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A B S T R A C T   

We present a novel reduced order model (ROM) approach for parameterized time-dependent PDEs based on 
modern learning. The ROM is suitable for multi-query problems and is nonintrusive. It is divided into two distinct 
stages: a nonlinear dimensionality reduction stage that handles the spatially distributed degrees of freedom based 
on convolutional autoencoders, and a parameterized time-stepping stage based on memory aware neural net
works (NNs), specifically causal convolutional and long short-term memory NNs. Strategies to ensure general
ization and stability are discussed. To show the variety of problems the ROM can handle, the methodology is 
demonstrated on the advection equation, and the flow past a cylinder problem modeled by the incompressible 
Navier–Stokes equations.   

1. Introduction 

Simulations based on first-principles models often form an essential 
element for understanding, designing, and optimizing problems in, for 
example, physics, engineering, chemistry, and economics. However, 
with an increasing complexity of the mathematical models under 
consideration, it is not always possible to achieve the desired fidelity of 
such simulations in a satisfactory time frame. This is especially the case 
when dealing with multi-query and/or real time problems as encoun
tered in uncertainty quantification and model predictive control, where 
the computational model is typically parameterized. 

There are several approaches to reduce the computation time 
bottleneck. The arguably most common ones include high-performance 
computations [1], high-order discretizations [2], iterative and/or 
multigrid methods [3,4], and reduced order modeling (ROM) [5]. 
High-performance computing may be costly; the improvements due to 
high-order discretization strongly depend on the smoothness of solu
tions at hand, and iterative methods are highly dependent on being able 
to identify suitable preconditioners. Furthermore, these approaches may 
suffer from the curse of dimensionality. ROM, a relatively recent 
research area, is an interesting alternative to the other approaches. 

The ROM solution process is generally divided into two distinct 
stages [5]: a so-called “offline stage”, in which the reduced model is 
derived, and an “online stage”, where the reduced model is utilized and 

solved. Popular choices for the two stages are the proper orthogonal 
decomposition (POD) model definition, combined with a (Galerkin) 
projection procedure in the online stage [5,6]. Whereas this combina
tion has shown important successes, it has also been shown that the POD 
and projection approaches perform worse in certain settings, such as for 
advection-dominated or nonlinear problems. Furthermore, 
projection-based methods are intrusive, as they require access to the 
underlying high-fidelity model. Nowadays, it is a reasonable assumption 
that an industrial model is not directly accessable, and therefore 
non-intrusive approaches, i.e. approaches that are only based on a series 
of snapshots of solutions, are increasingly interesting alternatives. 

Machine learning has recently gained the attention from the scien
tific computing community due to great successes of artificial intelli
gence in various settings. Specifically artificial neural networks (ANNs), 
often simply denoted neural networks (NNs), have shown remarkable 
results in tasks such as image analysis and speech recognition. Much of 
the success has been boosted further by the availability of open source 
software frameworks, such as PyTorch [7] and Tensorflow [8], which 
have made implementation and training possible without expert 
knowledge and the availability of computation accelerating hardware, 
such as GPUs, has made training of very large models feasible. These 
recent advances have accelerated research in especially deep learning, i. 
e. multilayered NNs, which was not possible few years ago, resulting in 
many NN architectures specialized in certain tasks, such as time series 
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forecasting and dimensionality reduction. 
NNs have gained traction within the mathematics, numerical anal

ysis, and engineering communities either as a replacement or as a sup
plement to conventional function approximation methods. For an 
overview of articles, prospects, and future challenges, see e.g. [9–11]. In 
this paper, we will combine ROM and machine learning in both the 
offline and the online stages to showcase the potential of using these 
technologies on conventional problems from scientific computing. 

Important work has already been done on the topic of NN-based 
ROM. For example, the authors in [12–14] have used proper orthog
onal decomposition (POD) for dimensionality reduction and data-driven 
methods to map the parameters to the reduced basis coefficients. 
However, none of these approaches considers time-dependent problems. 

Examples of approaches that utilize POD and also deal with time are 
found in [15–17]. A difference with our method is that these approaches 
do not compute the unsteady states by means of time stepping, but 
rather consider time an extra parameter. Hence, it is not possible to 
advance a solution in time from an arbitrary point on the trajectory. The 
above mentioned approaches are based on a linear dimensionality 
reduction scheme in the form of the POD. 

In [18] a CAE is utilized for a nonlinear dimensionality reduction 
while the time stepping is done, intrusively, using multistep methods on 
the reduced model, derived from a Galerkin projection procedure. Due 
to the Galerkin projection of the high-fidelity model, this approach re
quires access to the underlying model. In [19], a CAE is also used for 
model reduction and an LSTM is used for time stepping of the reduced 
state, but with the problem parameters kept fixed. The paper [18] also 
considers CAEs for dimensionality reduction and a dense feedforward 
neural network (DFFNN) to map the parameters but without any time 
stepping procedure. Closest our work is [20], where a CAE is employed 
to reduce the dimension and a causal convolutional neural network 
(CCNN) to encode previous reduced states. The CCNN and the DFFNN 
are trained independently of each other. Stability of the methodology is 
not discussed in that paper and neither are comparisons with alternative 
regression techniques. 

In our work, we present a non-intrusive framework, based on deep 
learning, for computing parameterized spatio-temporal dynamics. The 
resulting reduced order model is divided into two distinct stages: Firstly, 
a dimensionality reduction stage based on convolutional autoencoders 
(CAEs), and secondly a memory-aware NN stage for parameterized time 
stepping. This methodology utilizes the effectiveness of CAEs as 
nonlinear dimensionality reduction techniques for spatially distributed 
data. To discuss the advantages of using CAEs, we make a comparison to 
the widely used linear counterpart, POD. Specifically we show that POD 
is a special case of an autoencoder. Furthermore, we present a flexible 
neural network structure for time stepping that takes into consideration 
previous states as well as parameters. The framework is quite general 
and allows for various types of neural network architectures, hence 
allowing state-of-the-art techniques that fit the problem at hand. We 
present and compare two modern time series forecasting architectures, 
long short-term memory (LSTM) networks [21], and causal convolu
tional neural networks (CCNNs) [22]. Furthermore, we present and 
discuss a series of approaches to ensure stability and generalization of 
the time stepping network. The scheme presented in this paper is 
compared to similar, but different, schemes, like Gaussian processes 
with POD. 

To the best of our knowledge, there is no other work on deep 
learning-based ROM that is non-intrusive, uses CAEs for dimensionality 
reduction, has memory-aware and parameterized time stepping, and 
discusses practical approaches to ensure stability and generalization. 
The result is a flexible offline-online scheme that works for various 
physical phenomena and can easily be modified according to the specific 
problem at hand. This makes the presented approach suitable for multi- 
query problems. 

The structure of the present paper is as follows. In Section 2 we 
present parameterized time-dependent PDEs. In Section 3 we discuss 

dimensionality reduction. Furthermore, we discuss how convolutional 
autoencoders are used for nonlinear dimensionality reduction. In Sec
tion 4 we present the parameterized memory-aware time stepping 
neural network. In Section 5 we showcase the performance on two test 
problems: a linear advection equation and a flow past a cylinder 
modeled by the incompressible Navier–Stokes equations. 

2. Parameterized time-dependent PDEs 

The model under consideration is of the form 

∂tu(t, x; μ) = F(t, x, u; μ), u(0, x; μ) = u0(x; μ), (1)  

where F is a (nonlinear) differential operator, u : ℝ × ℝd × ℝNp →ℝ or u :

ℝ× ℝd × ℝNp →ℝd, t ∈ [0, T], and x ∈ ℝd. Eq. (1) is a very general 
parameterized PDE. μ is to be considered a vector of parameters on 
which the solution depends. These parameters could be diffusion rate, 
Reynolds number, parameterize an initial or boundary condition, etc. 
For technical reasons, the parameter space ℘ is chosen to be a compact 
subspace of ℝNP [5]. 

