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Abstract

Although GWASs have been conducted to investigate genetic variation of bladder

tumorigenesis, little is known about genetic interactions that may influence bladder

cancer (BC) risk. By leveraging large-scale participants from UK Biobank, we established

a discovery database with 4000 Caucasian participants (2000 cases vs 2000 non-

cases), a database with 1648 Caucasian participants (824 cases vs 824 non-cases) and

856 non-Caucasian participants (428 cases vs 428 non-cases) as validation. We then

performed a genome-wide SNP-SNP interaction investigation related to BC risk based

a machine learning approach (ie, GenEpi). Moreover, we used the selected interactions

to build a BC screening model with an integrated interaction-empowered polygenic risk

score (iPRS) based on Cox proportional hazard model. With Bonferroni correction, we

identified 10 statistically significant pairs of SNPs, which located in 17 chromosomes.

Of these, four SNP-SNP interactions were found to be positively associated with BC

risk among Caucasian participants (ORs 1.57-2.03), while six SNP-SNP interactions

showed negatively associated with BC risk (ORs 0.54-0.65). Only four of the SNP-SNP

interactions were consistently identified in non-Caucasian participants located in ST7L-

ADSS2, FHIT-CHDH, LARP4B-LHPP and RBFOX3-MPRIP. In addition, the iPRS showed a
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HR of 1.81 (95% CI: 1.46-2.09) compared the highest tertile to the lowest tertile, with

an enhanced AUC (0.91; 95% CI:0.85-0.97) than PRS (AUC: 0.86; 95% CI:0.76-0.95;

P-DeLong test = 2.2 � 10�4). In summary, this study identified several important SNP-

SNP interactions for BC risk, and developed an iPRS model for BC screening, which

may help to identify the people at high-risk state of BC before early manifestation.
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What's new?

Genetic variants currently associated with bladder cancer risk account for only a small propor-

tion of familial clustering. While uncertainty remains, the gap in understanding of bladder cancer

heritability is potentially explained by interactions between single nucleotide polymorphisms

(SNPs). The present study describes novel SNP-SNP interactions linked to bladder cancer risk,

which were identified using a machine learning approach. Based on the SNP pairs discovered, an

interaction-empowered polygenic risk score (iPRS) was developed. The iPRS model successfully

classified bladder cancer cases and non-bladder cancer controls, outperforming the classic PRS

model and highlighting its potential to identify individuals at high-risk of malignancy.

1 | INTRODUCTION

Bladder cancer is among the most common cancers worldwide, with

around 550 000 new cases and 200 000 deaths reported per year.1

While there were few advances in clinical management of bladder

cancer over the past decade, the incidence rate has been considerably

increased.2 Given its high frequency of recurrence and low health

related quality of life with lifelong cystoscopy surveillance and multi-

ple therapeutic interventions, bladder cancer is reported to be among

the most expensive life-time treatments of all cancers and cause a

heavy burden to the healthcare system.3 As with many complex dis-

eases, genetics plays an essential role in bladder cancer carcinogene-

sis. In the past decades, genome-wide association studies (GWASs)

have identified multiple single nucleotide polymorphisms (SNPs)

related to this disease.4 Most identified variants, however, only confer

relatively small increments in risk, and explain only a small proportion

of familial clustering. Some of the remaining “missing heritability”
might be captured by the interaction of certain SNPs (ie, genetic inter-

action).5 Previous studies clearly showed that the impact of SNP inter-

actions on the formation of diseases, including bladder cancer, is

underestimated in traditional GWAS analysis,6-9 in which only one

genetic variant is considered at a time, and ignores underlying inter-

action of variants that might have stronger associations.10 The evi-

dence of previous studies have demonstrated that the existence of

genetic interactions is an important factor contributing to pheno-

types, especially in complex diseases such as hypertension, diabetes

and cancer.11 Particularly, genetic variants in multiple genes can syn-

ergistically lead to disease via different mechanisms, which has been

described as “digenic heritance”.12,13 For both digenic heritance and

genetic interactions, upon simultaneous mutation, the genetic vari-

ants either interact to produce disease or combine to produce a

more complex, and usually more severe, phenotype that cannot be

explained by variants in one gene alone. Nevertheless, no study

investigating the genome-wide genetic interactions for bladder can-

cer has been constructed; therefore, the urgent need of investiga-

tion on genetic interaction in relation to bladder cancer risk has

been emphasized.

