
Journal of Computational Science 53 (2021) 101408

Available online 21 June 2021
1877-7503/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Reduced order modeling for parameterized time-dependent PDEs using
spatially and memory aware deep learning

Nikolaj T. Mücke a,*, Sander M. Bohté a, Cornelis W. Oosterlee a,b

a CWI, Science Park 123, 1098 XG Amsterdam, Netherlands
b Mathematical Institute, Utrecht University, Netherlands

A R T I C L E I N F O

Keywords:
Parameterized PDEs
Spatio-temporal dynamics
Reduced order modeling
Deep learning

A B S T R A C T

We present a novel reduced order model (ROM) approach for parameterized time-dependent PDEs based on
modern learning. The ROM is suitable for multi-query problems and is nonintrusive. It is divided into two distinct
stages: a nonlinear dimensionality reduction stage that handles the spatially distributed degrees of freedom based
on convolutional autoencoders, and a parameterized time-stepping stage based on memory aware neural net
works (NNs), specifically causal convolutional and long short-term memory NNs. Strategies to ensure general
ization and stability are discussed. To show the variety of problems the ROM can handle, the methodology is
demonstrated on the advection equation, and the flow past a cylinder problem modeled by the incompressible
Navier–Stokes equations.

1. Introduction

Simulations based on first-principles models often form an essential
element for understanding, designing, and optimizing problems in, for
example, physics, engineering, chemistry, and economics. However,
with an increasing complexity of the mathematical models under
consideration, it is not always possible to achieve the desired fidelity of
such simulations in a satisfactory time frame. This is especially the case
when dealing with multi-query and/or real time problems as encoun
tered in uncertainty quantification and model predictive control, where
the computational model is typically parameterized.

There are several approaches to reduce the computation time
bottleneck. The arguably most common ones include high-performance
computations [1], high-order discretizations [2], iterative and/or
multigrid methods [3,4], and reduced order modeling (ROM) [5].
High-performance computing may be costly; the improvements due to
high-order discretization strongly depend on the smoothness of solu
tions at hand, and iterative methods are highly dependent on being able
to identify suitable preconditioners. Furthermore, these approaches may
suffer from the curse of dimensionality. ROM, a relatively recent
research area, is an interesting alternative to the other approaches.

The ROM solution process is generally divided into two distinct
stages [5]: a so-called “offline stage”, in which the reduced model is
derived, and an “online stage”, where the reduced model is utilized and

solved. Popular choices for the two stages are the proper orthogonal
decomposition (POD) model definition, combined with a (Galerkin)
projection procedure in the online stage [5,6]. Whereas this combina
tion has shown important successes, it has also been shown that the POD
and projection approaches perform worse in certain settings, such as for
advection-dominated or nonlinear problems. Furthermore,
projection-based methods are intrusive, as they require access to the
underlying high-fidelity model. Nowadays, it is a reasonable assumption
that an industrial model is not directly accessable, and therefore
non-intrusive approaches, i.e. approaches that are only based on a series
of snapshots of solutions, are increasingly interesting alternatives.

Machine learning has recently gained the attention from the scien
tific computing community due to great successes of artificial intelli
gence in various settings. Specifically artificial neural networks (ANNs),
often simply denoted neural networks (NNs), have shown remarkable
results in tasks such as image analysis and speech recognition. Much of
the success has been boosted further by the availability of open source
software frameworks, such as PyTorch [7] and Tensorflow [8], which
have made implementation and training possible without expert
knowledge and the availability of computation accelerating hardware,
such as GPUs, has made training of very large models feasible. These
recent advances have accelerated research in especially deep learning, i.
e. multilayered NNs, which was not possible few years ago, resulting in
many NN architectures specialized in certain tasks, such as time series

* Corresponding author.
E-mail addresses: nikolaj.mucke@cwi.nl (N.T. Mücke), S.M.Bohte@cwi.nl (S.M. Bohté), c.w.oosterlee@uu.nl (C.W. Oosterlee).

Contents lists available at ScienceDirect

Journal of Computational Science

journal homepage: www.elsevier.com/locate/jocs

https://doi.org/10.1016/j.jocs.2021.101408
Received 6 July 2020; Received in revised form 20 May 2021; Accepted 10 June 2021

mailto:nikolaj.mucke@cwi.nl
mailto:S.M.Bohte@cwi.nl
mailto:c.w.oosterlee@uu.nl
www.sciencedirect.com/science/journal/18777503
https://www.elsevier.com/locate/jocs
https://doi.org/10.1016/j.jocs.2021.101408
https://doi.org/10.1016/j.jocs.2021.101408
https://doi.org/10.1016/j.jocs.2021.101408
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2021.101408&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Journal of Computational Science 53 (2021) 101408

2

forecasting and dimensionality reduction.
NNs have gained traction within the mathematics, numerical anal

ysis, and engineering communities either as a replacement or as a sup
plement to conventional function approximation methods. For an
overview of articles, prospects, and future challenges, see e.g. [9–11]. In
this paper, we will combine ROM and machine learning in both the
offline and the online stages to showcase the potential of using these
technologies on conventional problems from scientific computing.

Important work has already been done on the topic of NN-based
ROM. For example, the authors in [12–14] have used proper orthog
onal decomposition (POD) for dimensionality reduction and data-driven
methods to map the parameters to the reduced basis coefficients.
However, none of these approaches considers time-dependent problems.

Examples of approaches that utilize POD and also deal with time are
found in [15–17]. A difference with our method is that these approaches
do not compute the unsteady states by means of time stepping, but
rather consider time an extra parameter. Hence, it is not possible to
advance a solution in time from an arbitrary point on the trajectory. The
above mentioned approaches are based on a linear dimensionality
reduction scheme in the form of the POD.

In [18] a CAE is utilized for a nonlinear dimensionality reduction
while the time stepping is done, intrusively, using multistep methods on
the reduced model, derived from a Galerkin projection procedure. Due
to the Galerkin projection of the high-fidelity model, this approach re
quires access to the underlying model. In [19], a CAE is also used for
model reduction and an LSTM is used for time stepping of the reduced
state, but with the problem parameters kept fixed. The paper [18] also
considers CAEs for dimensionality reduction and a dense feedforward
neural network (DFFNN) to map the parameters but without any time
stepping procedure. Closest our work is [20], where a CAE is employed
to reduce the dimension and a causal convolutional neural network
(CCNN) to encode previous reduced states. The CCNN and the DFFNN
are trained independently of each other. Stability of the methodology is
not discussed in that paper and neither are comparisons with alternative
regression techniques.

In our work, we present a non-intrusive framework, based on deep
learning, for computing parameterized spatio-temporal dynamics. The
resulting reduced order model is divided into two distinct stages: Firstly,
a dimensionality reduction stage based on convolutional autoencoders
(CAEs), and secondly a memory-aware NN stage for parameterized time
stepping. This methodology utilizes the effectiveness of CAEs as
nonlinear dimensionality reduction techniques for spatially distributed
data. To discuss the advantages of using CAEs, we make a comparison to
the widely used linear counterpart, POD. Specifically we show that POD
is a special case of an autoencoder. Furthermore, we present a flexible
neural network structure for time stepping that takes into consideration
previous states as well as parameters. The framework is quite general
and allows for various types of neural network architectures, hence
allowing state-of-the-art techniques that fit the problem at hand. We
present and compare two modern time series forecasting architectures,
long short-term memory (LSTM) networks [21], and causal convolu
tional neural networks (CCNNs) [22]. Furthermore, we present and
discuss a series of approaches to ensure stability and generalization of
the time stepping network. The scheme presented in this paper is
compared to similar, but different, schemes, like Gaussian processes
with POD.

To the best of our knowledge, there is no other work on deep
learning-based ROM that is non-intrusive, uses CAEs for dimensionality
reduction, has memory-aware and parameterized time stepping, and
discusses practical approaches to ensure stability and generalization.
The result is a flexible offline-online scheme that works for various
physical phenomena and can easily be modified according to the specific
problem at hand. This makes the presented approach suitable for multi-
query problems.

The structure of the present paper is as follows. In Section 2 we
present parameterized time-dependent PDEs. In Section 3 we discuss

dimensionality reduction. Furthermore, we discuss how convolutional
autoencoders are used for nonlinear dimensionality reduction. In Sec
tion 4 we present the parameterized memory-aware time stepping
neural network. In Section 5 we showcase the performance on two test
problems: a linear advection equation and a flow past a cylinder
modeled by the incompressible Navier–Stokes equations.

2. Parameterized time-dependent PDEs

The model under consideration is of the form

∂tu(t, x; μ) = F(t, x, u; μ), u(0, x; μ) = u0(x; μ), (1)

where F is a (nonlinear) differential operator, u : ℝ × ℝd × ℝNp →ℝ or u :

ℝ× ℝd × ℝNp →ℝd, t ∈ [0, T], and x ∈ ℝd. Eq. (1) is a very general
parameterized PDE. μ is to be considered a vector of parameters on
which the solution depends. These parameters could be diffusion rate,
Reynolds number, parameterize an initial or boundary condition, etc.
For technical reasons, the parameter space ℘ is chosen to be a compact
subspace of ℝNP [5].