Spatially discretizing (1), using finite elements, finite volumes, finite 
differences [23], gives the following finite-dimensional dynamical 
system, 

∂tuh(t, μ) = Fh(t, uh(t, μ); μ), uh(0, μ) = u0
h(μ), (2)  

h defines the granularity of the discretization, i.e. grid size, number of 
elements, etc. We will not go into details regarding these discretizations 
and it should be assumed that the discretized system is stable and con
verges to the exact solution when granularity is refined. uh(t, μ) ∈ ℝNh 

will be referred to as the high-fidelity or full-order solution. 
The manifold of high-fidelity solutions, parameterized by time and 

the parameters, is called the spatial discrete solution manifold, 

Mh = {uh(t, μ) |μ ∈ ℘, t ∈ [0,T]}⊂ℝNh , (3)  

Our goal is to approximate this manifold. 
Defining a time discretization, {t0, t1, …, tNt}, tn = nδt, and using a 

time stepping scheme gives us the time discrete approximation of (2): 

un+1
h (μ) = Fh,δt(un

h; μ), (4)  

where un(μ) = u(tn, μ). We will refer to un
h(μ) as the state at time step n. 

Note that the discrete time evolution map is not necessarily restricted to 
only depend on the last state, but can take in several previous states, as is 
done in, e.g. multistep methods, or it could depend on the current state 
as in implicit methods. We can now define the time-discrete high-fidelity 
solution manifold: 

Mh,δt =
{

un
h(μ)|μ ∈ ℘, n = 0,…Nt

}
⊂ℝNh . (5)  

The subscripts h and δt refer to the chosen spatial and time discretiza
tions, respectively. Mh,δt can be seen as the set of discrete state trajec
tories parameterized by the set of parameters. 

In general, Nh will be very large, which makes advancing the state 
with (4) for many time steps time consuming. This is especially the case 
when dealing with high-dimensional domains and multiphysics prob
lems. It is indeed a problem when dealing with multi-query problems 
such as uncertainty quantification and data assimilation or when real- 
time solutions are of importance as in real-time control settings and 
digital twins. 

3. Dimensionality reduction 

The fundamental idea of dimensionality reduction is that the mini
mal number of variables necessary to represent the state, also called the 
intrinsic dimension, of the dynamical system is low compared to the 
dimension of the high-fidelity model. However, identifying an optimal 
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low-dimensional representation is, in general, not a trivial task. In this 
section we will give a brief overview of linear dimensionality reduction, 
particularly, the well-known proper orthogonal decomposition (POD). 
Then, from the linear outset, we will describe the more general case of 
nonlinear dimensionality reduction. 

In general, for both linear and nonlinear dimensionality reduction, 
we assume that a state, un

h(μ) ∈ ℝNh , can be approximated, 

un
h(μ) ≈ Φ(un

h) = Φdec∘Φenc(un
h(μ)), (6)  

where Φenc(uh) ∈ ℝNl with Nl ≪ Nh. Φenc is referred to as the encoder and 
Φdec the decoder. The encoder transforms the high-dimensional input to a 
latent space of low dimension and the decoder transforms the latent 
variable back to the high-fidelity space. The latent space is often denoted 
the reduced trial manifold. The state at time step n in the latent space is 
denoted un

l (μ) = Φenc(un
h(μ)), and will be referred to as the latent state. 

Ideally, Φ reconstructs the input perfectly for any given parameters 
and time step. However, that is, in general, not possible. The precision of 
the reconstruction is heavily dependent on the dimension of the latent 
space, as this determines the amount of compression applied. One 
computes Φ by choosing a latent dimension, Nl, and then solving the 
minimization problem, 

Φ∗ = argmin
Φ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∫

μ∈P

[
∑Nt

n=0
||un

h(μ) − Φ(un
h(μ))| |

2
2

]

dμ

√
√
√
√ , (7)  

where ||⋅| |2 denotes the l2-norm. Theoretically, the reconstruction error 
should decrease when Nl is increased until the intrinsic dimension of the 
problem is reached. From thereon, increasing the dimension of the latent 
space should have very little effect on the reconstruction error. 

There are many ways of solving (7) [5]. In this paper we focus on a 
data-driven approach, sometimes referred to as the method of snapshots. 
A snapshot is a high-fidelity solution for a given parameter realization at 
a certain time. The idea of this approach is to make Ntrain samples from 
the parameter space and then compute a series of NT + 1 snapshots, i.e. 
trajectories, per parameter sample, 

MNtrain ,h,δt =
{

u0
h(μ1),…,uNt

h (μ1),u
0
h(μ2),…,uNt

h (μ2),…,u0
h(μNtrain

),…,uNt
h (μNtrain

)
}

(8)  

Then (7) is rewritten into an empirical minimization problem: 

Φ∗ = argmin
Φ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑Ntrain

i=1

∑Nt

n=0
||un

h(μi) − Φ(un
h(μi)) | |

2
2

√
√
√
√ . (9)  

The idea is that sampling a finite number of discrete trajectories a suf
ficient number of times yields a good enough representation of the time- 
discrete high-fidelity solution manifold. It should be noted that 
computing (8) is potentially very expensive and even infeasible in some 
cases. 

When a reduction scheme is computed, one can then compute the 
parameterized trajectories in the latent space, by 

un+1
l (μ) = Fl,δt(un

l ; μ), u0
l (μ) = Φenc

(
u0

h(μ)
)
, (10)  

from which the trajectories in the high-fidelity space can be recovered 
by un

h(μ) = Φdec
(
un

l (μ)
)
. Fl,δt can be derived in many ways and much time 

and effort have been put into deriving optimal latent dynamics. 

3.1. Linear dimensionality reduction 

In linear dimensionality reduction the strategy is to find a reduced 
linear trial manifold of low dimension. Since the sought manifold is 
linear it can be written as the column space, Col(V) of some matrix, 
V ∈ ℝNh×Nl . The column space is the space spanned by the columns of the 
matrix V. From the orthogonal projection theorem, it can be shown that 

the optimal projection onto a latent linear space is given by 

uh ≈ VVT uh. (11)  

Hence, this is a special case of (6) where 

Φ = VVT , Φenc = VT , Φdec = V. (12)  

This simplification reduces (9) to 

V∗ = argmin
V

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑Ntrain

i=1

∑Nt

n=0

⃒
⃒
⃒
⃒un

h(μi) − VVT un
h(μi)

⃒
⃒
⃒
⃒2

2

√
√
√
√ , (13)  

often accompanied by the constraint that the columns of V are orthog
onal, VTV = 0. It can be shown that (13) has an exact solution [5]. By 
collecting the snapshots in a snapshot matrix, 

S =
[
u0

h(μ1)|…|uNt
h (μ1)|…|u0

h(μNtrain
)|…|uNt

h (μNtrain
)
]
, (14)  

one can show that the optimal V ∈ ℝNh×Nl is given by the first Nl left 
singular vectors. The left singular vectors are computed through the 
singular value decomposition (SVD), 

S = UΣZT , (15)  

where U is a matrix whose columns are the left singular vectors, Z is a 
matrix whose columns are the right singular vectors, and Σ is a diagonal 
matrix with the singular values on the diagonal. V is then chosen to be 
the first Nl columns of U. This method of obtaining V is the proper 
orthogonal decomposition (POD) [5], also denoted principal component 
analysis (PCA) [24]. 

To obtain Fl,δt a Petrov Galerkin projection is often performed, which 
yields 

Fl,δt(un
l ; μ) = WT Fh,δt(Vun

l ; μ). (16)  

When W = V it is denoted the Galerkin projection. This approach is 
intrusive which means that direct access to the model, Fh,δt, is required. 
Furthermore, in the online phase a transformation between the latent 
space and the high-fidelity space must be performed in each time step in 
order to be able to evaluate Fh,δt(Vun

l ; μ), which slows down the com
putations. Various methods to circumvent that problem, such the 
discrete empirical interpolation methods [5], already exist. In recent 
years there are also many studies exploring approximating Fl,δt with 
neural networks [25,17]. 

While there are many advantages of a linear reduction scheme, such 
as the explicit solution to (13), there are, indeed, disadvantages as well. 
A significant problem is the restriction to a linear trial manifold. The 
optimal trial manifold, i.e. the trial manifold of the intrinsic dimension, 
is rarely linear. Especially for advection-dominated and nonlinear 
problems, it has been shown that a linear reduced approximation does 
not necessarily lead to significant speed-ups. 