As the number of SNP associated with disease risk increased expo-

nentially, and so the number of interactions, a computational complex

challenge arose in proceeding the statistical test of thousands of pairwise

interactions. Despite some methods have been developed based on con-

ventional algorithms to tackle the issue of genetic interactions (eg, FastE-

pistasis and BOOST),14,15 machine learning approaches also provide an

opportunity to reveal the genetic interaction, and has attracted a wide

range of research interests in recent years.16-18 Compared to the tradi-

tional methods, machine learning can effectively capture genetic interac-

tions that characterize the biological mechanisms of disease.

The current study, therefore, aimed to construct a genomic explo-

ration of genetic interaction in relation to bladder cancer risk based

on GenEpi,19 a computational package to uncover SNP-SNP interac-

tions associated with phenotypes by the use of a machine learning

approach that adopts two element combinatorial encoding when pro-

ducing features and constructs the classification models by

L1-regularized regression with stability selection. Furthermore, this

study aimed to develop a bladder cancer screening model using both

classic polygenetic risk score (PRS) and the detected genetic interac-

tions for screening high-risk subpopulations.

2 | METHODS

2.1 | Study population

Study participants were originated from the UK Biobank study, which has

been described in detail elsewhere.20 In brief, the UK Biobank is a pro-

spective study of over 0.5 million people living in the United Kingdom.
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All people in the National Health Service registry who were aged 40 to

69 years and living <25 miles from a study center were invited to partici-

pate between 2006 and 2010. In total, 503 325 participants were

recruited from over 9.2 million invitations. Extensive phenotypic data

were self-reported upon baseline assessment by participants using

touchscreen tests and questionnaires and at nurse-led interviews.

Anthropometric assessments were conducted, and biological samples

were collected at baseline. Health records were obtained from secondary

care data from linked hospital episode statistics (HES).

The UK Biobank database for this project included 502 505 partici-

pants. Exclusion criteria included the withdrawal of informed consent

(n = 12), lack of genetic data (n = 11 858), and missingness on either

age, sex, BMI or smoking status (n = 17 886). Finally, 472 749 individ-

uals were eligible for the current analyses (Figure 1). This study was

conducted using the UK Biobank resource under Application #55889.

2.2 | Ascertainment of bladder cancer

The definitions for bladder cancer cases are presented in Table S1.

Our analysis was restricted to bladder cancer patients with an Interna-

tional Classification of Diseases (ICD) codes of C67.0, C67.1, C67.2,

C67.3, C67.4, C67.5, C67.6, C67.7, C67.8, C67.9, D09.0 (ICD10) and

1880, 1882, 1884, 1886, 1888, 1889, 2337 (ICD9); and self-report/

doctor-diagnosis (code 1035 in field 20 001).

2.3 | Propensity score matching

With consideration of the imbalanced database in terms of outcomes,

we used propensity score matching (PSM)21 to select 1:1 ratio of blad-

der cancer cases and non-bladder cancer controls based on ethnicity,

age, sex, BMI and smoking status. Accordingly, we established a discov-

ery database with 4000 Caucasian participants (2000 cases vs 2000

non-cases), a database with 1648 Caucasian participants (824 cases vs

824 non-cases) as the first validation, and 856 non-Caucasian partici-

pants (428 cases vs 428 non-cases) as the second validation.

2.4 | Genotyping and quality control

A detailed description of the genotyping process, imputation and qual-

ity control in the UK Biobank study has been published else-

where.22,23 Briefly, the SNPs were genotyped using the custom UK

F IGURE 1 Study design, workflow and data processing based on the UK Biobank cohort. Study participants were originated from the UK
Biobank study. The UK Biobank database for this project included 502 505 participants. Exclusion criteria included the withdrawal of informed
consent (n = 12), lack of genetic data (n = 11 858), and missingness on either age, sex, BMI or smoking status (n = 17 886). Finally, 472 749
individuals were eligible for the current analyses. We used propensity score matching (PSM) to select 1:1 ratio of bladder cancer cases and non-
bladder cancer controls based on ethnicity, age, sex, BMI and smoking status. Accordingly, we established a discovery database with 4000
Caucasian participants (2000 cases vs 2000 non-cases), a database with 1648 Caucasian participants (824 cases vs 824 non-cases) as the first
validation, and 856 non-Caucasian participants (428 cases vs 428 non-cases) as the second validation. We used a machine-learning based
approach, that is, GenEpi to discover genetic interactions in relation to bladder cancer risk based on the Caucasian discovery database and
replicated in the Caucasian validation database and non-Caucasian validation database. BMI, body mass index; LD, linkage disequilibrium.
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Biobank Lung Exome Variant Evaluation Axiom (807 411 markers) or