Spatially discretizing (1), using finite elements, finite volumes, finite
differences [23], gives the following finite-dimensional dynamical
system,

∂tuh(t, μ) = Fh(t, uh(t, μ); μ), uh(0, μ) = u0
h(μ), (2)

h defines the granularity of the discretization, i.e. grid size, number of
elements, etc. We will not go into details regarding these discretizations
and it should be assumed that the discretized system is stable and con
verges to the exact solution when granularity is refined. uh(t, μ) ∈ ℝNh

will be referred to as the high-fidelity or full-order solution.
The manifold of high-fidelity solutions, parameterized by time and

the parameters, is called the spatial discrete solution manifold,

Mh = {uh(t, μ) |μ ∈ ℘, t ∈ [0,T]}⊂ℝNh , (3)

Our goal is to approximate this manifold.
Defining a time discretization, {t0, t1, …, tNt}, tn = nδt, and using a

time stepping scheme gives us the time discrete approximation of (2):

un+1
h (μ) = Fh,δt(un

h; μ), (4)

where un(μ) = u(tn, μ). We will refer to un
h(μ) as the state at time step n.

Note that the discrete time evolution map is not necessarily restricted to
only depend on the last state, but can take in several previous states, as is
done in, e.g. multistep methods, or it could depend on the current state
as in implicit methods. We can now define the time-discrete high-fidelity
solution manifold:

Mh,δt =
{

un
h(μ)|μ ∈ ℘, n = 0,…Nt

}
⊂ℝNh . (5)

The subscripts h and δt refer to the chosen spatial and time discretiza
tions, respectively. Mh,δt can be seen as the set of discrete state trajec
tories parameterized by the set of parameters.

In general, Nh will be very large, which makes advancing the state
with (4) for many time steps time consuming. This is especially the case
when dealing with high-dimensional domains and multiphysics prob
lems. It is indeed a problem when dealing with multi-query problems
such as uncertainty quantification and data assimilation or when real-
time solutions are of importance as in real-time control settings and
digital twins.

3. Dimensionality reduction

The fundamental idea of dimensionality reduction is that the mini
mal number of variables necessary to represent the state, also called the
intrinsic dimension, of the dynamical system is low compared to the
dimension of the high-fidelity model. However, identifying an optimal

N.T. Mücke et al.

Journal of Computational Science 53 (2021) 101408

3

low-dimensional representation is, in general, not a trivial task. In this
section we will give a brief overview of linear dimensionality reduction,
particularly, the well-known proper orthogonal decomposition (POD).
Then, from the linear outset, we will describe the more general case of
nonlinear dimensionality reduction.

In general, for both linear and nonlinear dimensionality reduction,
we assume that a state, un

h(μ) ∈ ℝNh , can be approximated,

un
h(μ) ≈ Φ(un

h) = Φdec∘Φenc(un
h(μ)), (6)

where Φenc(uh) ∈ ℝNl with Nl ≪ Nh. Φenc is referred to as the encoder and
Φdec the decoder. The encoder transforms the high-dimensional input to a
latent space of low dimension and the decoder transforms the latent
variable back to the high-fidelity space. The latent space is often denoted
the reduced trial manifold. The state at time step n in the latent space is
denoted un

l (μ) = Φenc(un
h(μ)), and will be referred to as the latent state.

Ideally, Φ reconstructs the input perfectly for any given parameters
and time step. However, that is, in general, not possible. The precision of
the reconstruction is heavily dependent on the dimension of the latent
space, as this determines the amount of compression applied. One
computes Φ by choosing a latent dimension, Nl, and then solving the
minimization problem,

Φ∗ = argmin
Φ

̅̅̅
∫

μ∈P

[
∑Nt

n=0
||un

h(μ) − Φ(un
h(μ))| |

2
2

]

dμ

√
√
√
√ , (7)

where ||⋅| |2 denotes the l2-norm. Theoretically, the reconstruction error
should decrease when Nl is increased until the intrinsic dimension of the
problem is reached. From thereon, increasing the dimension of the latent
space should have very little effect on the reconstruction error.

There are many ways of solving (7) [5]. In this paper we focus on a
data-driven approach, sometimes referred to as the method of snapshots.
A snapshot is a high-fidelity solution for a given parameter realization at
a certain time. The idea of this approach is to make Ntrain samples from
the parameter space and then compute a series of NT + 1 snapshots, i.e.
trajectories, per parameter sample,

MNtrain ,h,δt =
{

u0
h(μ1),…,uNt

h (μ1),u
0
h(μ2),…,uNt

h (μ2),…,u0
h(μNtrain

),…,uNt
h (μNtrain

)
}

(8)

Then (7) is rewritten into an empirical minimization problem:

Φ∗ = argmin
Φ

̅̅

∑Ntrain

i=1

∑Nt

n=0
||un

h(μi) − Φ(un
h(μi)) | |

2
2

√
√
√
√ . (9)

The idea is that sampling a finite number of discrete trajectories a suf
ficient number of times yields a good enough representation of the time-
discrete high-fidelity solution manifold. It should be noted that
computing (8) is potentially very expensive and even infeasible in some
cases.

When a reduction scheme is computed, one can then compute the
parameterized trajectories in the latent space, by

un+1
l (μ) = Fl,δt(un

l ; μ), u0
l (μ) = Φenc

(
u0

h(μ)
)
, (10)

from which the trajectories in the high-fidelity space can be recovered
by un

h(μ) = Φdec
(
un

l (μ)
)
. Fl,δt can be derived in many ways and much time

and effort have been put into deriving optimal latent dynamics.

3.1. Linear dimensionality reduction

In linear dimensionality reduction the strategy is to find a reduced
linear trial manifold of low dimension. Since the sought manifold is
linear it can be written as the column space, Col(V) of some matrix,
V ∈ ℝNh×Nl . The column space is the space spanned by the columns of the
matrix V. From the orthogonal projection theorem, it can be shown that

the optimal projection onto a latent linear space is given by

uh ≈ VVT uh. (11)

Hence, this is a special case of (6) where

Φ = VVT , Φenc = VT , Φdec = V. (12)

This simplification reduces (9) to

V∗ = argmin
V

̅̅

∑Ntrain

i=1

∑Nt

n=0

⃒
⃒
⃒
⃒un

h(μi) − VVT un
h(μi)

⃒
⃒
⃒
⃒2

2

√
√
√
√ , (13)

often accompanied by the constraint that the columns of V are orthog
onal, VTV = 0. It can be shown that (13) has an exact solution [5]. By
collecting the snapshots in a snapshot matrix,

S =
[
u0

h(μ1)|…|uNt
h (μ1)|…|u0

h(μNtrain
)|…|uNt

h (μNtrain
)
]
, (14)

one can show that the optimal V ∈ ℝNh×Nl is given by the first Nl left
singular vectors. The left singular vectors are computed through the
singular value decomposition (SVD),

S = UΣZT , (15)

where U is a matrix whose columns are the left singular vectors, Z is a
matrix whose columns are the right singular vectors, and Σ is a diagonal
matrix with the singular values on the diagonal. V is then chosen to be
the first Nl columns of U. This method of obtaining V is the proper
orthogonal decomposition (POD) [5], also denoted principal component
analysis (PCA) [24].

To obtain Fl,δt a Petrov Galerkin projection is often performed, which
yields

Fl,δt(un
l ; μ) = WT Fh,δt(Vun

l ; μ). (16)

When W = V it is denoted the Galerkin projection. This approach is
intrusive which means that direct access to the model, Fh,δt, is required.
Furthermore, in the online phase a transformation between the latent
space and the high-fidelity space must be performed in each time step in
order to be able to evaluate Fh,δt(Vun

l ; μ), which slows down the com
putations. Various methods to circumvent that problem, such the
discrete empirical interpolation methods [5], already exist. In recent
years there are also many studies exploring approximating Fl,δt with
neural networks [25,17].

While there are many advantages of a linear reduction scheme, such
as the explicit solution to (13), there are, indeed, disadvantages as well.
A significant problem is the restriction to a linear trial manifold. The
optimal trial manifold, i.e. the trial manifold of the intrinsic dimension,
is rarely linear. Especially for advection-dominated and nonlinear
problems, it has been shown that a linear reduced approximation does
not necessarily lead to significant speed-ups.

3.2. Nonlinear dimensionality reduction

The extension from linear to nonlinear dimensionality reduction
comes naturally and addresses several of the drawbacks of linear
dimensionality reduction. The fundamental difference is that we remove
the constraint that the latent space has to be a linear manifold. Due to
this generalization, we cannot write the projection operator as the ma
trix product VVT anymore, but instead we must use the general form in
(6), where Φenc and Φdec can be any type of nonlinear functions. This
gives rise to a major difference in solving (9), since no general exact
solution exists and therefore (9) will be solved numerically.

Even though extra approximation steps have to be introduced in the
nonlinear case, the potential gains will, in some cases, outweigh this
hurdle. This is due to the fact that with a nonlinear reduction scheme it is
theoretically possible to reduce the high-fidelity space down to its

N.T. Mücke et al.

Journal of Computational Science 53 (2021) 101408

4

intrinsic dimension, NP + 1. However, this depends on the choice of Φ
and the minimization scheme.

A common method for nonlinear dimensionality reduction from the
machine learning communities is, among others, kernel PCA. Here, the
nonlinear manifold is embedded into a linear space, often of higher
dimension, using a predefined nonlinear mapping, ψ : ℝNh →ℝNk ,
Nk >Nh. From thereon, a linear PCA is performed on the high-
dimensional linear data. In order to speed up computations the so-
called kernel trick is typically invoked. Utilizing that the nonlinear
embedding induces a kernel, K = k(ψ(x), ψ(y)) = ψ(x)Tψ(y), one can
compute the low-dimensional basis without explicitly transforming the
data and perform PCA in the high-dimensional space. For more details
see [26].

This approach works well in many cases but suffers from one crucial
downside: Choosing the nonlinear mapping, ψ , or the kernel, K, is far
from trivial. There exist no clear guiding principles that work across
several cases.