3.2. Nonlinear dimensionality reduction 

The extension from linear to nonlinear dimensionality reduction 
comes naturally and addresses several of the drawbacks of linear 
dimensionality reduction. The fundamental difference is that we remove 
the constraint that the latent space has to be a linear manifold. Due to 
this generalization, we cannot write the projection operator as the ma
trix product VVT anymore, but instead we must use the general form in 
(6), where Φenc and Φdec can be any type of nonlinear functions. This 
gives rise to a major difference in solving (9), since no general exact 
solution exists and therefore (9) will be solved numerically. 

Even though extra approximation steps have to be introduced in the 
nonlinear case, the potential gains will, in some cases, outweigh this 
hurdle. This is due to the fact that with a nonlinear reduction scheme it is 
theoretically possible to reduce the high-fidelity space down to its 
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intrinsic dimension, NP + 1. However, this depends on the choice of Φ 
and the minimization scheme. 

A common method for nonlinear dimensionality reduction from the 
machine learning communities is, among others, kernel PCA. Here, the 
nonlinear manifold is embedded into a linear space, often of higher 
dimension, using a predefined nonlinear mapping, ψ : ℝNh →ℝNk , 
Nk >Nh. From thereon, a linear PCA is performed on the high- 
dimensional linear data. In order to speed up computations the so- 
called kernel trick is typically invoked. Utilizing that the nonlinear 
embedding induces a kernel, K = k(ψ(x), ψ(y)) = ψ(x)Tψ(y), one can 
compute the low-dimensional basis without explicitly transforming the 
data and perform PCA in the high-dimensional space. For more details 
see [26]. 

This approach works well in many cases but suffers from one crucial 
downside: Choosing the nonlinear mapping, ψ , or the kernel, K, is far 
from trivial. There exist no clear guiding principles that work across 
several cases. 

3.2.1. Autoencoders 
To overcome the problems of other nonlinear dimensionality 

reduction methods, such as kernel PCA and DEIM, we present autoen
coders (AEs). AEs are a type of NN. For a brief introduction to NNs and 
the terminology used in this paper, see Appendix A. In the context of 
dimensionality reduction one can interpret an AE as a kernel PCA where 
the kernel is learned during the training process. Thus, one circumvents 
the problem of choosing a suitable kernel. Note that this interpretation is 
merely presented in order to give an intuition of AEs in context of other 
methods. To further explain the connections between AEs and PCA, it is 
worth noting that a single hidden layer AE with linear activation func
tions is equivalent to PCA. A single hidden layered AE without bias terms 
can be written as 

Φ(un
h(μ); θ) = T2∘T1(x) = W2W1un

h(μ), (17)  

where θ = {W1,W2}, T1 : ℝNh →ℝNl , and T2 : ℝNl →ℝNh are linear maps 
and W1 and W2 are matrices. Typically, the mean squared error is chosen 
as the loss function for AEs, which gives the following minimization 
problem for the single hidden layer AE: 

arg min
W1 ,W2

1
NtrainNt

∑Ntrain

i=1

∑Nt

n=0

⃒
⃒
⃒
⃒un

h(μi) − W2W1un
h(μi)

⃒
⃒
⃒
⃒2. (18)  

Hence, training a single layer AE is equivalent to solving the PCA 
minimization problem, eq. (13), without the orthogonality constraint. 
Conclusively, PCA, Eq. (11), can be considered a special case of an AE. 

By dividing the AE into the encoder and decoder parts and allowing 
an arbitrary number of layers and nonlinear activation functions, it is 
easier to understand the similarities to linear dimensionality reduction 
and why AEs have the potential to perform significantly better. Consider 
the encoder part with a linear activation in the final layer, 

Φenc(un
h(μ); θ) = Tenc

L ∘σenc
L− 1∘Tenc

L− 1…∘σenc
1 ∘Tenc

1 (un
h(μ))⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟

ψenc(un
h(μ);θ)

= Wenc
L ψenc(u

n
h(μ); θ) = z,

(19)  

where ψenc(x; θ) = (ψ1
enc(x; θ),…,ψNe

enc(x; θ)) ∈ ℝNe and Wenc
L ∈ ℝNe×Nl . For 

convenience we ignore bias terms. We see that this corresponds to a 
nonlinear embedding onto ℝNe and then a projection onto the space 
spanned by the vectors ψ1

enc,…, ψNe
enc. This is similar to the idea behind 

kernel PCA. The difference is that in the AE framework we adjust the 
nonlinear embedding in the training instead of defining it beforehand. 
The decoder part is similarly written as 

Φdec(z; θ) = Tdec
L ∘σdec

L− 1∘Tdec
L− 1…∘σdec

1 ∘Tdec
1 (z)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
ψdec(z)

= Wdec
L ψdec(z; θ) = ũn

h(μ), (20)  

where Wdec
L ∈ ℝNd×Nh . 

Note that this is merely a brief discussion of the topic of AEs aiming 
to give an intuitive understanding. For more details see [27]. 

3.2.2. Convolutional autoencoders 
Convolutional autoencoders (CAEs) are a special type of AEs utilizing 

convolutional layers instead of dense layers. A brief introduction to 
convolutional neural networks (CNNs) can be found in Appendix A. It 
can be shown that dense and convolutional neural networks are equiv
alent regarding approximation rates [28], which means that theoretical 
approximation results for dense NNs translate directly to CNNs. For 
practical purposes, however, convolutional layers are often to be 
preferred due to especially the following two properties:  

• Local connections, which utilizes that spatial nodes close to each other 
are highly correlated.  

• Shared weights, which in practice makes the affine transformations 
very sparse and enables location invariant feature detection. 

An additional advantage is that it is straightforward to handle multiple 
spatially distributed states. These occur in coupled PDEs such as the 
Navier-Stokes equations where one is dealing with both the x-, y- and z- 
components of the velocity field as well as the pressure field. In the 
framework of CAEs, these can all be included by interpreting them as 
different channels. This enables the possibility of including multiple 
spatial states without increasing the number of weights in the neural 
network significantly. The connection between PDEs and CNNs has 
already been made, see e.g. [29]. 

In Fig. 1 one sees an illustration of a CAE. The encoding consists of a 
series of convolutional layers with an increasing number of filters and 
decreasing dimension, effectively down sampling the number of degrees 
of freedom, followed by dense layers. Similarly, the decoding consists of 
a series of dense layers followed by a series of deconvolutional layers 
with a decreasing number of filters and increasing dimension, effectively 
up sampling. The down sampling is often performed by utilizing pooling 

Fig. 1. Illustration of a convolutional autoencoder.  
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layers or strides larger than one. 
It is worth noting that computing the decoder, Φdec, of a CAE in the 

training phase is effectively solving an inverse problem. Inverse prob
lems are, in general, ill-posed and therefore require regularization. L2- 
regularization, often referred to as weight decay, is frequently used, and 
results in the following minimization problem to solve: 

argmin
θ

1
NtrainNt

∑Ntrain

i=1

∑Nt

n=0

⃒
⃒
⃒
⃒un

h(μi) − Φ(un
h(μi); θ)

⃒
⃒
⃒
⃒2 + α||θ| |22, (21)  

where α is a hyperparameter to be tuned. Besides ensuring well- 
posedness the term also ensures generalization. 

4. Approximating parameterized time evolution using neural 
networks 

In the previous section we presented the general framework for 
nonlinear dimensionality reduction and showcased how convolutional 
autoencoders fit into this framework. In this section we explain how 
neural networks will be utilized for approximating the dynamics in the 
latent space. For a brief review of the relevant types of neural networks, 
see again Appendix A. Neural networks have already shown to be able to 
approximate dynamical systems [20,30,31]. 

We aim to approximate the dynamics in the latent space non- 
intrusively by a function, Ψ ≈ Fl,δt: 

un+1 = Ψ(un), (22)  

where Ψ is a neural network. The approximated latent states will be 
denoted, ̃un

l (μ), to distinguish from the encoded high-fidelity state, un
l (μ)

= Φenc(un
h(μ)). Thereby, we aim to achieve: 

{
ũ0

l (μ1),…, ũNt
l (μ1),…, ũ0

l (μNtrain
),…, ũNt

l (μNtrain
)
}

≈
{

u0
l (μ1),…, uNt

l (μ1),…, u0
l (μNtrain

),…, uNt
l (μNtrain

)
} (23)  

4.0.1. Taking larger steps 

Using high-fidelity methods for time stepping often includes some 
restrictions on the step size in order for the scheme to be stable. An 
example is the Courant–Friedrichs–Lewy (CFL) condition for advection- 
dominated problems [32]. With our strategy, where we aim to learn a 
neural network representation of the time evolution map, there is no 
immediate connection between step size and stability. Therefore, in 
order to speed up online computations, the neural network can be 
trained to learn to take steps of size sδt. Hence, Ψ ≈ Fl,sδt. 