the UK Biobank Axiom array (825 927 markers). The two arrays

shared 95% coverage resulting in >800 000 genotyped SNPs. Imputa-

tion was carried out using merged UK10K and 1000 Genomes Project

Phase 3 panels as the reference panel.

Individuals who were identified by the UK Biobank as outliers

based on either genotyping missingness rate or heterogeneity

(968 samples), whose sex inferred from the genotypes did not match

their self-reported sex (652 samples), were excluded. Population

structure was captured by both principal components (PCs) analysis,

along with K-means clustering on the PCs, which identified 453 964

subjects of European ancestry.

Only autosomal variants that were assayed by both aforemen-

tioned genotyping arrays employed by UK Biobank, were retained.

Autosomal SNPs were pre-phased using SHAPEIT3 and imputed using

IMPUTE4. In total, �96 million SNPs were imputed. In addition, variants

which had failed UK Biobank quality control procedures in any of the

genotyping test, that is, batch effects (197 SNPs/batch), plate effects

(284 SNPs/batch), Hardy-Weinberg equilibrium (572 SNPs/batch), sex

effects (45 SNPs/batch) and array effects (5417 SNPs), were excluded

(P value <10-12 or < 95% for all tests). Finally, related individuals were

identified by estimating kinship coefficients for all pairs of samples, and

only un-related participants were included for the current study.

2.5 | Assessment of genetic interactions related to
bladder cancer risk

To discover genetic interactions on bladder cancer risk, a machine-

learning based approach was applied, that is, GenEpi.19 Considering

the false positive rate and computational complexity, the focus of this

study was only on pairwise (ie, SNP-SNP) interactions. The following

main steps were conducted; at first genetic variants were grouped by

a set of loci (ie, genes) in the genome using gene information available

in the UCSC human genome annotation database, followed by dimen-

sionality reduction of genetic features in each locus using linkage dis-

equilibrium (LD).24 This involves grouping of features into LD blocks

using a given r2 and D0 threshold of >0.8 and selection of the features

with the largest minor allele frequency (MAF) to represent each

block.25 The selected genotypes of each single gene will then be inde-

pendently tested for its association with bladder cancer risk by the

use of a L1-regularized/logistic regression model. In the next stage, to

identify cross-gene interactive features, both the individual SNPs and

the previously selected within-gene interactive features were entered

in the L1-regularized/logistic regression model to select the final

genotype feature set. In addition, the first five PCs, that complied with

the least adjustments of PCs based on “twstat” method,26 were

included as extra adjustments to build a final model, with a model

evaluation by10-fold cross validation (CV). Given this study's focus is

to identify SNP-SNP interactions associated with bladder cancer risk,

the identified interactions were further analyzed by generating counts

and frequencies of each two-locus genotype to understand the man-

ner of each interaction. For the current study, GenEpi was applied to

best-guess genotypes on the set of SNPs with nominal statistically

significant association results (P value <.05) based on the filtered

SNPs by LD blocks. The performance of GenEpi model was evaluated

by F1 score, which was computed by 2 � (precision � recall)/(pre-

cision + recall). More detailed information and implementation of

using GenEpi on assessing the genetic interactions is described in the

additional file Data S1.

2.6 | Sensitivity analyses of significant signals

Sensitivity analyses were performed by using the significant SNP-SNP

interactions gained by making use of GenEpi in the additional Cauca-

sian validation database and non-Caucasian validation database. MM,

Mm and mm were used to denote the three genotypes of each SNP,

that is, majority homozygous, heterozygous and minority homozy-

gous, respectively. Then Mm and mm were attributed as SNP muta-

tion while MM was attributed as non-SNP mutation (ie, reference). To

quantify the interaction between two SNPs coded as; mm/Mm = 1,

MM = 0, a standard logistic regression-based model was used. In this

model, an interaction term between the two loci of identified signifi-

cant SNPs was introduced with adjustments of the first five PCs

(ie, outcome�SNP1i + SNP2i + SNP1i*SNP2i + PC1 + … + PC5). The

significance level for the estimation of the interaction was set at P value

<.05 and replications should have a consistent direction of the effect.