3.2.1. Autoencoders
To overcome the problems of other nonlinear dimensionality

reduction methods, such as kernel PCA and DEIM, we present autoen
coders (AEs). AEs are a type of NN. For a brief introduction to NNs and
the terminology used in this paper, see Appendix A. In the context of
dimensionality reduction one can interpret an AE as a kernel PCA where
the kernel is learned during the training process. Thus, one circumvents
the problem of choosing a suitable kernel. Note that this interpretation is
merely presented in order to give an intuition of AEs in context of other
methods. To further explain the connections between AEs and PCA, it is
worth noting that a single hidden layer AE with linear activation func
tions is equivalent to PCA. A single hidden layered AE without bias terms
can be written as

Φ(un
h(μ); θ) = T2∘T1(x) = W2W1un

h(μ), (17)

where θ = {W1,W2}, T1 : ℝNh →ℝNl , and T2 : ℝNl →ℝNh are linear maps
and W1 and W2 are matrices. Typically, the mean squared error is chosen
as the loss function for AEs, which gives the following minimization
problem for the single hidden layer AE:

arg min
W1 ,W2

1
NtrainNt

∑Ntrain

i=1

∑Nt

n=0

⃒
⃒
⃒
⃒un

h(μi) − W2W1un
h(μi)

⃒
⃒
⃒
⃒2. (18)

Hence, training a single layer AE is equivalent to solving the PCA
minimization problem, eq. (13), without the orthogonality constraint.
Conclusively, PCA, Eq. (11), can be considered a special case of an AE.

By dividing the AE into the encoder and decoder parts and allowing
an arbitrary number of layers and nonlinear activation functions, it is
easier to understand the similarities to linear dimensionality reduction
and why AEs have the potential to perform significantly better. Consider
the encoder part with a linear activation in the final layer,

Φenc(un
h(μ); θ) = Tenc

L ∘σenc
L− 1∘Tenc

L− 1…∘σenc
1 ∘Tenc

1 (un
h(μ))⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟

ψenc(un
h(μ);θ)

= Wenc
L ψenc(u

n
h(μ); θ) = z,

(19)

where ψenc(x; θ) = (ψ1
enc(x; θ),…,ψNe

enc(x; θ)) ∈ ℝNe and Wenc
L ∈ ℝNe×Nl . For

convenience we ignore bias terms. We see that this corresponds to a
nonlinear embedding onto ℝNe and then a projection onto the space
spanned by the vectors ψ1

enc,…, ψNe
enc. This is similar to the idea behind

kernel PCA. The difference is that in the AE framework we adjust the
nonlinear embedding in the training instead of defining it beforehand.
The decoder part is similarly written as

Φdec(z; θ) = Tdec
L ∘σdec

L− 1∘Tdec
L− 1…∘σdec

1 ∘Tdec
1 (z)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
ψdec(z)

= Wdec
L ψdec(z; θ) = ũn

h(μ), (20)

where Wdec
L ∈ ℝNd×Nh .

Note that this is merely a brief discussion of the topic of AEs aiming
to give an intuitive understanding. For more details see [27].

3.2.2. Convolutional autoencoders
Convolutional autoencoders (CAEs) are a special type of AEs utilizing

convolutional layers instead of dense layers. A brief introduction to
convolutional neural networks (CNNs) can be found in Appendix A. It
can be shown that dense and convolutional neural networks are equiv
alent regarding approximation rates [28], which means that theoretical
approximation results for dense NNs translate directly to CNNs. For
practical purposes, however, convolutional layers are often to be
preferred due to especially the following two properties:

• Local connections, which utilizes that spatial nodes close to each other
are highly correlated.

• Shared weights, which in practice makes the affine transformations
very sparse and enables location invariant feature detection.

An additional advantage is that it is straightforward to handle multiple
spatially distributed states. These occur in coupled PDEs such as the
Navier-Stokes equations where one is dealing with both the x-, y- and z-
components of the velocity field as well as the pressure field. In the
framework of CAEs, these can all be included by interpreting them as
different channels. This enables the possibility of including multiple
spatial states without increasing the number of weights in the neural
network significantly. The connection between PDEs and CNNs has
already been made, see e.g. [29].

In Fig. 1 one sees an illustration of a CAE. The encoding consists of a
series of convolutional layers with an increasing number of filters and
decreasing dimension, effectively down sampling the number of degrees
of freedom, followed by dense layers. Similarly, the decoding consists of
a series of dense layers followed by a series of deconvolutional layers
with a decreasing number of filters and increasing dimension, effectively
up sampling. The down sampling is often performed by utilizing pooling

Fig. 1. Illustration of a convolutional autoencoder.

N.T. Mücke et al.

Journal of Computational Science 53 (2021) 101408

5

layers or strides larger than one.
It is worth noting that computing the decoder, Φdec, of a CAE in the

training phase is effectively solving an inverse problem. Inverse prob
lems are, in general, ill-posed and therefore require regularization. L2-
regularization, often referred to as weight decay, is frequently used, and
results in the following minimization problem to solve:

argmin
θ

1
NtrainNt

∑Ntrain

i=1

∑Nt

n=0

⃒
⃒
⃒
⃒un

h(μi) − Φ(un
h(μi); θ)

⃒
⃒
⃒
⃒2 + α||θ| |22, (21)

where α is a hyperparameter to be tuned. Besides ensuring well-
posedness the term also ensures generalization.

4. Approximating parameterized time evolution using neural
networks

In the previous section we presented the general framework for
nonlinear dimensionality reduction and showcased how convolutional
autoencoders fit into this framework. In this section we explain how
neural networks will be utilized for approximating the dynamics in the
latent space. For a brief review of the relevant types of neural networks,
see again Appendix A. Neural networks have already shown to be able to
approximate dynamical systems [20,30,31].

We aim to approximate the dynamics in the latent space non-
intrusively by a function, Ψ ≈ Fl,δt:

un+1 = Ψ(un), (22)

where Ψ is a neural network. The approximated latent states will be
denoted, ̃un

l (μ), to distinguish from the encoded high-fidelity state, un
l (μ)

= Φenc(un
h(μ)). Thereby, we aim to achieve:

{
ũ0

l (μ1),…, ũNt
l (μ1),…, ũ0

l (μNtrain
),…, ũNt

l (μNtrain
)
}

≈
{

u0
l (μ1),…, uNt

l (μ1),…, u0
l (μNtrain

),…, uNt
l (μNtrain

)
} (23)

4.0.1. Taking larger steps

Using high-fidelity methods for time stepping often includes some
restrictions on the step size in order for the scheme to be stable. An
example is the Courant–Friedrichs–Lewy (CFL) condition for advection-
dominated problems [32]. With our strategy, where we aim to learn a
neural network representation of the time evolution map, there is no
immediate connection between step size and stability. Therefore, in
order to speed up online computations, the neural network can be
trained to learn to take steps of size sδt. Hence, Ψ ≈ Fl,sδt.

In the offline phase, the high-fidelity trajectories are still computed
with step size δt, to ensure stability, but only every sth step is used for
training the NN:
{

u0
h(μ), u1

h(μ), u2
h(μ)…, uNt

h (μ)
}

↦
{

u0
h(μ), us

h(μ), u2s
h (μ)…, uNt

h (μ)
}

(24)

In general, un
h(μ) and un+1

h (μ), are highly correlated, which means that
we gain very little extra information by using both in the training of the
NN. Therefore, it makes sense only use every sth step to save memory
and speed up the training. Hoeever, the number s must be chosen ac
cording to various factors, like the requested detail of the dynamics in
the online phase. It should further be kept in mind that larger s results in
a more complicated map to learn, and thus complicates the training.

For simplicity we will use the notation
{
u0

h(μ), u1
h(μ), u2

h(μ)…, uNt
h (μ)

}

when referring to the trajectory used for training the neural network.

4.0.2. Approximating the state vs. residual

At first glance, it makes sense to train a neural network to approxi
mate un+1

l directly given un. However, it is shown in [25,33] that
learning the residual instead of the next state often improves the accu
racy. Hence, we consider the case

un+1
l = Ψ(un) = un

l + R(un
l), (25)

where R is approximated by a neural network. This practically makes Ψ
what is often referred as a residual neural network.

4.0.3. Incorporating memory

In [25,19] the potential benefits of not only using the present state
but also incorporating several previous time steps for the future pre
dictions were shown. Therefore, we now consider

un+1
l = Ψ(un

l , u
n− 1,…, un− ξ

l) = un
l + R(un

l , u
n− 1
l ,…, un− ξ

l), (26)

where ξ is the number of previous states included as input into the re
sidual computation by the NN. The idea of incorporating several pre
vious timesteps can loosely be compared to linear multistep methods
where the order of approximation can be increased by using several
previous steps [32]. In contrast to linear multistep methods, NNs
incorporate the previous time steps in a nonlinear fashion.

We consider two different types of networks in this paper: LSTM, and
the CCNN. The two types of neural networks take varying computational
time to train, have varying numbers of parameters, and vary in regards
to how they interpret memory. In the appendix, there is a short

Fig. 2. CCNN network architectures for varying memory.

N.T. Mücke et al.

Journal of Computational Science 53 (2021) 101408

6

Fig. 3. Illustration of the parallel neural network structure. The “Encoding previous timesteps” part is visualized using the CCNN, but it should be noted that an LSTM
network (or any suitable time series encoder) could be put in its place.

Fig. 4. (a) Illustration of the offline stage. (b) Illustration of the online stage.

N.T. Mücke et al.

Journal of Computational Science 53 (2021) 101408

7

description of the two types. Regarding the CCNNs, there are different
ways to include memory. In this paper, we have chosen to include
memory in shape of adding more layers, see Fig. 2, for examples for
ξ = 8, ξ = 6, ξ = 4, and ξ = 2.

