Seine 
River and its tributaries during summer low-flow conditions (Sebilo 
et al., 2003; Sebilo et al., 2006). Moreover, wetlands, including marshes, 
bogs, and swamps, are biologically productive environments that 
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regulate NO3
− removal primarily through plant uptake, microbial 

immobilization, and dissimilatory respiration processes. Reddy and 
DeLaune (2008) demonstrated that both denitrification and plant up
take of nitrate resulted in significantly lower NO3

− concentrations in the 
outflow of a low-flow small temperate wetland compared to incoming 
stream water, resulting in an NO3

− removal of 65–100 %. 
Holistic understanding of the hydrological system: At present, 

the relatively high degree of uncertainty in water quality predictions 
limits their application in decision-making processes. To overcome this 
limitation, we propose that a primary objective should be to integrate 
catchment-scale water quality models with stable isotope approaches, 
specifically those focused on nitrate pollution. One of the key challenges 
lies in bridging the gap between the catchment hydrology (water flow) 
and water quality (solute transport) scientific communities. By inte
grating respective models, it becomes feasible to account for the com
plex interactions between water flow and solute transport, including the 
non-conservative behavior of nitrogen species. It is anticipated that a 
more complete representation of the underlying processes will foster a 
more holistic understanding of how hydrological systems work. For 
future model development and improvement, key trends involve the 
integration of different model types or the use of fully coupled, 
physically-based models. Overly simplified models or standalone models 
may not fully address the complexities of nitrate loadings and reaction 
dynamics. Therefore, models coupled with nitrate stable isotopes are 
necessary for obtaining the most plausible results. Incorporating 
observational data along with nitrate isotopes in the model will likely 
enhance the identifiability of model parameters and thus improve the 
predictability of water quality models. Ultimately, this will aid stake
holders in making informed decisions and addressing water-related is
sues more effectively. 

Incorporation of AI models: AI models are progressively massively 
used in water quality studies but very scarcely in nitrate isotope surveys. 
However, their application so far is only tested theoretically and not in 
real conditions. Thus, the AI models developed should be tested against 
conventional and benchmarked models in catchment hydrology. AI 
models are also designed to perform specific tasks and may not perform 
well in new or unexpected situations due to lack of the ability to adapt to 
changing circumstances. Thus, the AI models should be trained on 
diverse datasets that cover a wide range of scenarios. The problem of 
missing or discontinuous data requires the use of additional AI models or 
can be overcome through the use of remote sensing applications. 
Additionally, recent technological advances in isotopic assays of nitrate 
(Altabet et al., 2019) have largely reduced the analytical cost to conduct 
high-frequency nitrate isotope analysis compared to the conventional 
techniques (Xue et al., 2010) and is expected to help overcome this 
drawback. Many AI models are black boxes, making it difficult to un
derstand how they make decisions. Thus, more interpretable AI models 
that provide a clear understanding of how they make decisions or 
methods to extract explanations from the black-box models should be 
sought. 
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variations in groundwater quality: a legacy from nitrate leaching and denitrification 
by pyrite in a sandy aquifer. Water Resour. Res. 53 (1), 184–198. 

Ji, X., Shu, L., Li, J., Zhao, C., Chen, W., Chen, Z., Shang, X., Dahlgren, R.A., Yang, Y., 
Zhang, M., 2022. Tracing nitrate sources and transformations using △17O, δ15N, 
and δ18O-NO3− in a coastal plain river network of eastern China. J. Hydrol. 610, 
127829 https://doi.org/10.1016/j.jhydrol.2022.127829. 

Johnsson, H., Bergstrom, L., Jansson, P.E., Paustian, K., 1987. Simulated nitrogen 
dynamics and losses in a layered agricultural soil. Agr Ecosyst Environ 18 (4), 
333–356. https://doi.org/10.1016/0167-8809(87)90099-5. 

Juncher Jørgensen, C., Jacobsen, O.S., Elberling, B., Aamand, J., 2009. Microbial 
oxidation of pyrite coupled to nitrate reduction in anoxic groundwater sediment. 
Environ. Sci. Technol. 43 (13), 4851–4857. 

Kaiser, J., 2008. Reformulated 17O correction of mass spectrometric stable isotope 
measurements in carbon dioxide and a critical appraisal of historic ‘absolute’ carbon 
and oxygen isotope ratios. Geochim. Cosmochim. Acta 72 (5), 1312–1334. https:// 
doi.org/10.1016/j.gca.2007.12.011. 

Kamyab-Talesh, F., Mousavi, S.F., Khaledian, M., Yousefi-Falakdehi, O., Norouzi- 
Masir, M., 2019. Prediction of water quality index by support vector machine: a case 
study in the Sefidrud Basin, Northern Iran. Water Resour. 46, 112–116. 