Moreover, we presented the distribution of genotypes (ie, MM, Mm

and mm) of identified SNPs and performed a chi-squared test to assess

their individual and interactive differentiated distribution between blad-

der cancer cases and controls in the Caucasian discovery database.

2.7 | Functional annotation

An in silico approach through SNPnexus (https://www.snp-nexus.org/

v4/),27 RegulomeDB (http://regulome.stanford.edu/),28 and HaploReg

version 4.1 (http://archive.broadinstitute.org/mammals/haploreg/

haploreg.php)29 was used to predict the potential functions of the

identified SNPs. Besides, to examine predicted functional impact, a

combined annotation dependent depletion (CADD) method was anno-

tated to the variants (Phred scores >5 predicted as deleterious,

https://cadd.gs.washington.edu/score).

Pathway information with gene sets of all identified analytes

were retrieved from the genetic ontology (GO) database (https://

www.genome.jp/go/), accessed on October 18, 2022. The enrichment

analyses were performed using the R package “clusterProfiler.”30

2.8 | Longitudinal assessment of interaction-
empowered polygenic risk score in relation to bladder
cancer risk

To access the power of identified SNP-SNP interaction in predicting

bladder cancer risk in longitudinal data, an enhanced cancer screening

84 YU ET AL.
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model by Zhang et al31 was applied. This method incorporated demo-

graphic factors and interaction-empowered polygenetic risk score

(iPRS) to calculate the hazard ratios (HRs) of bladder cancer occurred

in the follow-up data of the overall UK Biobank database based on Cox

proportional hazard model, in which 469 996 study participants with

582 incident bladder cancer cases were included. The iPRS was com-

puted based on a linear combination score of significant SNP-SNP inter-

actions identified in the Caucasian discovery database, and reached

nominal significance level (P value <.05) in the non-Caucasian validation

database. The iPRS was calculated using the following equation, where

β1i and β2i denoted the main effects of the two interactive SNPs and β3i
denoted their interaction effect. Again, the mutation of a SNP was

coded with “1” as mutated while “0” as non-mutated:

iPRS¼
Xn

i¼1

β1i�SNP1iþβ2i�SNP2iþβ3i�SNP1i�SNP2ið Þ

The iPRS, composed of classic PRS and SNP-SNP interaction

score, was used to generate an enhanced bladder cancer screening

model together with age, sex, BMI and smoking status. At first the

adjusted HRs (adjusted for age, sex, BMI and smoking status) and

95% confidence intervals (CIs) for bladder cancer were calculated

using the continuous iPRS score. As a second step, HRs and 95% CIs

were calculated using a categorized iPRS score. For this, the continu-

ous iPRS score was categorized to a three-level categorical variable by

its tertile values and the lowest group was set as the reference. Addi-

tionally, the same analysis for the classic PRS scores were repeated

and compared to the performance of the iPRS score. The PRS score

was calculated using the following equation (β1i and β2i denoted the

main effects of the two interactive SNPs):

PRS¼
Xn

i¼1

β1i�SNP1iþβ2i�SNP2ið Þ

Both iPRS and PRS computed in the current study were shown to

be normalized distributed (Figure S1). To assess whether the identified

SNP-SNP interactions increase the prediction ability for bladder can-

cer risk in addition to demographic factors (ie, age, sex, BMI and

smoking status), the receiver operating characteristic curve (ROC; R

package “pROC”,32 and DeLong test33 for area under the ROC curve

comparison (AUROC) were used.

2.9 | Statistical power and multiple hypothesis
testing

The following steps were used to decrease the number of false dis-

coveries. First, high correlated SNPs were removed from the current

study based on linkage disequilibrium (LD) pruning. Second, the GenEpi

algorithm was used to reduce the enormous computational require-

ments. For this, each SNPs was independently tested for its association

with bladder cancer risk. A P value threshold at <.05 was used as a sig-

nificance level for detecting the SNP-disease associations. SNPs

showing a P value of more than .05 were excluded. As a next step the

SNP-SNP interactions that failed to reach the nominal significant level

(ie, P value <.05) were excluded. Then a multiple correction (ie, .05/

number of SNP-SNP interactions with P value <.05) was applied.