In the offline phase, the high-fidelity trajectories are still computed 
with step size δt, to ensure stability, but only every sth step is used for 
training the NN: 
{

u0
h(μ), u1

h(μ), u2
h(μ)…, uNt

h (μ)
}

↦
{

u0
h(μ), us

h(μ), u2s
h (μ)…, uNt

h (μ)
}

(24)  

In general, un
h(μ) and un+1

h (μ), are highly correlated, which means that 
we gain very little extra information by using both in the training of the 
NN. Therefore, it makes sense only use every sth step to save memory 
and speed up the training. Hoeever, the number s must be chosen ac
cording to various factors, like the requested detail of the dynamics in 
the online phase. It should further be kept in mind that larger s results in 
a more complicated map to learn, and thus complicates the training. 

For simplicity we will use the notation 
{
u0

h(μ), u1
h(μ), u2

h(μ)…, uNt
h (μ)

}

when referring to the trajectory used for training the neural network. 

4.0.2. Approximating the state vs. residual 

At first glance, it makes sense to train a neural network to approxi
mate un+1

l directly given un. However, it is shown in [25,33] that 
learning the residual instead of the next state often improves the accu
racy. Hence, we consider the case 

un+1
l = Ψ(un) = un

l + R(un
l ), (25)  

where R is approximated by a neural network. This practically makes Ψ 
what is often referred as a residual neural network. 

4.0.3. Incorporating memory 

In [25,19] the potential benefits of not only using the present state 
but also incorporating several previous time steps for the future pre
dictions were shown. Therefore, we now consider 

un+1
l = Ψ(un

l , u
n− 1,…, un− ξ

l ) = un
l + R(un

l , u
n− 1
l ,…, un− ξ

l ), (26)  

where ξ is the number of previous states included as input into the re
sidual computation by the NN. The idea of incorporating several pre
vious timesteps can loosely be compared to linear multistep methods 
where the order of approximation can be increased by using several 
previous steps [32]. In contrast to linear multistep methods, NNs 
incorporate the previous time steps in a nonlinear fashion. 

We consider two different types of networks in this paper: LSTM, and 
the CCNN. The two types of neural networks take varying computational 
time to train, have varying numbers of parameters, and vary in regards 
to how they interpret memory. In the appendix, there is a short 

Fig. 2. CCNN network architectures for varying memory.  
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Fig. 3. Illustration of the parallel neural network structure. The “Encoding previous timesteps” part is visualized using the CCNN, but it should be noted that an LSTM 
network (or any suitable time series encoder) could be put in its place. 

Fig. 4. (a) Illustration of the offline stage. (b) Illustration of the online stage.  
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description of the two types. Regarding the CCNNs, there are different 
ways to include memory. In this paper, we have chosen to include 
memory in shape of adding more layers, see Fig. 2, for examples for 
ξ = 8, ξ = 6, ξ = 4, and ξ = 2. 

4.0.4. Parameterized dynamics 

We aim to simulate parameterized trajectories of the latent dy
namics. Hence, we need to incorporate the parameters as input to the 
residual computation, resulting in a map 

Ψ : ℝξNl+NP →ℝζNl , un+1(μ) = Ψ(un
l (μ), un− 1(μ),…, un− ξ

l (μ), μ). (27)  

For now, we consider constant parameters, but it should be possible to 
incorporate time-dependent parameters. For this reason, the parameters 
do not need to be part of the memory aware section of the network. We 
propose a parallel architecture consisting of two branches combining 
into one: One branch interpreting the last ξ states and one branch pro

cessing the parameters. The two branches then connect and provide one 
final prediction for the residual. Having a single neural network incor
porating the previous states and the parameters enables simultaneous 
training of the two branches. See Fig. 3 for an illustration of the network 
structure. This ensures that the learned latent features from both 
branches are optimal with respect to predicting the next state. This is in 
contrast to what is done in [20], where the memory and the parameters 
are incorporated into two completely separate networks. 

For the parameter branch we simply make use of a dense FFNN. 
There is no immediate reason to believe that more complicated archi
tectures are necessary, since we are neither dealing with time-dependent 
nor high-dimensional or continuously spatially varying input. Note, 
however, that there is no reason to believe that this methodology will 
not work if the FF network in the parameter branch is replaced with a 
memory aware network in more advanced settings. 

The training of the full time-evolution network is done by mini
mizing the loss function 

L(ul, μ; θ) = 1
NtrainNt

∑Ntrain

i=1

∑NT

n=ξ

⃒
⃒
⃒
⃒un+1(μi) − Ψ(un

l (μi),…, un− ξ
l (μi), μi; θ)

⃒
⃒
⃒
⃒2

2,

(28)  

with respect to the NN parameters θ. 
Whereas the individual techniques described may be well-known, we 

here show how these techniques can be integrated to achieve better 
performance and accuracy. 

4.0.5. Imposing stability and generalization 

It is well-known that NNs do not necessarily generalize well beyond 
the training data without some kind of regularization. Combining that 
with the general risk of having instability in discrete dynamical systems 
makes it crucial to address these problems during the training. 

The arguably most common technique is to add L1- or L2-regulari
zation to the loss function. Furthermore, specifically for dynamical 

systems, it has been shown in [31] and [34] that regularizing the ei
genvalues of the Jacobian of the dynamics with respect to the state 
variable, DuΨ, does improve long term predictions. In short, this is 
related to linear and Lyapunov stability analysis of dynamical systems, 
that are related to sensitivity to initial conditions. Hence, we propose 
adding the term ||DuΨ| |2, which is the matrix 2-norm, i.e. the spectral 
radius of the Jacobian of Ψ, to the loss function. In practice, by utilizing 
the relation 

||DuΨ| |2 ≤ ||DuΨ| |F , (29)  

we instead add the computationally much cheaper Frobenius norm. 
It can empirically be shown that the long term predictions are 

significantly better if the network takes several steps at a time instead of 
a single one. Hence, we modify the output of the NN to 

R
(
un

l (μ),…, un− ξ
l (μ), μ; θ

)
= [R1,R2,…,Rζ]

T
, (30)  

which gives future predictions,  

Empirically we see that this modification keeps the prediction from 
exploding for longer time and it reduces spurious oscillations. 

The resulting loss function for the dynamics NN is given by: 

L(u,μ;θ) =
1

NtrainNt

∑Ntrain

i=1

∑NT

n=ξ

⃒
⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒
⃒

∑ζ

k=1

[
un+k

l (μi) − Ψk
(
un

l (μi),…,un− ξ
l (μi),μi;θ

)]
⃒
⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒
⃒

2

2 

+ β1||θ| |
2
2⏟̅̅̅⏞⏞̅̅̅ ⏟

Weight decay

+ β2||DuR| |F⏟̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅⏟
Jacobian regularization

, (32)  

4.1. The complete scheme 

Putting the components together, we have a scheme subdivided into 
two parts that are trained independently: The CAE, and the time evo
lution. The whole process is divided into an online phase and an offline 
phase. 

In the offline phase the CAE is trained on a series of high-fidelity 
snapshots in order to identify a nonlinear reduced trial manifold. 
Then, the CAE is used to reduce the high-fidelity snapshots to the latent 
space. The latent space trajectories are used to train the time evolution 
NN. The training of the two neural networks is visualized in Fig. 4a and 
outlined in Algorithm 1. Note that in Steps 3 and 5, where the autoen
coder and the time evolution network, respectively, are being trained, 
the considerations mentioned in A have to be included, like early- 
stopping, multiple-initialization, choice of optimizer, etc. In Algorithm 
2, an algorithm to automatically choose the latent dimension, number of 
training trajectories, memory, and future steps per iteration is presented. 
Note that this is a basic approach to tune the network. More advanced 
methods such as Bayesian optimization or reinforcement learning could 
be utilized here. Furthermore, it is worth noting that we can, assuming 
no time constraints, generate as many training samples as necessary. 