4.0.4. Parameterized dynamics

We aim to simulate parameterized trajectories of the latent dy
namics. Hence, we need to incorporate the parameters as input to the
residual computation, resulting in a map

Ψ : ℝξNl+NP →ℝζNl , un+1(μ) = Ψ(un
l (μ), un− 1(μ),…, un− ξ

l (μ), μ). (27)

For now, we consider constant parameters, but it should be possible to
incorporate time-dependent parameters. For this reason, the parameters
do not need to be part of the memory aware section of the network. We
propose a parallel architecture consisting of two branches combining
into one: One branch interpreting the last ξ states and one branch pro

cessing the parameters. The two branches then connect and provide one
final prediction for the residual. Having a single neural network incor
porating the previous states and the parameters enables simultaneous
training of the two branches. See Fig. 3 for an illustration of the network
structure. This ensures that the learned latent features from both
branches are optimal with respect to predicting the next state. This is in
contrast to what is done in [20], where the memory and the parameters
are incorporated into two completely separate networks.

For the parameter branch we simply make use of a dense FFNN.
There is no immediate reason to believe that more complicated archi
tectures are necessary, since we are neither dealing with time-dependent
nor high-dimensional or continuously spatially varying input. Note,
however, that there is no reason to believe that this methodology will
not work if the FF network in the parameter branch is replaced with a
memory aware network in more advanced settings.

The training of the full time-evolution network is done by mini
mizing the loss function

L(ul, μ; θ) = 1
NtrainNt

∑Ntrain

i=1

∑NT

n=ξ

⃒
⃒
⃒
⃒un+1(μi) − Ψ(un

l (μi),…, un− ξ
l (μi), μi; θ)

⃒
⃒
⃒
⃒2

2,

(28)

with respect to the NN parameters θ.
Whereas the individual techniques described may be well-known, we

here show how these techniques can be integrated to achieve better
performance and accuracy.

4.0.5. Imposing stability and generalization

It is well-known that NNs do not necessarily generalize well beyond
the training data without some kind of regularization. Combining that
with the general risk of having instability in discrete dynamical systems
makes it crucial to address these problems during the training.

The arguably most common technique is to add L1- or L2-regulari
zation to the loss function. Furthermore, specifically for dynamical

systems, it has been shown in [31] and [34] that regularizing the ei
genvalues of the Jacobian of the dynamics with respect to the state
variable, DuΨ, does improve long term predictions. In short, this is
related to linear and Lyapunov stability analysis of dynamical systems,
that are related to sensitivity to initial conditions. Hence, we propose
adding the term ||DuΨ| |2, which is the matrix 2-norm, i.e. the spectral
radius of the Jacobian of Ψ, to the loss function. In practice, by utilizing
the relation

||DuΨ| |2 ≤ ||DuΨ| |F , (29)

we instead add the computationally much cheaper Frobenius norm.
It can empirically be shown that the long term predictions are

significantly better if the network takes several steps at a time instead of
a single one. Hence, we modify the output of the NN to

R
(
un

l (μ),…, un− ξ
l (μ), μ; θ

)
= [R1,R2,…,Rζ]

T
, (30)

which gives future predictions,

Empirically we see that this modification keeps the prediction from
exploding for longer time and it reduces spurious oscillations.

The resulting loss function for the dynamics NN is given by:

L(u,μ;θ) =
1

NtrainNt

∑Ntrain

i=1

∑NT

n=ξ

⃒
⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒
⃒

∑ζ

k=1

[
un+k

l (μi) − Ψk
(
un

l (μi),…,un− ξ
l (μi),μi;θ

)]
⃒
⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒
⃒

2

2

+ β1||θ| |
2
2⏟̅̅̅⏞⏞̅̅̅ ⏟

Weight decay

+ β2||DuR| |F⏟̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅⏟
Jacobian regularization

, (32)

4.1. The complete scheme

Putting the components together, we have a scheme subdivided into
two parts that are trained independently: The CAE, and the time evo
lution. The whole process is divided into an online phase and an offline
phase.

In the offline phase the CAE is trained on a series of high-fidelity
snapshots in order to identify a nonlinear reduced trial manifold.
Then, the CAE is used to reduce the high-fidelity snapshots to the latent
space. The latent space trajectories are used to train the time evolution
NN. The training of the two neural networks is visualized in Fig. 4a and
outlined in Algorithm 1. Note that in Steps 3 and 5, where the autoen
coder and the time evolution network, respectively, are being trained,
the considerations mentioned in A have to be included, like early-
stopping, multiple-initialization, choice of optimizer, etc. In Algorithm
2, an algorithm to automatically choose the latent dimension, number of
training trajectories, memory, and future steps per iteration is presented.
Note that this is a basic approach to tune the network. More advanced
methods such as Bayesian optimization or reinforcement learning could
be utilized here. Furthermore, it is worth noting that we can, assuming
no time constraints, generate as many training samples as necessary.

In the online phase the first ξ time steps of the state, computed with a
high-fidelity scheme for a given parameter realization μ, are projected
onto the latent space using the encoder part of the CAE. From there, the

⎡

⎢
⎢
⎢
⎣

un+1
l (μ)

⋮

un+ζ
l (μ)

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

Ψ1
(
un

l (μ),…, un− ξ
l (μ), μ; θ

)

⋮

Ψζ
(
un

l (μ),…, un− ξ
l (μ), μ; θ

)

⎤

⎥
⎥
⎥
⎦
= un

l (μ) +

⎡

⎢
⎢
⎢
⎣

R1
(
un

l (μ),…, un− ξ
l (μ), μ; θ

)

⋮

Rζ
(
un(μ),…, un− ξ

l (μ), μ; θ
)

⎤

⎥
⎥
⎥
⎦

(31)

N.T. Mücke et al.

Journal of Computational Science 53 (2021) 101408

8

time evolution NN computes the parameterized latent space trajectories
iteratively. The latent space trajectories are then transformed to the
high-fidelity space using the decoder of the CAE. The online stage is
visualized in Fig. 4b and described in pseudo code in Algorithm 3.

Algorithm 1. Offline stage – training
{
u0

h(μ1),…, uNt
h (μ1),…, u0

h(μNtrain
),…, uNt

h (μNtrain
)
}

Algorithm 2. Offline stage – tuning

Algorithm 3. Online stage
(u0

l (μ),…,uξ
l (μ)) =

(
Φenc

(
u0

h(μ)
)
,…,Φenc

(
uξ

h(μ)
))

5. Results

The aim of this section is to showcase how well our frameworks
perform for different parameterized PDE problems. Furthermore, we
show how the various approaches, regularizations, and parameters
affect the performance.

To assess the performance measure, the error on Ntest test trajectories
for parameter values, {μ1,…, μNtest

}, that the NNs have not seen in the
training phase is evaluated. We measure the mean relative error (MRE)
at every time step and take the mean over multiple runs of the test cases:

MRE(un
h(μi), ũ

n
h(μi)) =

1
Ntest

∑Ntest

i=1

⃒
⃒
⃒
⃒un

h(μi) − ũn
h(μi)

⃒
⃒
⃒
⃒2

2

||un
h(μi)| |

2
2

, (34)

where
⃒
⃒
⃒
⃒un

h(μi)
⃒
⃒
⃒
⃒2

2= (un
h(μi))

T un
h(μi). (35)

Besides the MRE, we also analyze the standard error:

Standard Error =
σ
̅̅̅̅̅̅̅̅
Ntest

√ , (36)

where σ is the variance of the MRE. With this measure, we can assess if
the trained NN performs similarly on all the test data, i.e. we empirically
show robustness and generalization.

For comparison, we show how the error evolves in time using various
regression approaches for time stepping, together with the CAE and
POD. We do not compare our method to intrusive approaches, such as
POD-Galerkin, as we assume here that the PDE model is not available.
The approaches dealing with time as a parameter, instead of performing
time stepping are inherently different and are therefore also not
considered here. Instead, we compare another regression technique,
decision tree regression (DTR), as in [14] (see [24] for details on DTR).
K-nearest-neighbor regression and Gaussian process regression (GPR)
were also tested. K-nearest-neighbor regression performed very similar
to DTR and GPR was infeasible to train due to the many training samples
needed in the time stepping training. The implementation of DTR was
done with the Python package Scikit-learn [35].

Regarding hyperparameters, we considered the number of layers,
number of neurons, regularization parameters, learning rate, batch size,
and memory. Due to the high-dimensional hyperparameter space, we
used Gaussian process minimization a quick and approximate way to
tune the hyperparameters.

5.1. Neural network setup

All neural networks are implemented in Tensorflow 2.0 [8] in Py
thon. The training is performed in the Google Colab framework on
NVIDIA Tesla P100 GPUs.

The neural network architecture configurations for the CAE can be
found in Appendix B

For the CCNN memory encoding, the layers are organized as shown
in Figure 2. For the LSTM we work with network architectures of 3–5
layers with 16–64 neurons in each LSTM layer.

Furthermore, before the LSTM or CCNN layers every previous state is
passed through a dense layer with 16 neurons. In TensorFlow 2.0 this
type of layer is denoted TimeDistributed.

For the parameter encoding, the neural network is a 3 layer deep
network with 16 neurons in each layer.

For the final prediction, we utilize a 3–5 layer deep NN with 32
neurons in each layer.

Remark. We only present results on dimensionality reduction using
convolutional autoencoders and compare them to POD. It should be
noted that dense autoencoders were also tested and showed significantly
worse results.

Moreover, we only consider LSTMs, and CCNNs for the time

Input: Nl, ζ, ξ, Ntrain.
Output: Trained CAE, Φ, and Time Evolution Network, R, and test error, E.