The statistical analyses mentioned above were performed with

GenEpi (version 2.0.10) and R software (version 4.0.5).

3 | RESULTS

3.1 | Characteristics of the included participants

A detailed description of the study design, workflow and data proces-

sing based on the UK Biobank cohort is displayed in Figure 1. In total,

6504 study participants were included for GenEpi analyses. After

PSM matching, no difference between bladder cancer cases and non-

bladder cancer controls upon age, sex, BMI and smoking status were

observed. The mean (SD) age at recruitment was 56.52 (8.09) years

old, and 1610 participants (24.75%) were female. Nearly 67% of the

participants were smokers, and the average BMI of all participants

was 28.11 (5.06) kg/m2 (Table 1). Figure 2A shows that the ancestry

PCs differed between Caucasian and non-Caucasian participants, indi-

cating the elicitability of trans-ethnic validation.

3.2 | Associations of the genetic interactions with
bladder cancer risk

In the discovery phase, 3060 SNP-SNP interactions at P value <.05

were identified, of which 698 (22.81%) were single-gene interactions

and 2362 (77.19%) were cross-gene interactions (Table S2). The

median OR value obtained per SNP-SNP interaction was 1.71 (ranging

from 1.44 to 2.37) for 1534 positive associations and 0.58

(ranging from 0.44 to 0.69) for 1526 negative associations. The major-

ity of SNP-SNP interactions were shown to explain 0.5 to 1 (49.44%)

and ≥1.5 (37.45%) risk estimates of interactive association with blad-

der cancer risk (Figure 2B). All of the interactions were distributed in

22 chromosomes, with 32 (1.01%) predicted to be with a probably

deleterious effects and 126 (4.12%) showing a probably benign effect

(Figure 2C). Among the 3060 SNP-SNP interactions, 72% were

located in intronic regions, while 5% were up-stream located, 3%

were down-stream located and only 1% were located in coding region

(Figure 2D). In total the SNP-SNP interactions were attributed to

1346 genes, of which only 1% occurred within one gene, all remaining

interactions (99%) were gene-gene (G-G) interactions (Figure 2E). Of

the 3060 SNP-SNP interactions, 643 SNP-SNP interactions were fur-

ther selected at P value <1.6 � 10�5 (0.05/3060, Bonferroni test),

which were determined as the candidates for genetic interactions of

bladder cancer risk (Table S2).

In the validation analysis, 10 SNP-SNP interactions were repli-

cated with consistent directions in the discovery database at P value

<.05. All showed to be cross-gene between 18 genes located in

17 chromosomes. Of these, four SNP-SNP interactions were found to
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F IGURE 2 Characteristics of identified SNP-SNP interactions. (A) Genetic principal component of the included participants for GenEpi from
UK Biobank regarding Caucasians and non-Caucasians; (B) Distribution of explained ORs that the SNP-SNP interactions contributed to the
bladder cancer cases and non-bladder cancer controls; (C) Distribution of identified SNPs on chromosome locations and their predicted
deleterious/benign information; (D) The proportion of predicted functional annotation classes of the identified genetic variants; (E) The
proportion of single/cross gene classes of the identified SNP-SNP interactions. OR, odds ratio; PC, principal component; SNP, single nucleotide
polymorphisms.
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be positively associated with bladder cancer risk among Caucasian

participants (the ORs ranging from 1.57 to 2.03), while six SNP-SNP

interactions were found to be negatively associated with bladder can-

cer risk (the ORs ranging from 0.54 to 0.65).

Only four of the SNP-SNP interactions above were consistently

identified in non-Caucasian participants (1:113085197-1:244597892/

ST7L-ADSS2, ORCaucasian = 1.57, 95%CI = 1.27-1.94, ORNon-Caucasian = 1.87,

95%CI = 1.28-2.45; 3:59807681-3:53878616/FHIT-CHDH, OR
Caucasian

= 2.03,

95%CI = 1.56-2.66, OR
Non-Caucasian

= 2.29, 95%CI = 1.52-3.05; 10:

890252-10:126164319/LARP4B-LHPP, ORCaucasian = 1.69, 95%

CI = 1.35-2.13, ORNon-Caucasian = 1.81, 95%CI = 1.23-2.39;

17:77206245-17:17017961/RBFOX3-MPRIP, ORCaucasian = 0.57, 95%

CI = 0.44-0.74, ORNon-Caucasian = 0.53, 95%CI = 0.40-0.66; Figure 3 and

Tables S3 and S4).