Kang, S., Lin, H., 2007. Wavelet analysis of hydrological and water quality signals in an 
agricultural watershed. J. Hydrol. 338 (1–2), 1–14. 

Kendall, C., 1998. Tracing nitrogen sources and cycling in catchments. In: Isotope 
Tracers in Catchment Hydrology. Elsevier, pp. 519–576. 

Kendall, C., Elliott, E.M., Wankel, S.D., 2007. Stable isotopes in ecology and 
environmental science. Tracing Anthropogenic Inputs of Nitrogen to Ecosystems 
375–449. 

Kharbush, J.J., Robinson, R.S., Carter, S.J., 2023. Patterns in sources and forms of 
nitrogen in a large eutrophic lake during a cyanobacterial harmful algal bloom. 
Limnology and. Oceanography.  

Kim, S., Han, C., Moon, J., Han, Y., Hur, S.D., Lee, J., 2022. An optimal strategy for 
determining triple oxygen isotope ratios in natural water using a commercial cavity 
ring-down spectrometer. Geosci. J. 26 (5), 637–647. 

Kim, T., Yang, T., Gao, S., Zhang, L., Ding, Z., Wen, X., Gourley, J.J., Hong, Y., 2021. Can 
artificial intelligence and data-driven machine learning models match or even 
replace process-driven hydrologic models for streamflow simulation?: A case study 
of four watersheds with different hydro-climatic regions across the CONUS. 
J. Hydrol. 598, 126423. 

Kirchner, J.W., 2016. Aggregation in environmental systems-Part 1: Seasonal tracer 
cycles quantify young water fractions, but not mean transit times, in spatially 
heterogeneous catchments. Hydrol. Earth Syst. Sci. 20 (1), 279–297. https://doi.org/ 
10.5194/hess-20-279-2016. 

Kirchner, J.W., Feng, X., Neal, C., 2000. Fractal stream chemistry and its implications for 
contaminant transport in catchments. Nature 403 (6769), 524–527. https://doi.org/ 
10.1038/35000537. 

Klaus, J., McDonnell, J.J., 2013. Hydrograph separation using stable isotopes: Review 
and evaluation. J. Hydrol. 505, 47–64. 

Klaus, J., Zehe, E., 2011. A novel explicit approach to model bromide and pesticide 
transport in connected soil structures. Hydrol. Earth Syst. Sci. 15 (7), 2127–2144. 
https://doi.org/10.5194/hess-15-2127-2011. 

Korom, S.F., Schuh, W.M., Tesfay, T., Spencer, E.J., 2012. Aquifer denitrification and in 
situ mesocosms: modeling electron donor contributions and measuring rates. 
J. Hydrol. 432, 112–126. 

Kroes, J.G., Van Dam, J.C., 2003. Reference Manual SWAP; version 3.0. 3 (No. 773). 
Alterra. 

Lees, T., Buechel, M., Anderson, B., Slater, L., Reece, S., Coxon, G., Dadson, S.J., 2021. 
Benchmarking data-driven rainfall–runoff models in Great Britain: a comparison of 
long short-term memory (LSTM)-based models with four lumped conceptual models. 
Hydrol. Earth Syst. Sci. 25 (10), 5517–5534. https://doi.org/10.5194/hess-25-5517- 
2021. 

Lei, C., Wagner, P.D., Fohrer, N., 2022. Influences of land use changes on the dynamics of 
water quantity and quality in the German lowland catchment of the Stör. Hydrol. 
Earth Syst. Sci. 26 (9), 2561–2582. https://doi.org/10.5194/hess-26-2561-2022. 

Lewicka-Szczebak, D., Well, R., Koester, J.R., Fuß, R., Senbayram, M., Dittert, K., 
Flessa, H., 2014. Experimental determinations of isotopic fractionation factors 
associated with N2O production and reduction during denitrification in soils. 
Geochim. Cosmochim. Acta 134, 55–73. 

Li, C., Li, S.L., Yue, F.J., Liu, J., Zhong, J., Yan, Z.F., Zhang, R.C., Wang, Z.J., Xu, S., 
2019a. Identification of sources and transformations of nitrate in the Xijiang River 
using nitrate isotopes and Bayesian model. Sci. Total Environ. 646, 801–810. 
https://doi.org/10.1016/j.scitotenv.2018.07.345. 

Li, Z., Xiao, J., Evaristo, J., Li, Z., 2019b. Spatiotemporal variations in the hydrochemical 
characteristics and controlling factors of streamflow and groundwater in the Wei 
River of China. Environ. Pollut. 254 https://doi.org/10.1016/j.envpol.2019.113006. 