1 Sample Ntrain parameter samples from the parameter space.
2 Generate high-fidelity trajectories,

{
u0

h(μ1),…, uNt
h (μ1),…, u0

h(μNtrain
),…, uNt

h (μNtrain
)
}

3 Train CAE, Φ = Φdec ∘ Φenc, with latent space dimension Nl, by minimizing

argmin
θ

1
NtrainNt

∑Ntrain

i=1

∑Nt

n=0
||un(μi) − Φ(un(μi); θ)| |2 . (33)

4 Encode high-fidelity trajectories to get latent state space trajectories

{
Φenc

(
u0

h(μ1)
)
,…,Φenc

(
uNt

h (μ1)
)
,…,Φenc

(
u0

h(μNtrain
)
)
,…,Φenc

(
uNt

h (μNtrain
)
) }

5 Train time evolution network, R, to take the last ζ states and output the
residuals for the next ξ states, by minimizing

1
NtrainNt

∑Ntrain

i=1

∑NT

n=ξ

⃒
⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒
⃒

∑ζ

k=1

[
un+k

l (μi) − Ψk
(
un

l (μi),…, un− ξ
l (μi), μi; θ

)]
⃒
⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒
⃒

2

2
+β1||θ| |

2
2+β2||DuR| |F ,

6 Estimate error on a test set.

Input: Φdec, R, μ, u0
h(μ),…,uξ

h(μ)
Output: Approximated trajectory in high-fidelity space.

1 Encode the initial ξ high-fidelity states,

(u0
l (μ),…, uξ

l (μ)) =
(
Φenc

(
u0

h(μ)
)
,…,Φenc

(
uξ

h(μ)
))

2 Compute approximated latent trajectory by iterating,

(
ũn

l (μ),…, ũn+ζ
l (μ)

)
= ũn

l (μ) + R(ũn
(μ),…, ũn− ξ

(μ), μ; θ),

until desired end time has been reached.
3 Decode approximated latent space trajectories to high-fidelity space:

{
ũ0

h(μ),…, ũNt
h (μ)

}
=

{
Φdec

(
ũ0

l (μ)
)
,…,Φdec

(
ũNt

l (μ)
) }

N.T. Mücke et al.

Journal of Computational Science 53 (2021) 101408

9

stepping. We also studied other achitectures, such as neural ODEs [36],
gated recurrent units (GRUs), and simple recursive neural networks.
However, we chose to not include those results. Neural ODEs performed
significantly worse and the training took much longer time. GRUs per
formed similarly to LSTMs and simple recursive neural networks per
formed slightly worse.

5.2. Linear advection equation

We first consider a linear advection equation on the domain Ω = [0,
1]2:

∂tu(μ) + b⋅∇u(μ) = 0, in Ω, (37a)

u(μ) = 0 on Γ, (37b)

where Γ = ∂Ω,

b = μ1

⎛

⎜
⎜
⎝

− y −
1
2

x −
1
2

⎞

⎟
⎟
⎠, (37c)

with initial condition

u0(μ) = exp
(

1
2

[
(x − x0)

2

0.005
+
(y − y0)

2

0.005

])

, (38)

where
(

x0
y0

)

=
1
4

(
cos(μ2)

sin(μ2)

)

+
1
2
. (39)

This problem models a Gaussian curve being advected with velocity μ1
in a circle with origin at [12,

1
2] and radius 14, starting at the position given

by the angle μ2. This problem is parameterized by two parameters,
μ = (μ1, μ2) ∈ [0.5, 1.5] × [0, 2π]. The first parameter, the velocity, is
directly affecting the phase of the dynamics, while the other, μ2, is only
dictating the initial placement of the Gaussian curve. Hence, we are
dealing with a 2-dimensional parameter space, while the dynamics are
only parameterized by a single parameter.

The high-fidelity snapshots are computed on a 60 × 60 grid using the
discontinuous Galerkin method with linear Lagrange elements, resulting
in a second-order convergence scheme that suits advection dominated
problems well. The high-fidelity model consists of 21,600 degrees of
freedom. For the implementation we used the FEniCS library in Python
[37]. The time stepping is done using the Crank-Nicolson scheme with
time steps of size 0.0075 for 2000 steps, resulting in a time interval,
t ∈ [0, 15]. The training of the neural networks is done using every 4th
time step, s = 4, meaning the model is trained to take steps of size 0.03.
We are using 15 trajectories for the parameters not included in the
training set for testing. The parameter μ is sampled uniformly in the
domain [0.5, 1.5] × [0, 2π] for the training data.

In Appendix C, various figures showcasing how each parameter af
fects the accuracy and stability are presented. From these plots, we infer

Fig. 5. (a) Comparison of convergence of the time averaged MRE of the reconstruction using CAE and POD for the advection equation. (b) Average test errors
computed for the linear advection equation for various combinations of POD, CAE, and regression methods.

Fig. 6. Pointwise absolute error between the high-fidelity solution and the neural network prediction (CCNN) for the linear advection equation with velocity,
μ1 = 1.4161, and initial angle, μ2 = 2.8744.

N.T. Mücke et al.

Journal of Computational Science 53 (2021) 101408

10

that the NN configuration that performs the best employs ξ = 6,
β1 = 10− 9, β2 = 10− 6, and computes the residual rather than the state
directly. Furthermore, the training is performed with 120 training
trajectories.

In Fig. 5a, we see a significant improvement by using the CAE
compared to the POD approach. Using a latent dimension of 2, which is
also the intrinsic dimension of the solution manifold, the CAE re
constructs the high-fidelity solution with an MRE between 10− 3 and
10− 4. To achieve the same accuracy using the POD method, one needs a

latent dimension of at least 17. This supports the previous claim that
POD does, in general, not perform well on advection dominated prob
lems. Furthermore, it is shown that the accuracy improves with the
amount of training data until the point where more data becomes
redundant. Specifically, one sees that using 70 trajectories or 120 tra
jectories is very similar in performance. Note that the POD method does
not improve with the amount of training data.

In Fig. 5b we compare the mean error at each time step of our method
with the alternative approaches. A latent space of dimension 18 is used

Fig. 7. The setting for the flow past cylinder problem.

Fig. 10. (a) CAE and POD convergence as well as (b) average errors with standard error for the flow past cylinder problem for various Reynolds numbers computed
with various combinations of POD, CAE, and regression methods. The vertical black line signifies the end of the training horizon. The CAE based solutions are
computed with a latent dimension of 6 and the POD based with a latent dimension of 76.

Fig. 8. Comparison of the velocity at t = 25 for Re = 192 using CAE+LSTM (top) and the high-fidelity method (bottom).

N.T. Mücke et al.

Journal of Computational Science 53 (2021) 101408

11

for the methods using POD to achieve the same accuracy as for the CAE.
All regression approaches are trained with 120 trajectories. Clearly,
none of the alternative approaches capture the dynamics accurately.
Using the POD basis for the NN time stepping performs significantly
worse than the proposed methodology. The time stepping map becomes
truly high-dimensional and thereby much harder to approximate.

By looking at the pointwise error between the high-fidelity and the
NN solutions in Fig. 6, it is clear that the NN approximation introduces a
small phase error. This error could possibly be corrected in a post-
processing step.

5.3. 2D nonlinear equation – flow past cylinder

We consider the incompressible Navier–Stokes Equations, governing
transitional flow, resulting in a complicated flow pattern. The Equations
are given by:

∂tu(Re) + (u(Re)⋅∇)u(Re) − ∇p(Re) =
1

Re
Δu(Re), in Ω, (40a)

∇⋅u(Re) = 0, in Ω, (40b)

u(Re) = 0, on Γ, (40c)

(ux(Re), uy(Re)) = (1, 0) for y = 0, (40d)

with initial conditions u(Re) = 0 and p(Re) = 0. Consider a channel with
a cylinder with an inflow at the left side and outflow on the right side,
see Fig. 7 for a visualization of the setting. In the figure, we have also

marked the area of interest, as we are interested in the complex flow
pattern in the area immediately behind the cylinder. Note that the
present methodology can be employed in a specific subdomain of in
terest. It is not necessary to work on the whole computational domain, as
opposed to most high-fidelity methods.

The inflow profile is given by:

u(0, y, t) =
(

1.5
4y(0.41 − y)

0.412 , 0
)

(41)

On the walls and the cylinder no slip conditions are prescribed.
We parameterize the problem by the Reynolds number and consider

values in the interval Re ∈ [120, 200]. For Reynolds numbers in this
interval, the flow exhibits very interesting nonlinear behavior, such as
Karman vortex streets. We compute the velocity as well as the pressure

Fig. 9. A comparison of the velocity magnitude for the flow past cylinder problem at two distinct points in space for Re = 192 using CAE+LSTM.

Table 1
Time averaged error for the CAE+DTR and CAE+LSTM for various number of
training trajectories.

Ntrain 20 50 90

CAE+DTR 1.75 × 10− 1 1.41 × 10− 1 6.41 × 10− 2

CAE+LSTM 4.45 × 10− 1 1.11 × 10− 1 3.92 × 10− 2

Table 2
Time averaged error for each of the time stepping regression techniques together with CAE and POD respectively for each test problem. The results are for Re ∈ [120,
200] for the flow past cylinder problem.

CAE POD

Test Problem CCNN LSTM DTR CCNN LSTM DTR

Advection equation 1.54 × 10− 3 5.02 × 10− 3 1.53 × 100 2.02 × 102 2.84 × 101 1.50 × 100

Flow past cylinder 1.64 × 10− 1 3.92 × 10− 2 6.41 × 10− 2 – 27.389 5.23 × 10− 2

Table 3
Online computation time in seconds for each of the time stepping regression
techniques together with CAE and POD respectively for each test problem.