In the online phase the first ξ time steps of the state, computed with a 
high-fidelity scheme for a given parameter realization μ, are projected 
onto the latent space using the encoder part of the CAE. From there, the 

⎡

⎢
⎢
⎢
⎣

un+1
l (μ)

⋮

un+ζ
l (μ)

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

Ψ1
(
un

l (μ),…, un− ξ
l (μ), μ; θ

)

⋮

Ψζ
(
un

l (μ),…, un− ξ
l (μ), μ; θ

)

⎤

⎥
⎥
⎥
⎦
= un

l (μ) +

⎡

⎢
⎢
⎢
⎣

R1
(
un

l (μ),…, un− ξ
l (μ), μ; θ

)

⋮

Rζ
(
un(μ),…, un− ξ

l (μ), μ; θ
)

⎤

⎥
⎥
⎥
⎦

(31)   

N.T. Mücke et al.                                                                                                                                                                                                                               



Journal of Computational Science 53 (2021) 101408

8

time evolution NN computes the parameterized latent space trajectories 
iteratively. The latent space trajectories are then transformed to the 
high-fidelity space using the decoder of the CAE. The online stage is 
visualized in Fig. 4b and described in pseudo code in Algorithm 3. 

Algorithm 1. Offline stage – training 
{
u0

h(μ1),…, uNt
h (μ1),…, u0

h(μNtrain
),…, uNt

h (μNtrain
)
}

Algorithm 2. Offline stage – tuning

Algorithm 3. Online stage 
(u0

l (μ),…,uξ
l (μ)) =

(
Φenc

(
u0

h(μ)
)
,…,Φenc

(
uξ

h(μ)
) )

5. Results 

The aim of this section is to showcase how well our frameworks 
perform for different parameterized PDE problems. Furthermore, we 
show how the various approaches, regularizations, and parameters 
affect the performance. 

To assess the performance measure, the error on Ntest test trajectories 
for parameter values, {μ1,…, μNtest

}, that the NNs have not seen in the 
training phase is evaluated. We measure the mean relative error (MRE) 
at every time step and take the mean over multiple runs of the test cases: 

MRE(un
h(μi), ũ

n
h(μi)) =

1
Ntest

∑Ntest

i=1

⃒
⃒
⃒
⃒un

h(μi) − ũn
h(μi)

⃒
⃒
⃒
⃒2

2

||un
h(μi)| |

2
2

, (34)  

where 
⃒
⃒
⃒
⃒un

h(μi)
⃒
⃒
⃒
⃒2

2= (un
h(μi))

T un
h(μi). (35) 

Besides the MRE, we also analyze the standard error: 

Standard Error =
σ
̅̅̅̅̅̅̅̅
Ntest

√ , (36)  

where σ is the variance of the MRE. With this measure, we can assess if 
the trained NN performs similarly on all the test data, i.e. we empirically 
show robustness and generalization. 

For comparison, we show how the error evolves in time using various 
regression approaches for time stepping, together with the CAE and 
POD. We do not compare our method to intrusive approaches, such as 
POD-Galerkin, as we assume here that the PDE model is not available. 
The approaches dealing with time as a parameter, instead of performing 
time stepping are inherently different and are therefore also not 
considered here. Instead, we compare another regression technique, 
decision tree regression (DTR), as in [14] (see [24] for details on DTR). 
K-nearest-neighbor regression and Gaussian process regression (GPR) 
were also tested. K-nearest-neighbor regression performed very similar 
to DTR and GPR was infeasible to train due to the many training samples 
needed in the time stepping training. The implementation of DTR was 
done with the Python package Scikit-learn [35]. 

Regarding hyperparameters, we considered the number of layers, 
number of neurons, regularization parameters, learning rate, batch size, 
and memory. Due to the high-dimensional hyperparameter space, we 
used Gaussian process minimization a quick and approximate way to 
tune the hyperparameters. 

5.1. Neural network setup 

All neural networks are implemented in Tensorflow 2.0 [8] in Py
thon. The training is performed in the Google Colab framework on 
NVIDIA Tesla P100 GPUs. 

The neural network architecture configurations for the CAE can be 
found in Appendix B 

For the CCNN memory encoding, the layers are organized as shown 
in Figure 2. For the LSTM we work with network architectures of 3–5 
layers with 16–64 neurons in each LSTM layer. 

Furthermore, before the LSTM or CCNN layers every previous state is 
passed through a dense layer with 16 neurons. In TensorFlow 2.0 this 
type of layer is denoted TimeDistributed. 

For the parameter encoding, the neural network is a 3 layer deep 
network with 16 neurons in each layer. 

For the final prediction, we utilize a 3–5 layer deep NN with 32 
neurons in each layer. 

Remark. We only present results on dimensionality reduction using 
convolutional autoencoders and compare them to POD. It should be 
noted that dense autoencoders were also tested and showed significantly 
worse results. 

Moreover, we only consider LSTMs, and CCNNs for the time 

Input: Nl, ζ, ξ, Ntrain.  
Output: Trained CAE, Φ, and Time Evolution Network, R, and test error, E. 

1 Sample Ntrain parameter samples from the parameter space. 
2 Generate high-fidelity trajectories,  

{
u0

h(μ1),…, uNt
h (μ1),…, u0

h(μNtrain
),…, uNt

h (μNtrain
)
}

3 Train CAE, Φ = Φdec ∘ Φenc, with latent space dimension Nl, by minimizing  

argmin
θ

1
NtrainNt

∑Ntrain

i=1

∑Nt

n=0
||un(μi) − Φ(un(μi); θ)| |2 . (33)     

4 Encode high-fidelity trajectories to get latent state space trajectories  

{
Φenc

(
u0

h(μ1)
)
,…,Φenc

(
uNt

h (μ1)
)
,…,Φenc

(
u0

h(μNtrain
)
)
,…,Φenc

(
uNt

h (μNtrain
)
) }

5 Train time evolution network, R, to take the last ζ states and output the  
residuals for the next ξ states, by minimizing  

1
NtrainNt

∑Ntrain

i=1

∑NT

n=ξ

⃒
⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒
⃒

∑ζ

k=1

[
un+k

l (μi) − Ψk
(
un

l (μi),…, un− ξ
l (μi), μi; θ

) ]
⃒
⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒
⃒

2

2 
+β1||θ| |

2
2+β2||DuR| |F ,

6 Estimate error on a test set.   

Input: Φdec, R, μ, u0
h(μ),…,uξ

h(μ)
Output: Approximated trajectory in high-fidelity space. 

1 Encode the initial ξ high-fidelity states,  

(u0
l (μ),…, uξ

l (μ)) =
(
Φenc

(
u0

h(μ)
)
,…,Φenc

(
uξ

h(μ)
) )

2 Compute approximated latent trajectory by iterating,  

(
ũn

l (μ),…, ũn+ζ
l (μ)

)
= ũn

l (μ) + R(ũn
(μ),…, ũn− ξ

(μ), μ; θ),

until desired end time has been reached. 
3 Decode approximated latent space trajectories to high-fidelity space:  

{
ũ0

h(μ),…, ũNt
h (μ)

}
=

{
Φdec

(
ũ0

l (μ)
)
,…,Φdec

(
ũNt

l (μ)
) }
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stepping. We also studied other achitectures, such as neural ODEs [36], 
gated recurrent units (GRUs), and simple recursive neural networks. 
However, we chose to not include those results. Neural ODEs performed 
significantly worse and the training took much longer time. GRUs per
formed similarly to LSTMs and simple recursive neural networks per
formed slightly worse. 