Lim, T., Wang, K., 2022. Comparison of machine learning algorithms for emulation of a 
gridded hydrological model given spatially explicit inputs. Comput. Geosci. 159, 
105025. 

Lindström, G., Johansson, B., Persson, M., Gardelin, M., Bergström, S., 1997. 
Development and test of the distributed HBV-96 hydrological model. J. Hydrol. 201 
(1–4), 272–288. 

Liu, T., Wang, F., Michalski, G., Xia, X., Liu, S., 2013. Using 15N, 17O, and 18O To 
Determine Nitrate Sources in the Yellow River. China. Environ. Sci. Technol. 47 (23), 
13412–13421. https://doi.org/10.1021/es403357m. 

Lunn, R.J., Adams, R., Mackay, R., Dunn, S.M., 1996. Development and application of a 
nitrogen modelling system for large catchments. J. Hydrol. 174 (3–4), 285–304. 
https://doi.org/10.1016/0022-1694(95)02758-0. 

Lutz, S., Ebeling, P., Musolff, A., Nguyen, T.V., Sarrazin, F., Van Meter, K., Basu, N., 
Fleckenstein, J., Attinger, S., Kumar, R., 2022. Pulling the rabbit out of the hat: 
Unravelling hidden nitrogen legacies in catchment-scale water quality models. 
Hydrol. Process. 36 (10) https://doi.org/10.1002/hyp.14682. 

Maier, H.R., Dandy, G.C., 1999. Empirical comparison of various methods for training 
feed-Forward neural networks for salinity forecasting. Water Resour. Res. 35 (8), 
2591–2596. 

Manna, F., Murray, S., Abbey, D., Martin, P., Cherry, J., Parker, B., 2019. Spatial and 
temporal variability of groundwater recharge in a sandstone aquifer in a semiarid 
region. Hydrol. Earth Syst. Sci. 23 (4), 2187–2205. 

Mariotti, A., 1983. Atmospheric nitrogen is a reliable standard for natural 15N 
abundance measurements. Nature 303 (5919), 685–687. https://doi.org/10.1038/ 
303685a0. 

Mariotti, A., Germon, J.C., Hubert, P., Kaiser, P., Letolle, R., Tardieux, A., Tardieux, P., 
1981. Experimental determination of nitrogen kinetic isotope fractionation: some 
principles; illustration for the denitrification and nitrification processes. Plant and 
Soil 62, 413–430. 

Mariotti, A., Landreau, A., Simon, B., 1988. 15N isotope biogeochemistry and natural 
denitrification process in groundwater: application to the chalk aquifer of northern 
France. Geochim. Cosmochim. Acta 52 (7), 1869–1878. https://doi.org/10.1016/ 
0016-7037(88)90010-5. 

Marttila, H., Karjalainen, S.M., Kuoppala, M., Nieminen, M.L., Ronkanen, A.K., Kløve, B., 
Hellsten, S., 2018. Elevated nutrient concentrations in headwaters affected by 
drained peatland. Sci. Total Environ. 643, 1304–1313. 

Matiatos, I., 2016. Nitrate source identification in groundwater of multiple land-use 
areas by combining isotopes and multivariate statistical analysis: A case study of 
Asopos basin (Central Greece). Sci. Total Environ. 541, 802–814. https://doi.org/ 
10.1016/j.scitotenv.2015.09.134. 

Matiatos, I., Varouchakis, E.A., Papadopoulou, M.P., 2019. Performance evaluation of 
multiple groundwater flow and nitrate mass transport numerical models. Environ. 
Model. Assess. 24, 659–675. https://doi.org/10.1007/s10666-019-9653-7. 

Matiatos, I., Wassenaar, L.I., Monteiro, L.R., Venkiteswaran, J.J., Gooddy, D.C., 
Boeckx, P., Sacchi, E., Yue, F.J., Michalski, G., Alonso-Hernández, C., Biasi, C., 2021. 
Global patterns of nitrate isotope composition in rivers and adjacent aquifers reveal 
reactive nitrogen cascading. Commun. Earth Environ. 2 (1), 1–10. https://doi.org/ 
10.1038/s43247-021-00121-x. 

Matiatos, I., Araguás-Araguás, L., Wassenaar, L.I., Monteiro, L.R., Harjung, A., 
Douence, C., Kralik, M., 2022. Nitrate isotopes reveal N-cycled waters in a spring-fed 
agricultural catchment. Isot. Environ. Health Stud. 1–21 https://doi.org/10.1080/ 
10256016.2022.2157412. 