Test problem High-
fidelity

CAE POD

CCNN LSTM DTR CCNN LSTM DTR

Advection
equation

532.22 2.08 4.63 0.03 1.78 3.41 0.02

Flow past
cylinder

17251.31 7.56 9.74 3.13 5.14 6.57 1.45

Table 4
Offline computation time, i.e. NN training time, in seconds for the CCNN and
LSTM using GPUs. Furthermore we show the time it took to generate the training
trajectories. Note that the generation of training trajectories is not necessary in
cases where the data already exists. Furthermore, we have omitted to show the
training time for the non-NN regression methods as the training time negligible.

Test problem CCNN LSTM Generation of trajectories

Advection equation 396.67 622.28 50,763.13 (120 trajectories)
Flow past cylinder 300.39 985.54 931,570.74 (90 trajectories)

N.T. Mücke et al.

Journal of Computational Science 53 (2021) 101408

12

field, meaning we include all relevant physics in the methodology.
The high-fidelity problem is solved here using the finite element

method with Taylor–Hood elements and the second-order incremental
pressure correction scheme for time stepping [38], implemented in
FEniCS. We use 128 elements resulting in 73,768 degrees of freedom.
The solution is then evaluated at a 300 × 100 uniform grid.

For the training trajectories, we solve for t ∈ [0, 2.5] and for the test
trajectories we compute with t ∈ [0, 5]. This means that we also test how
our method performs beyond the training horizon. The high-fidelity
model stepsize is 0.0002, resulting in 12,500 time steps for the
training trajectories and 25,000 steps for the test trajectories. For the
training of the reduced model, we only use every 5th step resulting in
2500 time steps, which also means that we use 5000 time steps for the
test trajectories.

In Fig. 10a we compare the CAE with the POD method for dimen
sionality reduction for various number of training trajectories. Using the
CAE, one achieves accuracy of approximately 10− 4 with a latent
dimension of 6. To achieve the same accuracy with POD one needs a
latent space of dimension 76. Furthermore, it is clear that the CAE
performs better with more training data until a certain point. However,
it is apparent that the error increases when the latent dimension is
increased. This phenomena is a result of overfitting or insufficient
training, such as convergence to a local minimum.

As for the advection equation, we compare the accuracy with DTR. In
Fig. 10b we see that CAE+DTR performs well within the interval of the
training, but fails to give anything meaningful beyond it. On the other
side, CAE+LSTM performs significantly better beyond the training ho
rizon. The CAE+CCNN performs consistently one error of magnitude
worse than CAE+LSTM.

In Fig. 8 we see the velocity magnitude at t = 25 in the area of in
terest. Visually, there is close to no difference between the two, sug
gesting that the CAE+LSTM approach is able to capture the complicated
flow patterns beyond the training time interval. This is further shown in
Fig. 9 where we see the velocity magnitude at two specific points in
space. It is clear that there is a small dispersion error as well as small
errors in magnitude. However, the general flow pattern is approximated
well.

Lastly, we compare how the number of training trajectories affect the
accuracy for the CAE+DTR and CAE+LSTM in Table 1. As expected, the
test error decreases with the number of training trajectories. It is further
apparent that the CAE+LSTM approach decreases faster, suggesting that
this method benefits, to a higher degree, from more data.

Remark – larger reynolds number intervals. Above, we consid
ered the case with the Reynolds numbers Re ∈ [120, 200]. For larger
ranges of Reynolds numbers the flow in the wake of the cylinder varies
more. Specifically, the flow regimes are known to have the following
characteristics [39]: 0 < Re < 5: Steady without a wake; 4 < Re < 40:
Steady symmetric separation; 30 < Re < 90: Laminar unstable wake;
80 <Re < 300: Von Karman vortex street; 150 < Re < 1.3 ⋅ 105: Vortex
street with (turbulent) instabilities. Note that the intervals are over
lapping as the exact boundaries between two regimes are unclear.

The neural networks need to have a greater approximation ability in
order to capture the dynamics in such different flow regimes. This would
require a very large neural network with a large training data set. This
can be circumvented by using, instead of a single CAE plus time stepping
NN, a conditional approach. By dividing the parameter space into NI
intervals and constructing NI CAEs with time stepping NNs to be trained
on each interval, we made the data fitting an easier task. The offline
procedure then involved training NI CAEs and time stepping NNs and the
online procedure included an initial step determining the regime in
which the given parameters lie.

The division of the parameter space can be done by utilizing
knowledge of the bifurcation diagram. Here, we saw that the NNs are not
sensitive to the specific choice of intervals. In this experiment, we
divided the parameter space into the following three intervals: I1 = [1,
10], I2 = [10, 65], and I3 = [65, 120]. Hence, we tested whether the NNs

could approximate the flow across different regimes.
We chose to use the same hyperparameter setting for all NI networks.

The CAEs were trained on 10 trajectories for I1 and 20 trajectories for I2
and I3. The time stepping NNs were trained on 13, 72, and 77 trajectories
for I1, I2, and I3, respectively. Testing of the NNs in each interval was
done with three trajectories with Reynolds numbers uniformly distrib
uted in the relevant interval.

We compared results for CAE and LSTM with results computed with
CAE and DTR. Regarding the convergence of the CAEs for the three
Reynolds number intervals, a latent dimension of 4 showed satisfactory
results. We found essentially the same results for the three flow regimes,
as those presented in the previous subsection for I4. The CAEs signifi
cantly outperfomed POD and LSTMs resulted in a better time stepping
scheme that could approximate the flow beyond the training horizon
while DTRs failed.

In conclusion, dividing the parameter space into intervals and train
NNs in each regime was a feasible solution to the problem of large
parameter intervals.

5.4. Computation time and accuracy

We have showed and discussed performance regarding relative error
for the two test cases. The results for the two cases, using the CCNN,
LSTM, and DTR combined with CAE and POD, are summarized in
Table 2, where the time averaged error is shown. The results for the for
the flow past cylinder case are computed for I4.We considered the case
with the Reynolds numbers

As mentioned in the introduction, the aim is to be able to compute
solutions fast in the online stage. In Table 3 the high-fidelity as well as
the NN, and DTR online times in seconds are shown. In the online stage
there has not been used any form of parallelization. Therefore, it should
be noted that significant speed ups for both the high-fidelity and the
regression time stepping approaches could be achieved with a greater
effort on this matter. The NN online time and the high-fidelity compu
tation time is computed on an AMD Ryzen 9 3950X CPU. We observe
that DTR is computationally faster, due to the much simpler model.
However, it was shown above, that DTR was not able to approximate the
dynamics well.

Comparing the CAE+LSTM computation with the high-fidelity
computation time we see speed-ups of around 115 times for the advec
tion equation and 1770 times for the flow past cylinder test case. Hence,
we see significant speed-ups.

In Table 4 the offline time is shown, divided into NN training time
and the time it took to generate the training trajectories. In cases where
the training trajectories come from collected data the simulation step is
unnecessary, and hence the training time alone is the relevant number.
For the training we used an Nvidia GeForce RTX 3090 GPU. Compared
to the online stage it makes a massive difference to use a GPU instead of
a CPU due to the heavy computations associated with backpropagation.
We have chosen to only show the GPU training time. It is clear that the
most time consuming part is generating the training trajectories.

6. Conclusion

We presented a novel deep learning approach to non-intrusive
reduced order modeling for parameterized time-dependent PDEs using
CAEs for dimensionality reduction and CCNNs and LSTMs combined
with FFNNs for time evolution. This approach was demonstrated on two
test cases and was shown to perform well in the online phase, show
casing the potential of using deep learning based ROMs for different
physical phenomena.

Regarding dimensionality reduction, a discussion and comparison of
linear and nonlinear methods was presented with POD and CAEs as the
focal points. The discussion focused on why a nonlinear approach has
the potential to outperform a linear approach.

For time stepping, the general idea was to encode the previous states

N.T. Mücke et al.

Journal of Computational Science 53 (2021) 101408

13

and the parameters separately in parallel and then combine the encoded
data to make a final prediction using an FFNN. The two encoding NNs, as
well as the final prediction NN, constitute a single network, meaning
everything is trained simultaneously. This ensures that both the memory
and parameters are encoded in relation to one another. Furthermore,
various methods to ensure generalization, stability, and precision were
discussed and tested.

For the advection equation the CAE+CCNN approach performed
very well with errors below 10− 2 for all time steps while the CAE+LSTM
performed similarly but slightly worse. Interestingly, the alternative
approaches, using POD instead of CAE and DTR for time stepping, failed
to approximate the dynamics in any meaningful way. Furthermore, as
expected the CAE reached much better precision than POD for dimen
sionality reduction with much fewer dimensions in the latent space.

Secondly, a more involved problem, flow past a cylinder, was also
studied. Here, we were dealing with multiple vector fields and compli
cated nonlinear patterns. Furthermore, we tested how the methodology
performs beyond the training horizon. We saw that the CAE+LSTM
approach showed errors below 10− 2 within the training horizon, and a
slow increase in error beyond the horizon. However, the increase in
error is primarily due to small phase errors, meaning the overall struc
ture of the flow still resembles the high-fidelity flow. When using DTR,
either with POD or the CAE, the approximations completely failed
beyond the training horizon, suggesting more complicated models are
needed to actually learn the time stepping map.

Lastly, we discussed an approach to deal with large parameter in
tervals that give rise to highly varying flow regimes. Namely, training a
CAE and time stepping NN on subdomains and use the NNs corre
sponding to the subdomain it was trained on. We conclude that for the
flow past cylinder case this approach is successful.