5.2. Linear advection equation 

We first consider a linear advection equation on the domain Ω = [0, 
1]2: 

∂tu(μ) + b⋅∇u(μ) = 0, in Ω, (37a)  

u(μ) = 0 on Γ, (37b)  

where Γ = ∂Ω, 

b = μ1

⎛

⎜
⎜
⎝

− y −
1
2

x −
1
2

⎞

⎟
⎟
⎠, (37c)  

with initial condition 

u0(μ) = exp
(

1
2

[
(x − x0)

2

0.005
+
(y − y0)

2

0.005

])

, (38)  

where 
(

x0
y0

)

=
1
4

(
cos(μ2)

sin(μ2)

)

+
1
2
. (39)  

This problem models a Gaussian curve being advected with velocity μ1 
in a circle with origin at [12,

1
2] and radius 14, starting at the position given 

by the angle μ2. This problem is parameterized by two parameters, 
μ = (μ1, μ2) ∈ [0.5, 1.5] × [0, 2π]. The first parameter, the velocity, is 
directly affecting the phase of the dynamics, while the other, μ2, is only 
dictating the initial placement of the Gaussian curve. Hence, we are 
dealing with a 2-dimensional parameter space, while the dynamics are 
only parameterized by a single parameter. 

The high-fidelity snapshots are computed on a 60 × 60 grid using the 
discontinuous Galerkin method with linear Lagrange elements, resulting 
in a second-order convergence scheme that suits advection dominated 
problems well. The high-fidelity model consists of 21,600 degrees of 
freedom. For the implementation we used the FEniCS library in Python 
[37]. The time stepping is done using the Crank-Nicolson scheme with 
time steps of size 0.0075 for 2000 steps, resulting in a time interval, 
t ∈ [0, 15]. The training of the neural networks is done using every 4th 
time step, s = 4, meaning the model is trained to take steps of size 0.03. 
We are using 15 trajectories for the parameters not included in the 
training set for testing. The parameter μ is sampled uniformly in the 
domain [0.5, 1.5] × [0, 2π] for the training data. 

In Appendix C, various figures showcasing how each parameter af
fects the accuracy and stability are presented. From these plots, we infer 

Fig. 5. (a) Comparison of convergence of the time averaged MRE of the reconstruction using CAE and POD for the advection equation. (b) Average test errors 
computed for the linear advection equation for various combinations of POD, CAE, and regression methods. 

Fig. 6. Pointwise absolute error between the high-fidelity solution and the neural network prediction (CCNN) for the linear advection equation with velocity, 
μ1 = 1.4161, and initial angle, μ2 = 2.8744. 
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that the NN configuration that performs the best employs ξ = 6, 
β1 = 10− 9, β2 = 10− 6, and computes the residual rather than the state 
directly. Furthermore, the training is performed with 120 training 
trajectories. 

In Fig. 5a, we see a significant improvement by using the CAE 
compared to the POD approach. Using a latent dimension of 2, which is 
also the intrinsic dimension of the solution manifold, the CAE re
constructs the high-fidelity solution with an MRE between 10− 3 and 
10− 4. To achieve the same accuracy using the POD method, one needs a 

latent dimension of at least 17. This supports the previous claim that 
POD does, in general, not perform well on advection dominated prob
lems. Furthermore, it is shown that the accuracy improves with the 
amount of training data until the point where more data becomes 
redundant. Specifically, one sees that using 70 trajectories or 120 tra
jectories is very similar in performance. Note that the POD method does 
not improve with the amount of training data. 

In Fig. 5b we compare the mean error at each time step of our method 
with the alternative approaches. A latent space of dimension 18 is used 

Fig. 7. The setting for the flow past cylinder problem.  

Fig. 10. (a) CAE and POD convergence as well as (b) average errors with standard error for the flow past cylinder problem for various Reynolds numbers computed 
with various combinations of POD, CAE, and regression methods. The vertical black line signifies the end of the training horizon. The CAE based solutions are 
computed with a latent dimension of 6 and the POD based with a latent dimension of 76. 

Fig. 8. Comparison of the velocity at t = 25 for Re = 192 using CAE+LSTM (top) and the high-fidelity method (bottom).  
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for the methods using POD to achieve the same accuracy as for the CAE. 
All regression approaches are trained with 120 trajectories. Clearly, 
none of the alternative approaches capture the dynamics accurately. 
Using the POD basis for the NN time stepping performs significantly 
worse than the proposed methodology. The time stepping map becomes 
truly high-dimensional and thereby much harder to approximate. 

By looking at the pointwise error between the high-fidelity and the 
NN solutions in Fig. 6, it is clear that the NN approximation introduces a 
small phase error. This error could possibly be corrected in a post- 
processing step. 

5.3. 2D nonlinear equation – flow past cylinder 

We consider the incompressible Navier–Stokes Equations, governing 
transitional flow, resulting in a complicated flow pattern. The Equations 
are given by: 

∂tu(Re) + (u(Re)⋅∇)u(Re) − ∇p(Re) =
1

Re
Δu(Re), in Ω, (40a)  

∇⋅u(Re) = 0, in Ω, (40b)  

u(Re) = 0, on Γ, (40c)  

(ux(Re), uy(Re)) = (1, 0) for y = 0, (40d)  

with initial conditions u(Re) = 0 and p(Re) = 0. Consider a channel with 
a cylinder with an inflow at the left side and outflow on the right side, 
see Fig. 7 for a visualization of the setting. In the figure, we have also 

marked the area of interest, as we are interested in the complex flow 
pattern in the area immediately behind the cylinder. Note that the 
present methodology can be employed in a specific subdomain of in
terest. It is not necessary to work on the whole computational domain, as 
opposed to most high-fidelity methods. 

The inflow profile is given by: 

u(0, y, t) =
(

1.5
4y(0.41 − y)

0.412 , 0
)

(41)  

On the walls and the cylinder no slip conditions are prescribed. 
We parameterize the problem by the Reynolds number and consider 

values in the interval Re ∈ [120, 200]. For Reynolds numbers in this 
interval, the flow exhibits very interesting nonlinear behavior, such as 
Karman vortex streets. We compute the velocity as well as the pressure 

Fig. 9. A comparison of the velocity magnitude for the flow past cylinder problem at two distinct points in space for Re = 192 using CAE+LSTM.  

Table 1 
Time averaged error for the CAE+DTR and CAE+LSTM for various number of 
training trajectories.  

Ntrain 20 50 90 

CAE+DTR 1.75 × 10− 1 1.41 × 10− 1 6.41 × 10− 2 

CAE+LSTM 4.45 × 10− 1 1.11 × 10− 1 3.92 × 10− 2  

Table 2 
Time averaged error for each of the time stepping regression techniques together with CAE and POD respectively for each test problem. The results are for Re ∈ [120, 
200] for the flow past cylinder problem.   

CAE POD 

Test Problem CCNN LSTM DTR CCNN LSTM DTR 

Advection equation 1.54 × 10− 3 5.02 × 10− 3 1.53 × 100 2.02 × 102 2.84 × 101 1.50 × 100 

Flow past cylinder 1.64 × 10− 1 3.92 × 10− 2 6.41 × 10− 2 – 27.389 5.23 × 10− 2  

Table 3 
Online computation time in seconds for each of the time stepping regression 
techniques together with CAE and POD respectively for each test problem.  

Test problem High- 
fidelity 

CAE POD   

CCNN LSTM DTR CCNN LSTM DTR 

Advection 
equation 

532.22 2.08 4.63 0.03 1.78 3.41 0.02 

Flow past 
cylinder 

17251.31 7.56 9.74 3.13 5.14 6.57 1.45  

Table 4 
Offline computation time, i.e. NN training time, in seconds for the CCNN and 
LSTM using GPUs. Furthermore we show the time it took to generate the training 
trajectories. Note that the generation of training trajectories is not necessary in 
cases where the data already exists. Furthermore, we have omitted to show the 
training time for the non-NN regression methods as the training time negligible.  

Test problem CCNN LSTM Generation of trajectories 

Advection equation 396.67 622.28 50,763.13 (120 trajectories) 
Flow past cylinder 300.39 985.54 931,570.74 (90 trajectories)  
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field, meaning we include all relevant physics in the methodology. 
The high-fidelity problem is solved here using the finite element 

method with Taylor–Hood elements and the second-order incremental 
pressure correction scheme for time stepping [38], implemented in 
FEniCS. We use 128 elements resulting in 73,768 degrees of freedom. 
The solution is then evaluated at a 300 × 100 uniform grid. 