Matiatos, I., Lazogiannis, K., Papadopoulos, A., Skoulikidis, N.T., Boeckx, P., 
Dimitriou, E., 2023. Stable isotopes reveal organic nitrogen pollution and cycling 

I. Matiatos et al.                                                                                                                                                                                                                                

https://doi.org/10.1016/0168-9622(86)90059-X
https://doi.org/10.1016/0168-9622(86)90059-X
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0325
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0325
https://doi.org/10.1002/wat2.1155
https://doi.org/10.5194/hess-17-533-2013
https://doi.org/10.5194/hess-17-533-2013
https://doi.org/10.5194/hess-25-4887-2021
https://doi.org/10.1021/acs.est.9b07839
https://doi.org/10.1021/acs.est.9b07839
http://refhub.elsevier.com/S0022-1694(23)01268-4/optrdVQ3UcgqE
http://refhub.elsevier.com/S0022-1694(23)01268-4/optrdVQ3UcgqE
http://refhub.elsevier.com/S0022-1694(23)01268-4/optrdVQ3UcgqE
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0350
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0350
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0350
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0355
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0355
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0360
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0360
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0360
https://doi.org/10.1038/ngeo2636
https://doi.org/10.1038/ngeo2636
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0370
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0370
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0370
http://refhub.elsevier.com/S0022-1694(23)01268-4/optrlGZrKmOTk
http://refhub.elsevier.com/S0022-1694(23)01268-4/optrlGZrKmOTk
http://refhub.elsevier.com/S0022-1694(23)01268-4/optrlGZrKmOTk
https://doi.org/10.1016/j.jhydrol.2022.127829
https://doi.org/10.1016/0167-8809(87)90099-5
http://refhub.elsevier.com/S0022-1694(23)01268-4/optQwk949ZxPW
http://refhub.elsevier.com/S0022-1694(23)01268-4/optQwk949ZxPW
http://refhub.elsevier.com/S0022-1694(23)01268-4/optQwk949ZxPW
https://doi.org/10.1016/j.gca.2007.12.011
https://doi.org/10.1016/j.gca.2007.12.011
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0390
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0390
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0390
http://refhub.elsevier.com/S0022-1694(23)01268-4/optG0RzfpcQRe
http://refhub.elsevier.com/S0022-1694(23)01268-4/optG0RzfpcQRe
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0395
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0395
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0400
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0400
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0400
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0405
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0405
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0405
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0410
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0410
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0410
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0415
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0415
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0415
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0415
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0415
https://doi.org/10.5194/hess-20-279-2016
https://doi.org/10.5194/hess-20-279-2016
https://doi.org/10.1038/35000537
https://doi.org/10.1038/35000537
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0430
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0430
https://doi.org/10.5194/hess-15-2127-2011
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0440
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0440
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0440
https://doi.org/10.5194/hess-25-5517-2021
https://doi.org/10.5194/hess-25-5517-2021
https://doi.org/10.5194/hess-26-2561-2022
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0460
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0460
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0460
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0460
https://doi.org/10.1016/j.scitotenv.2018.07.345
https://doi.org/10.1016/j.envpol.2019.113006
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0475
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0475
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0475
http://refhub.elsevier.com/S0022-1694(23)01268-4/opt8Wx0vV6EBP
http://refhub.elsevier.com/S0022-1694(23)01268-4/opt8Wx0vV6EBP
http://refhub.elsevier.com/S0022-1694(23)01268-4/opt8Wx0vV6EBP
https://doi.org/10.1021/es403357m
https://doi.org/10.1016/0022-1694(95)02758-0
https://doi.org/10.1002/hyp.14682
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0495
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0495
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0495
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0500
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0500
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0500
https://doi.org/10.1038/303685a0
https://doi.org/10.1038/303685a0
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0510
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0510
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0510
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0510
https://doi.org/10.1016/0016-7037(88)90010-5
https://doi.org/10.1016/0016-7037(88)90010-5
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0520
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0520
http://refhub.elsevier.com/S0022-1694(23)01268-4/h0520
https://doi.org/10.1016/j.scitotenv.2015.09.134
https://doi.org/10.1016/j.scitotenv.2015.09.134
https://doi.org/10.1007/s10666-019-9653-7
https://doi.org/10.1038/s43247-021-00121-x
https://doi.org/10.1038/s43247-021-00121-x
https://doi.org/10.1080/10256016.2022.2157412
https://doi.org/10.1080/10256016.2022.2157412


Journal of Hydrology 626 (2023) 130326

15

from point and non-point sources in a heavily cultivated (agricultural) 
Mediterranean river basin. Sci. Total Environ. https://doi.org/10.1016/j. 
scitotenv.2023.166455. 