In summary, the contributions in this work include a nonlinear
dimensionality reduction scheme using convolutional autoencoders, a
novel parallel neural network architecture for parameterized time
stepping using CCNNs and LSTMs, and a discussion on different

approaches to achieve stability and generalization for neural network-
based time stepping. It is furthermore worth mentioning that frame
work presented allows for flexibility in shape of replacing certain ele
ments with alternatives. E.g. one could replace the CCNN or LSTM with
another choice if needed.

In the future the methodology will be tested on more advanced PDE
problems. By advanced problems, we are both referring to increasing
nonlinearity, higher dimensions, and multi-query problems such as
uncertainty quantification, model predictive control, and data assimi
lation. Especially, data assimilation seems like a promising direction,
since incorporating data could rectify the phase errors.

Besides considering other use cases one could work on improving the
NN architecture and training by, e.g. incorporating the physics in the
training [31,39], and use reinforcement learning [40] to ensure effective
snapshot generation. Furthermore, with the amount of hyperparameters
(ξ, β1, β2, number of layers and neurons, etc.) the task of hyperparameter
tuning is not trivial and could potentially be solved more effectively
using alternative approaches.

Conflict of interest

None declared.

Declaration of Competing Interest

The authors report no declarations of interest.

Acknowledgements

This work is supported by the Dutch National Science Foundation
NWO under the grant number 629.002.213, which is a cooperative
projects with IISC Bangalore and Shell Research as project partners. The
authors furthermore acknowledge fruitful discussions with Dr. B.
Sanderse. Lastly, the authors thank Peter Piontek for proofreading.

Appendix A. Artificial neural networks

A.1 Feedforward neural networks

The arguably most common ANN architecture is the feedforward neural network (FNN). An FNN can be considered a function, G : ℝNi →ℝNo ,
consisting of a series of affine transformations, Ti, followed by an element-wise (nonlinear) activation function, σi:

G(x; θ) = σL∘TL∘⋯∘σ1∘T1(x). (A.1)

The combination of an afine transformation followed by the activation is called a neuron. The afine transformation can be written as Ti(x) =Wix + bi,
where W ∈ ℝMi×Mi− 1 and b ∈ ℝMi . We call Wi the weight matrix, bi the bias vector, and Mi the number of neurons in layer i, and L the number of layers.
(A.1) is conveniently visualized as a network of neurons. We will refer to the set of parameters as θ = {W1, b1,…,WL, bL}.

In supervised learning one tries to approximate a function by an ANN, typically done by minimizing the empirical risk w.r.t. the parameters θ:

Fig. A.11. Visualization of a feedforward densely connected neural network.

N.T. Mücke et al.

Journal of Computational Science 53 (2021) 101408

14

θ∗ = argmin
θ

E(x,y)∼℘data [ℒ(G(x; θ), y)], (A.2)

where ℘data is the distribution generating the data and ℒ is a chosen loss function measuring the discrepancy between the predicted output and the
target. For regression type problems the mean squared error (MSE) is the most common choice. However, especially for physics-informed machine
learning the physics is often incorporated in the loss function in shape of extra term [39,31].

Computing (A.2), i.e. training the ANN, is mostly done using stochastic gradient descent (SGD) or a variants such as ADAM [41].

A.2 Convolutional neural networks

Convolutional neural networks (CNNs) gained attention due their great performance in image recognition. The general idea is to utilize local
properties of the data instead of only considering global properties. This is done by having local connections and shared weights in the neural net
works. These properties are not only great for detecting patterns in data but it also makes it possible to do computations on very high-dimensional
data.

A convolutional layer is effectively a feature map where each unit in the layer is connected to a local patch of the previous layer through a filter
bank and an activation function. A feature map at layer l is a tensor, Hl ∈ ℝNl

chan×Nl
1×Nl

2 , where Hl
i,j,k is a unit at channel i, row j, and column k. The filter

bank at layer l is a 4-dimensional tensor, Fl ∈ ℝNl
filter×Nl− 1

chan×k1×k2 , where Fl
i,j,m,n connects a unit in channel i of the output and channel j of the input with m

and n being the offset of rows and columns respectively. Nl
filter denotes the number of filters in the feature bank in layer l and k1 and k2 denotes the

kernel size. The convolution operation between a feature map and a filter bank is given by

Hl
i,j,k = σl

⎛

⎝
∑N

l− 1
chan

r=1

∑N
l− 1
1

m=1

∑N
l− 1
2

n=1
Hl− 1

r,(j− 1)s+m,(k− 1)s+nFl
i,r,m,k + Bl

i,j,k

⎞

⎠, (A.3)

where Bl
i,j,k is a bias term and σl is an activation function applied element-wise. s denotes the stride and effectively downsamples the feature map

between layers. The filters, Fl
i,r,m,k, and biases, Bl

i,j,k, are the learnable parameters while the kernel sizes, k1, k2, the stride, s, and the number of filters,
Nl

filter, are chosen. Often these are subject case specific objectives or hyperparameter optimization.

A.3 Causal convolutional neural networks

As the name suggests, causal convolutional neural networks (CCNNS) are related to convolutional neural networks. CCNNs are sometimes referred
to as temporal convolutional neural networks, but in this paper we use the term CCNN.

CCNNs are used for encoding time series data with the purpose of forecasting or classification. The general idea is to use 1-dimensional convo
lutions on time series data. In the multivariate case the multiple dimensions are interpreted as channels. The term causal refers to the fact that the filter
banks are only convolved with the current and previous time steps, thus establishing a causal relationship between the past the future.

A.4 Recurrent neural networks and long short-term memory

A recurrent neural network (RNN) is an alternative to CCNNs for interpreting time series data. The general idea is to process and retain information
from previous time steps in an efficient manner. In this paper, we solely focus on a specific RNN called long short-term memory (LSTM) [21]. For an
input consisting of several previous time steps, xn, an LSTM layer consists of four components [19]: An input gate:

in+1 = σ(Wixn + bi), (A.4)

a forget gate:

f n+1 = σ
(
Wf xn + bf

)
, (A.5)

an output gate:

on+1 = σ(Woxn + bo), (A.6)

and a cell state

cn+1 = i ⊙ cn + in ⊙ tanh(Wcxn + bc) (A.7)

The prediction is then given by

xn+1 = on ⊙ tanh(cn). (A.8)

Wi, bi, Wf, bf, Wo, bo, Wc, bc are the trainable weight matrices and bias vectors, and ⊙ is the Hadamard product. Ideally, the input gate identifies what
information to be passed to the from the cell state, the forget what to be dropped, and the output gate decides what to be passed to the final prediction.

N.T. Mücke et al.

Journal of Computational Science 53 (2021) 101408

15

Appendix B. Convolutional autoencoder configurations

Appendix C. Linear advection

Table B.5
Convolutional autoencoder configuration for the advection equation. Note that the decoder is the inverse of the
encoder.

Encoder

Convolutional Layers Kernels Filter size Stride

Convolutional layer 1 4 5 × 5 2 × 2
Batchnormalization 1
Convolutional layer 2 8 5 × 5 2 × 2
Batchnormalization 2
Convolutional layer 3 16 5 × 5 2 × 2
Batchnormalization 3
Convolutional layer 4 32 5 × 5 2 × 2
Batchnormalization 4

Flatten

Dense layers Neurons

Dense layer 1 Nl

Table B.6
Convolutional autoencoder configuration for the flow past cylinder problem. Note that the decoder is the inverse
of the encoder.

Encoder

Convolutional layers Kernels Filter size Stride

Convolutional layer 1 8 5 × 5 2 × 2
Batchnormalization 1
Convolutional layer 2 16 5 × 5 2 × 2
Batchnormalization 2
Convolutional layer 3 32 5 × 5 2 × 2
Batchnormalization 3
Convolutional layer 4 64 5 × 5 2 × 2
Batchnormalization 4
Convolutional layer 5 128 5 × 5 2 × 2
Batchnormalization 5

Flatten

Dense layers Neurons

Dense layer 1 493
Dense layer 2 247
Dense layer 3 Nl

Fig. C.12. Comparison of CCNN and LSTM in relative error for each time step in high-fidelity space for the linear advection equation for varying memory, ξ. The
error for each time step is a computed average over 15 test cases with the standard error.

N.T. Mücke et al.

Journal of Computational Science 53 (2021) 101408

16

References

[1] G. Hager, G. Wellein, Introduction to High Performance Computing for Scientists
and Engineers, CRC Press, 2010.

[2] D.A. Kopriva, Implementing Spectral Methods for Partial Differential Equations:
Algorithms for Scientists and Engineers, Springer Science & Business Media, 2009.

[3] Y. Saad, Iterative Methods for Sparse Linear Systems, vol. 82, SIAM, 2003.
[4] U. Trottenberg, C.W. Oosterlee, A. Schuller, Multigrid, Elsevier, 2000.

[5] A. Quarteroni, A. Manzoni, F. Negri, Reduced Basis Methods for Partial Differential
Equations: An Introduction, vol. 92, Springer, 2015.

[6] J.S. Hesthaven, G. Rozza, B. Stamm, et al., Certified Reduced Basis Methods for
Parametrized Partial Differential Equations, vol. 590, Springer, 2016.

[7] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, A. Lerer, Automatic differentiation in pytorch, 2017.

[8] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, et al., Tensorflow: a system for large-scale machine learning,

Fig. C.13. Comparison of computing the next step directly and the residual for the CCNN and LSTM. The figures show relative error for each time step in high-fidelity
space for the linear advection equation.

Fig. C.14. Comparison of CCNN and LSTM in relative error for each time step in high-fidelity space for the linear advection equation for number of training
samples, Ntrain.