For the training trajectories, we solve for t ∈ [0, 2.5] and for the test 
trajectories we compute with t ∈ [0, 5]. This means that we also test how 
our method performs beyond the training horizon. The high-fidelity 
model stepsize is 0.0002, resulting in 12,500 time steps for the 
training trajectories and 25,000 steps for the test trajectories. For the 
training of the reduced model, we only use every 5th step resulting in 
2500 time steps, which also means that we use 5000 time steps for the 
test trajectories. 

In Fig. 10a we compare the CAE with the POD method for dimen
sionality reduction for various number of training trajectories. Using the 
CAE, one achieves accuracy of approximately 10− 4 with a latent 
dimension of 6. To achieve the same accuracy with POD one needs a 
latent space of dimension 76. Furthermore, it is clear that the CAE 
performs better with more training data until a certain point. However, 
it is apparent that the error increases when the latent dimension is 
increased. This phenomena is a result of overfitting or insufficient 
training, such as convergence to a local minimum. 

As for the advection equation, we compare the accuracy with DTR. In 
Fig. 10b we see that CAE+DTR performs well within the interval of the 
training, but fails to give anything meaningful beyond it. On the other 
side, CAE+LSTM performs significantly better beyond the training ho
rizon. The CAE+CCNN performs consistently one error of magnitude 
worse than CAE+LSTM. 

In Fig. 8 we see the velocity magnitude at t = 25 in the area of in
terest. Visually, there is close to no difference between the two, sug
gesting that the CAE+LSTM approach is able to capture the complicated 
flow patterns beyond the training time interval. This is further shown in 
Fig. 9 where we see the velocity magnitude at two specific points in 
space. It is clear that there is a small dispersion error as well as small 
errors in magnitude. However, the general flow pattern is approximated 
well. 

Lastly, we compare how the number of training trajectories affect the 
accuracy for the CAE+DTR and CAE+LSTM in Table 1. As expected, the 
test error decreases with the number of training trajectories. It is further 
apparent that the CAE+LSTM approach decreases faster, suggesting that 
this method benefits, to a higher degree, from more data. 

Remark – larger reynolds number intervals. Above, we consid
ered the case with the Reynolds numbers Re ∈ [120, 200]. For larger 
ranges of Reynolds numbers the flow in the wake of the cylinder varies 
more. Specifically, the flow regimes are known to have the following 
characteristics [39]: 0 < Re < 5: Steady without a wake; 4 < Re < 40: 
Steady symmetric separation; 30 < Re < 90: Laminar unstable wake; 
80 <Re < 300: Von Karman vortex street; 150 < Re < 1.3 ⋅ 105: Vortex 
street with (turbulent) instabilities. Note that the intervals are over
lapping as the exact boundaries between two regimes are unclear. 

The neural networks need to have a greater approximation ability in 
order to capture the dynamics in such different flow regimes. This would 
require a very large neural network with a large training data set. This 
can be circumvented by using, instead of a single CAE plus time stepping 
NN, a conditional approach. By dividing the parameter space into NI 
intervals and constructing NI CAEs with time stepping NNs to be trained 
on each interval, we made the data fitting an easier task. The offline 
procedure then involved training NI CAEs and time stepping NNs and the 
online procedure included an initial step determining the regime in 
which the given parameters lie. 

The division of the parameter space can be done by utilizing 
knowledge of the bifurcation diagram. Here, we saw that the NNs are not 
sensitive to the specific choice of intervals. In this experiment, we 
divided the parameter space into the following three intervals: I1 = [1, 
10], I2 = [10, 65], and I3 = [65, 120]. Hence, we tested whether the NNs 

could approximate the flow across different regimes. 
We chose to use the same hyperparameter setting for all NI networks. 

The CAEs were trained on 10 trajectories for I1 and 20 trajectories for I2 
and I3. The time stepping NNs were trained on 13, 72, and 77 trajectories 
for I1, I2, and I3, respectively. Testing of the NNs in each interval was 
done with three trajectories with Reynolds numbers uniformly distrib
uted in the relevant interval. 

We compared results for CAE and LSTM with results computed with 
CAE and DTR. Regarding the convergence of the CAEs for the three 
Reynolds number intervals, a latent dimension of 4 showed satisfactory 
results. We found essentially the same results for the three flow regimes, 
as those presented in the previous subsection for I4. The CAEs signifi
cantly outperfomed POD and LSTMs resulted in a better time stepping 
scheme that could approximate the flow beyond the training horizon 
while DTRs failed. 

In conclusion, dividing the parameter space into intervals and train 
NNs in each regime was a feasible solution to the problem of large 
parameter intervals. 

5.4. Computation time and accuracy 

We have showed and discussed performance regarding relative error 
for the two test cases. The results for the two cases, using the CCNN, 
LSTM, and DTR combined with CAE and POD, are summarized in 
Table 2, where the time averaged error is shown. The results for the for 
the flow past cylinder case are computed for I4.We considered the case 
with the Reynolds numbers 

As mentioned in the introduction, the aim is to be able to compute 
solutions fast in the online stage. In Table 3 the high-fidelity as well as 
the NN, and DTR online times in seconds are shown. In the online stage 
there has not been used any form of parallelization. Therefore, it should 
be noted that significant speed ups for both the high-fidelity and the 
regression time stepping approaches could be achieved with a greater 
effort on this matter. The NN online time and the high-fidelity compu
tation time is computed on an AMD Ryzen 9 3950X CPU. We observe 
that DTR is computationally faster, due to the much simpler model. 
However, it was shown above, that DTR was not able to approximate the 
dynamics well. 

Comparing the CAE+LSTM computation with the high-fidelity 
computation time we see speed-ups of around 115 times for the advec
tion equation and 1770 times for the flow past cylinder test case. Hence, 
we see significant speed-ups. 

In Table 4 the offline time is shown, divided into NN training time 
and the time it took to generate the training trajectories. In cases where 
the training trajectories come from collected data the simulation step is 
unnecessary, and hence the training time alone is the relevant number. 
For the training we used an Nvidia GeForce RTX 3090 GPU. Compared 
to the online stage it makes a massive difference to use a GPU instead of 
a CPU due to the heavy computations associated with backpropagation. 
We have chosen to only show the GPU training time. It is clear that the 
most time consuming part is generating the training trajectories. 

6. Conclusion 

We presented a novel deep learning approach to non-intrusive 
reduced order modeling for parameterized time-dependent PDEs using 
CAEs for dimensionality reduction and CCNNs and LSTMs combined 
with FFNNs for time evolution. This approach was demonstrated on two 
test cases and was shown to perform well in the online phase, show
casing the potential of using deep learning based ROMs for different 
physical phenomena. 

Regarding dimensionality reduction, a discussion and comparison of 
linear and nonlinear methods was presented with POD and CAEs as the 
focal points. The discussion focused on why a nonlinear approach has 
the potential to outperform a linear approach. 

For time stepping, the general idea was to encode the previous states 
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and the parameters separately in parallel and then combine the encoded 
data to make a final prediction using an FFNN. The two encoding NNs, as 
well as the final prediction NN, constitute a single network, meaning 
everything is trained simultaneously. This ensures that both the memory 
and parameters are encoded in relation to one another. Furthermore, 
various methods to ensure generalization, stability, and precision were 
discussed and tested. 

For the advection equation the CAE+CCNN approach performed 
very well with errors below 10− 2 for all time steps while the CAE+LSTM 
performed similarly but slightly worse. Interestingly, the alternative 
approaches, using POD instead of CAE and DTR for time stepping, failed 
to approximate the dynamics in any meaningful way. Furthermore, as 
expected the CAE reached much better precision than POD for dimen
sionality reduction with much fewer dimensions in the latent space. 

Secondly, a more involved problem, flow past a cylinder, was also 
studied. Here, we were dealing with multiple vector fields and compli
cated nonlinear patterns. Furthermore, we tested how the methodology 
performs beyond the training horizon. We saw that the CAE+LSTM 
approach showed errors below 10− 2 within the training horizon, and a 
slow increase in error beyond the horizon. However, the increase in 
error is primarily due to small phase errors, meaning the overall struc
ture of the flow still resembles the high-fidelity flow. When using DTR, 
either with POD or the CAE, the approximations completely failed 
beyond the training horizon, suggesting more complicated models are 
needed to actually learn the time stepping map. 