By evaluating the individual and interactive distribution of consis-

tently identified SNPs between bladder cancer cases and controls in

the discovery database, we observed the genotype distribution of

two paired SNPs (ie, rs6537742 and rs3127462; rs75726847 and

rs2289205; of rs6537742 and rs3127462; rs34598895 and

rs4985733) and their genotype distribution under the interaction,

which indicated the interactive distribution was more differentiated

than individual distribution (Figure 5).

3.3 | Functional annotation of SNP-SNP
interactions

In the RegulomeDB database, the abundant biological regulatory func-

tion was observed for 18 of the 22 identified SNPs, including

eQTL, transcription factor binding site, or DNase peak. Among,

three SNPs (ie, 1:229468223, 15:68115800 and 3:53879372)

were predicted to be deleterious based CADD-Phred score

(Table S5). Numerous enhancer histone marks and epigenetic alter-

ation changes were observed for these SNPs (Table S6). Specifi-

cally, two SNPs (ie, 15:68115800 and 22:34208570) were

observed to be located in the sites of the CpG island, which indi-

cates a methylation of the corresponding DNA, resulting in an epi-

genetic alteration (Table S7). In addition, the identified SNPs were

F IGURE 3 Genomic atlas of all identified SNP-SNP interactions based on Caucasian participants. (A) Overview of all identified SNPs involved
in SNP-SNP interactions. Each dot represents a bladder cancer risk-associated genetic variant. The significant associations that should have (i) P
value <1.6 � 10�5 (0.05/3060) in the discovery database; (ii) P value <.05 in the validation database; ii) consistent direction of effect between
discovery and validation database; (B) The detailed description of the four SNP-SNP interactions replicated in non-Caucasian participants.
CA, Caucasian; NC, non-Caucasian; OR, odds ratio; SNP, single nucleotide polymorphisms.
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mapped to 95 diseases that were attributed to mainly metabolic

disorders (45%), cardiovascular disorders (13%) and cancers (7%)

(Table S8). To biologically understand the genes mapped to inter-

active SNPs in the screening models, gene enrichment pathway

analyses with the GO database were performed. In total, 14 path-

ways showed to be significant (P value <.05), and highly related to

metabolism (Table S9).

3.4 | Integration of SNP-SNP interaction
effectively distinguishes population at high risk of
bladder cancer

In the longitudinal analysis of iPRS and PRS related to bladder

cancer risk, 469 996 study participants from UK Biobank were

included, contributed 7 153 962 person-years of follow-up

(median for bladder cancer cases 3.57 years and for non-bladder

cancer cases 15 years), with 582 incident bladder cancer cases

(436 male, 146 female). The mean (SD) age at recruitment was

56.51 (8.09) years, and 262 677 participants (55.89%) were female

(Table S10). Moreover, participants with bladder cancer were gen-

erally older (62.34 vs 56.51 years), were more often men (74.91%

vs 45.07%), and had higher BMI (28.14 vs 27.41 kg/m2;

Table S10). Each subject was assigned an iPRS score, and were cat-

egorized into three groups by the tertile (ie, lowest, middle and

highest) of the score. The SNP-SNP interactions were found to be

maintained association with bladder cancer risk in the longitudinal

analysis, both for the Caucasian participants (HRs ranged from

0.54 to 2.01 of 10 SNP-SNP interactions) and non-Caucasian par-

ticipants (HRs ranged from 0.61 to 1.98 of four SNP-SNP interac-

tions; Tables S11-S14). Subjects in the high-risk group (ie, the

highest iPRS score group) had a significantly higher bladder cancer

risk than those at the lowest risk group (HR: 1.81; 95% CI:

1.55-2.08; Tables S15 and S16).