Fig. C.15. Impact of the two regularization terms, weight decay, β1, and Jacobian, β2 for the linear advection equation. The average relative error in high-fidelity
space over 15 test trajectories for each time step is shown. Each figure shows the error for a constant β1 and varying β2.

N.T. Mücke et al.

http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0005
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0005
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0010
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0010
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0015
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0020
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0025
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0025
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0030
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0030
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0035
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0035
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0040
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0040

Journal of Computational Science 53 (2021) 101408

17

12th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 16) (2016) 265–283.

[9] S. Lee, N. Baker, Basic Research Needs for Scientific Machine Learning: Core
Technologies for Artificial Intelligence, Tech. Rep., USDOE Office of Science (SC),
United States, 2018.

[10] N. Baker, F. Alexander, T. Bremer, A. Hagberg, Y. Kevrekidis, H. Najm,
M. Parashar, A. Patra, J. Sethian, S. Wild, et al., Workshop Report on Basic
Research Needs for Scientific Machine Learning: Core Technologies for Artificial
Intelligence, Tech. Rep., USDOE Office of Science (SC), Washington, DC, United
States, 2019.

[11] S. Brunton, B. Noack, P. Koumoutsakos, Machine Learning for Fluid Mechanics,
2019. arXiv:1905.11075.

[12] M. Guo, J.S. Hesthaven, Reduced order modeling for nonlinear structural analysis
using Gaussian process regression, Comput. Methods Appl. Mech. Eng. 341 (2018)
807–826.

[13] J.S. Hesthaven, S. Ubbiali, Non-intrusive reduced order modeling of nonlinear
problems using neural networks, J. Comput. Phys. 363 (2018) 55–78.

[14] R. Swischuk, L. Mainini, B. Peherstorfer, K. Willcox, Projection-based model
reduction: formulations for physics-based machine learning, Comput. Fluids 179
(2019) 704–717.

[15] Q. Wang, J.S. Hesthaven, D. Ray, Non-intrusive reduced order modeling of
unsteady flows using artificial neural networks with application to a combustion
problem, J. Comput. Phys. 384 (2019) 289–307.

[16] C. Audouze, F. De Vuyst, P.B. Nair, Nonintrusive reduced-order modeling of
parametrized time-dependent partial differential equations, Numer. Methods
Partial Diff. Equ. 29 (5) (2013) 1587–1628.

[17] N.T. Mücke, L.H. Christiansen, A.P. Karup-Engsig, J.B. Jørgensen, Reduced Order
Modeling for Nonlinear PDE-Constrained Optimization Using Neural Networks,
2019. arXiv:1904.06965.

[18] K. Lee, K.T. Carlberg, Model reduction of dynamical systems on nonlinear
manifolds using deep convolutional autoencoders, J. Comput. Phys. 404 (2020)
108973.

[19] F.J. Gonzalez, M. Balajewicz, Deep Convolutional Recurrent Autoencoders for
Learning Low-Dimensional Feature Dynamics of Fluid Systems, 2018. arXiv:
1808.01346.

[20] J. Xu, K. Duraisamy, Multi-Level Convolutional Autoencoder Networks for
Parametric Prediction of Spatio-Temporal Dynamics, 2019. arXiv:1912.11114.

[21] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9 (8)
(1997) 1735–1780.

[22] A.v.d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. Senior, K. Kavukcuoglu, Wavenet: A Generative Model for Raw
Audio, 2016. arXiv:1609.03499.

[23] A. Quarteroni, S. Quarteroni, Numerical Models for Differential Problems, vol. 2,
Springer, 2009.

[24] J. Friedman, T. Hastie, R. Tibshirani, The Elements of Statistical Learning, vol. 1,
Springer Series in statistics New York, 2001.

[25] S. Pawar, S. Rahman, H. Vaddireddy, O. San, A. Rasheed, P. Vedula, A deep
learning enabler for nonintrusive reduced order modeling of fluid flows, Phys.
Fluids 31 (8) (2019) 085101.

[26] R. Vidal, Y. Ma, S. Sastry, Generalized principal component analysis (gpca), IEEE
Trans. Pattern Anal. Mach. Intell. 27 (12) (2005) 1945–1959.

[27] S. Yu, J.C. Principe, Understanding autoencoders with information theoretic
concepts, Neural Netw. 117 (2019) 104–123.

[28] P. Petersen, F. Voigtlaender, Equivalence of approximation by convolutional neural
networks and fully-connected networks, Proc. Am. Math. Soc. 148 (4) (2020)
1567–1581.

[29] L. Ruthotto, E. Haber, Deep neural networks motivated by partial differential
equations, J. Math. Imaging Vision (2019) 1–13.

[30] S. Fresca, L. Dede, A. Manzoni, A Comprehensive Deep Learning-Based Approach
to Reduced Order Modeling of Nonlinear Time-Dependent Parametrized PDEs,
2020. arXiv:2001.04001.

[31] N.B. Erichson, M. Muehlebach, M.W. Mahoney, Physics-Informed Autoencoders for
Lyapunov-Stable Fluid Flow Prediction, 2019. arXiv:1905.10866.

[32] R.J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential
Equations: Steady-State and Time-Dependent Problems, vol. 98, SIAM, 2007.

[33] C. Gin, B. Lusch, S.L. Brunton, J.N. Kutz, Deep Learning Models for Global
Coordinate Transformations That Linearize PDEs, 2019. arXiv:1911.02710.

[34] S. Pan, K. Duraisamy, Long-time predictive modeling of nonlinear dynamical
systems using neural networks, Complexity 2018 (2018).

[35] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: machine
learning in Python, J. Mach. Learn. Res. 12 (2011) 2825–2830.

[36] T.Q. Chen, Y. Rubanova, J. Bettencourt, D.K. Duvenaud, Neural ordinary
differential equations, Advances in Neural Information Processing Systems (2018)
6571–6583.

[37] A. Logg, K.-A. Mardal, G. Wells, Automated Solution of Differential Equations by
the Finite Element Method: The FEniCS Book, vol. 84, Springer Science & Business
Media, 2012.

[38] K. Goda, A multistep technique with implicit difference schemes for calculating
two-or three-dimensional cavity flows, J. Comput. Phys. 30 (1) (1979) 76–95.

[39] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics Informed Deep Learning (Part I):
Data-Driven Solutions of Nonlinear Partial Differential Equations, 2017. arXiv:
1711.10561.

[40] M. Sugiyama, Statistical Reinforcement Learning: Modern Machine Learning
Approaches, CRC Press, 2015.

[41] D.P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization, 2014. arXiv:
1412.6980.

Nikolaj T. Mücke is a Ph.D. candidate at CWI in Amsterdam.
He has masters’ degree in Mathematical Modeling and
Computation from the Technical University of Denmark (DTU).
His research deals with fluid mechanics, reduced order
modeling, and physics informed machine learning.

Sander M. Bohté is a senior researcher and PI in the CWI
Machine Learning group, and also a full professor of Cognitive
Computational Neuroscience at the University of Amsterdam
and a full professor of Bio-Inspired Neural Networks at the
Rijksuniversiteit Groningen, The Netherlands. His research
bridges the field of neuroscience with applications thereof as
advanced neural networks. His work has been pioneering in the
development of advanced and efficient spiking neural net
works. Recent work has also developed biologically plausible
deep learning and deep reinforcement learning models for
cognition, causal convolutional neural networks, and efficient
spiking recurrent neural networks.

Cornelis Oosterlee is a senior scientist at the CWI, Center for
Mathematics & Computer Science, in Amsterdam, and a full
professor at the Delft University of Technology, in applied
Mathematics. He has written two textbooks, and approximately
150 journal publications. His expertise includes numerical
methods, computational mathematics, iterative solution
methods, physics inspired neural networks, computational
finance and classical engineering applications.

N.T. Mücke et al.

http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0040
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0040
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0045
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0045
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0045
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0050
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0050
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0050
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0050
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0050
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0060
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0060
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0060
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0065
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0065
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0070
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0070
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0070
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0075
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0075
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0075
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0080
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0080
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0080
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0090
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0090
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0090
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0105
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0105
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0115
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0115
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0120
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0120
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0125
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0125
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0125
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0130
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0130
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0135
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0135
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0140
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0140
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0140
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0145
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0145
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0160
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0160
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0170
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0170
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0175
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0175
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0175
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0175
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0180
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0180
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0180
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0185
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0185
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0185
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0190
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0190
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0200
http://refhub.elsevier.com/S1877-7503(21)00093-4/sbref0200

	Reduced order modeling for parameterized time-dependent PDEs using spatially and memory aware deep learning
	1 Introduction
	2 Parameterized time-dependent PDEs
	3 Dimensionality reduction
	3.1 Linear dimensionality reduction
	3.2 Nonlinear dimensionality reduction
	3.2.1 Autoencoders
	3.2.2 Convolutional autoencoders

	4 Approximating parameterized time evolution using neural networks
	4.0.1 Taking larger steps
	4.0.2 Approximating the state vs. residual
	4.0.3 Incorporating memory
	4.0.4 Parameterized dynamics
	4.0.5 Imposing stability and generalization
	4.1 The complete scheme

	5 Results
	5.1 Neural network setup
	5.2 Linear advection equation
	5.3 2D nonlinear equation – flow past cylinder
	5.4 Computation time and accuracy

	6 Conclusion
	Conflict of interest
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Artificial neural networks
	A.1 Feedforward neural networks
	A.2 Convolutional neural networks
	A.3 Causal convolutional neural networks
	A.4 Recurrent neural networks and long short-term memory

	Appendix B Convolutional autoencoder configurations
	Appendix C Linear advection
	References