Lastly, we discussed an approach to deal with large parameter in
tervals that give rise to highly varying flow regimes. Namely, training a 
CAE and time stepping NN on subdomains and use the NNs corre
sponding to the subdomain it was trained on. We conclude that for the 
flow past cylinder case this approach is successful. 

In summary, the contributions in this work include a nonlinear 
dimensionality reduction scheme using convolutional autoencoders, a 
novel parallel neural network architecture for parameterized time 
stepping using CCNNs and LSTMs, and a discussion on different 

approaches to achieve stability and generalization for neural network- 
based time stepping. It is furthermore worth mentioning that frame
work presented allows for flexibility in shape of replacing certain ele
ments with alternatives. E.g. one could replace the CCNN or LSTM with 
another choice if needed. 

In the future the methodology will be tested on more advanced PDE 
problems. By advanced problems, we are both referring to increasing 
nonlinearity, higher dimensions, and multi-query problems such as 
uncertainty quantification, model predictive control, and data assimi
lation. Especially, data assimilation seems like a promising direction, 
since incorporating data could rectify the phase errors. 

Besides considering other use cases one could work on improving the 
NN architecture and training by, e.g. incorporating the physics in the 
training [31,39], and use reinforcement learning [40] to ensure effective 
snapshot generation. Furthermore, with the amount of hyperparameters 
(ξ, β1, β2, number of layers and neurons, etc.) the task of hyperparameter 
tuning is not trivial and could potentially be solved more effectively 
using alternative approaches. 
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Appendix A. Artificial neural networks 

A.1 Feedforward neural networks 

The arguably most common ANN architecture is the feedforward neural network (FNN). An FNN can be considered a function, G : ℝNi →ℝNo , 
consisting of a series of affine transformations, Ti, followed by an element-wise (nonlinear) activation function, σi: 

G(x; θ) = σL∘TL∘⋯∘σ1∘T1(x). (A.1)  

The combination of an afine transformation followed by the activation is called a neuron. The afine transformation can be written as Ti(x) =Wix + bi, 
where W ∈ ℝMi×Mi− 1 and b ∈ ℝMi . We call Wi the weight matrix, bi the bias vector, and Mi the number of neurons in layer i, and L the number of layers. 
(A.1) is conveniently visualized as a network of neurons. We will refer to the set of parameters as θ = {W1, b1,…,WL, bL}.  

In supervised learning one tries to approximate a function by an ANN, typically done by minimizing the empirical risk w.r.t. the parameters θ: 

Fig. A.11. Visualization of a feedforward densely connected neural network.  
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θ∗ = argmin
θ

E(x,y)∼℘data [ℒ(G(x; θ), y)], (A.2) 

where ℘data is the distribution generating the data and ℒ is a chosen loss function measuring the discrepancy between the predicted output and the 
target. For regression type problems the mean squared error (MSE) is the most common choice. However, especially for physics-informed machine 
learning the physics is often incorporated in the loss function in shape of extra term [39,31]. 

Computing (A.2), i.e. training the ANN, is mostly done using stochastic gradient descent (SGD) or a variants such as ADAM [41]. 

A.2 Convolutional neural networks 

Convolutional neural networks (CNNs) gained attention due their great performance in image recognition. The general idea is to utilize local 
properties of the data instead of only considering global properties. This is done by having local connections and shared weights in the neural net
works. These properties are not only great for detecting patterns in data but it also makes it possible to do computations on very high-dimensional 
data. 

A convolutional layer is effectively a feature map where each unit in the layer is connected to a local patch of the previous layer through a filter 
bank and an activation function. A feature map at layer l is a tensor, Hl ∈ ℝNl

chan×Nl
1×Nl

2 , where Hl
i,j,k is a unit at channel i, row j, and column k. The filter 

bank at layer l is a 4-dimensional tensor, Fl ∈ ℝNl
filter×Nl− 1

chan×k1×k2 , where Fl
i,j,m,n connects a unit in channel i of the output and channel j of the input with m 

and n being the offset of rows and columns respectively. Nl
filter denotes the number of filters in the feature bank in layer l and k1 and k2 denotes the 

kernel size. The convolution operation between a feature map and a filter bank is given by 

Hl
i,j,k = σl

⎛

⎝
∑N

l− 1
chan

r=1

∑N
l− 1
1

m=1

∑N
l− 1
2

n=1
Hl− 1

r,(j− 1)s+m,(k− 1)s+nFl
i,r,m,k + Bl

i,j,k

⎞

⎠, (A.3)  

where Bl
i,j,k is a bias term and σl is an activation function applied element-wise. s denotes the stride and effectively downsamples the feature map 

between layers. The filters, Fl
i,r,m,k, and biases, Bl

i,j,k, are the learnable parameters while the kernel sizes, k1, k2, the stride, s, and the number of filters, 
Nl

filter, are chosen. Often these are subject case specific objectives or hyperparameter optimization. 

A.3 Causal convolutional neural networks 

As the name suggests, causal convolutional neural networks (CCNNS) are related to convolutional neural networks. CCNNs are sometimes referred 
to as temporal convolutional neural networks, but in this paper we use the term CCNN. 

CCNNs are used for encoding time series data with the purpose of forecasting or classification. The general idea is to use 1-dimensional convo
lutions on time series data. In the multivariate case the multiple dimensions are interpreted as channels. The term causal refers to the fact that the filter 
banks are only convolved with the current and previous time steps, thus establishing a causal relationship between the past the future. 

A.4 Recurrent neural networks and long short-term memory 

A recurrent neural network (RNN) is an alternative to CCNNs for interpreting time series data. The general idea is to process and retain information 
from previous time steps in an efficient manner. In this paper, we solely focus on a specific RNN called long short-term memory (LSTM) [21]. For an 
input consisting of several previous time steps, xn, an LSTM layer consists of four components [19]: An input gate: 

in+1 = σ(Wixn + bi), (A.4)  

a forget gate: 

f n+1 = σ
(
Wf xn + bf

)
, (A.5)  

an output gate: 

on+1 = σ(Woxn + bo), (A.6)  

and a cell state 

cn+1 = i ⊙ cn + in ⊙ tanh(Wcxn + bc) (A.7)  

The prediction is then given by 

xn+1 = on ⊙ tanh(cn). (A.8)  

Wi, bi, Wf, bf, Wo, bo, Wc, bc are the trainable weight matrices and bias vectors, and ⊙ is the Hadamard product. Ideally, the input gate identifies what 
information to be passed to the from the cell state, the forget what to be dropped, and the output gate decides what to be passed to the final prediction. 
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Appendix B. Convolutional autoencoder configurations  

Appendix C. Linear advection  

Table B.5 
Convolutional autoencoder configuration for the advection equation. Note that the decoder is the inverse of the 
encoder.  

Encoder 

Convolutional Layers Kernels Filter size Stride 

Convolutional layer 1 4 5 × 5 2 × 2 
Batchnormalization 1    
Convolutional layer 2 8 5 × 5 2 × 2 
Batchnormalization 2    
Convolutional layer 3 16 5 × 5 2 × 2 
Batchnormalization 3    
Convolutional layer 4 32 5 × 5 2 × 2 
Batchnormalization 4     

Flatten 

Dense layers Neurons 

Dense layer 1 Nl  

Table B.6 
Convolutional autoencoder configuration for the flow past cylinder problem. Note that the decoder is the inverse 
of the encoder.  

Encoder 

Convolutional layers Kernels Filter size Stride 

Convolutional layer 1 8 5 × 5 2 × 2 
Batchnormalization 1    
Convolutional layer 2 16 5 × 5 2 × 2 
Batchnormalization 2    
Convolutional layer 3 32 5 × 5 2 × 2 
Batchnormalization 3    
Convolutional layer 4 64 5 × 5 2 × 2 
Batchnormalization 4    
Convolutional layer 5 128 5 × 5 2 × 2 
Batchnormalization 5     

Flatten 

Dense layers Neurons 

Dense layer 1 493 
Dense layer 2 247 
Dense layer 3 Nl  

Fig. C.12. Comparison of CCNN and LSTM in relative error for each time step in high-fidelity space for the linear advection equation for varying memory, ξ. The 
error for each time step is a computed average over 15 test cases with the standard error. 
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