Maurer, T., 1997. CATFLOW: A physically based and distributed hydrological model for 
continuous simulation of catchment water dynamics. Institut für Hydrologie und 
Wasserwirtschaft der Universität Karlsruhe. 

Maxwell, R.M., Kollet, S.J., Smith, S.G., Woodward, C.S., Falgout, R.D., Ferguson, I.M., 
Baldwin, C., Bosl, W.J., Hornung, R., Ashby, S., 2014. ParFlow User’s Manual. 
International Ground Water Modeling Center Report GWMI 2010–01, 132p. 

Mayer, B., Boyer, E.W., Goodale, C., Jaworski, N.A., Van Breemen, N., Howarth, R.W., 
Seitzinger, S., Billen, G., Lajtha, K., Nadelhoffer, K., Van Dam, D., 2002. Sources of 
nitrate in rivers draining sixteen watersheds in the northeastern US: Isotopic 
constraints. Biogeochemistry 57 (1), 171–197. https://doi.org/10.1023/A: 
1015744002496. 

McCarthy, J., 1956. Measures of the value of information. Proc. Natl. Acad. Sci. 42 (9), 
654–655. 

McCulloch, W.S., Pitts, W., 1943. A logical calculus of the ideas immanent in nervous 
activity. Bull. Math. Biophys. 5, 115–133. 

McDonald, M.G., Harbaugh, A.W., 1988. A modular three-dimensional finite-difference 
ground-water flow model. US Geological Survey. 

McDonnell, J.J., Beven, K., 2014. Debates—The future of hydrological sciences: A 
(common) path forward? A call to action aimed at understanding velocities, 
celerities and residence time distributions of the headwater hydrograph. Water 
Resour. Res. 50 (6), 5342–5350. https://doi.org/10.1002/2013WR015141. 

Mennekes, D., Rinderer, M., Seeger, S., Orlowski, N., 2021. Ecohydrological travel times 
derived from in situ stable water isotope measurements in trees during a semi- 
controlled pot experiment. Hydrol. Earth Syst. Sci. 25 (8), 4513–4530. 

Michalski, G., Scott, Z., Kabiling, M., Thiemens, M.H., 2003. First measurements and 
modeling of Δ17O in atmospheric nitrate. Geophys. Res. Lett. 30, 1870. https://doi. 
org/10.1029/2003GL017015. 

Moeck, C., Brunner, P., Hunkeler, D., 2016. The influence of model structure on 
groundwater recharge rates in climate-change impact studies. Hydrogeol. J. 24 (5), 
1171. 

Moeck, C., Hunkeler, D., Brunner, P., 2015. Tutorials as a flexible alternative to GUIs: An 
example for advanced model calibration using Pilot Points. Environ Model Softw. 66, 
78–86. https://doi.org/10.1016/j.envsoft.2014.12.018. 

Moeck, C., Molson, J., Schirmer, M., 2020. Pathline density distributions in a null-space 
Monte Carlo approach to assess groundwater pathways. Groundwater 58 (2), 
189–207. https://doi.org/10.1111/gwat.12900. 

Molnar, C., König, G., Herbinger, J., Freiesleben, T., Dandl, S., Scholbeck, C.A., 
Casalicchio, G., Grosse-Wentrup, M., Bischl, B., 2020. Pitfalls to avoid when 
interpreting machine learning models. http://eprints.cs.univie.ac.at/6427/. 

Montavon, G., Samek, W., Müller, K.R., 2018. Methods for interpreting and 
understanding deep neural networks. Digit. Signal Process. 73, 1–15. https://doi. 
org/10.1016/j.dsp.2017.10.011. 

Mosaffa, H., Sadeghi, M., Mallakpour, I., Jahromi, M.N., Pourghasemi, H.R., 2022. 
Application of machine learning algorithms in hydrology. In: Computers in Earth 
and Environmental Sciences. Elsevier, pp. 585–591. 

Moursi, H., Youssef, M.A., Chescheir, G.M., 2022. Development and application of 
DRAINMOD model for simulating crop yield and water conservation benefits of 
drainage water recycling. Agric Water Manag 266, 107592. 
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Torrentó, C., Cama, J., Urmeneta, J., Otero, N., Soler, A., 2010. Denitrification of 
groundwater with pyrite and Thiobacillus denitrificans. Chem. Geol. 278 (1–2), 
80–91. 

Torres-Martínez, J.A., Mora, A., Mahlknecht, J., Daesslé, L.W., Cervantes-Avilés, P.A., 
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