Compared to the PRS score, which showed an increase of bladder

cancer risk for participant in the highest tertile vs the lowest tertile;

F IGURE 4 iPRS and PRS in assessing the risk of bladder cancer. (A) Forest plot of association of continuous/Categorical iPRS and
continuous/categorical PRS with risk of bladder cancer. The square dots denote the HRs; Horizontal lines represent the 95% confidence intervals
(CIs). HR and 95% CI of each group were derived from Cox proportional hazard model adjusted for covariates (age, sex, BMI and smoking status)
by setting the lowest group as reference; (B) The receiver operating characteristic curve (ROC) and prediction ability of iPRS, PRS and
demographic factors in relation to bladder cancer risk. AUC, area under curve; CI, confidence interval; DF, demographic factors; HR, hazard ratio;
iPRS, interaction-empowered polygenic risk score; PRS, polygenic risk score; SNP, single nucleotide polymorphisms; T, tertile.
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HR: 1.81 (95% CI: 1.46-2.09), the iPRS was found to have a better dis-

crimination power with a narrower 95% CI. Meanwhile, we validated

the bladder cancer screening model composed of demographic vari-

ables (age, sex, BMI and smoking status) solely, with iPRS, and with

PRS, results showed the performance of classification (ie, area under

ROC curve: AUC) of demographic variables (0.80; 95%CI: 0.71-0.89),

and its combination with PRS (0.87; 95%CI: 0.77-0.95) and with iPRS

(0.91; 95%CI: 0.85-0.97), indicating the iPRS enhanced model served

as a satisfactory risk classifier (Figure 4). Furthermore, a clear pattern

of high classification F1 score separately by integration of within-

chromosome identified SNP-SNP interactions, where the F1 scores

ranged from 0.72 to 0.82, which supported the evidence that the

inclusion of genome-wide genetic interaction to perform a high

classification accuracy between bladder cancer cases and non-bladder

cancer controls (Figure S2).

4 | DISCUSSION

In the current study, a machine-learning based method was conducted

to investigate genome-wide SNP-SNP interactions associated with

bladder cancer risk. Here a total of 10 pairs of SNPs related to bladder

cancer risk in Caucasians were identified, of which only four could be

validated in non-Caucasians. To our knowledge, this is the first

attempt to identify genetic interactions related to bladder cancer risk

on a genome-wide scale. In addition, we developed an iPRS enhanced

F IGURE 5 The individual and interactive distribution of consistently identified SNPs between bladder cancer cases and controls in the
discovery database. (A) The distribution of cases and controls for rs6537742 (P value = .031) and rs3127462 (P value = .046); the distribution of
cases and controls under the interaction of rs6537742 and rs3127462 (P value = .002). (B) The distribution of cases and controls for rs75726847
(P value = .035) and rs2289205 (P value = .038); the distribution of cases and controls under the interaction of rs75726847 and rs2289205
(P value = .003). (C) The distribution of cases and controls for rs10904575 (P value = .035) and rs12784000 (P value = .038); the distribution of
cases and controls under the interaction of rs10904575 and rs12784000 (P value = .004). (D) The distribution of cases and controls for
rs34598895 (P value = .030) and rs4985733 (P value = .034); the distribution of cases and controls under the interaction of rs34598895 and
rs4985733 (P value = .006).
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bladder cancer screening model by incorporating the identified SNP-

SNP signals. This model outperformed the classic PRS model, and

therefore, has the potential to facilitate high-risk sub-populations

screening.

In the past decades, large genome-wide association studies

(GWASs) have identified multiple SNPs related to bladder cancer.4

However, these SNPs only explain a small proportion of variation in

the bladder cancer risk. Particularly, while certain SNPs have been

identified related to bladder cancer risk in UK Biobank cohort accord-

ing to Jiang et al,34 no identified SNPs in the current study could be

found at P value <5 � 10�5, indicating some missing heritance was

not captured and may be due to genetic interactions (Table S17).

Hence, recent research efforts expanded in studying genetic-

environmental (G-E) interactions in relation to bladder cancer risk,

including gene-smoking interactions, gene-asbestos interactions and

gene-occupation interactions.35 Studies on gene-gene (G-G) interac-

tions in relation to bladder cancer risk, however, are still lacking, prob-

ably due to the lack of suitable algorithms and computationally

intensive G-G interaction analyses on a genome-wide scale. In the

current study, genome-wide genetic interaction analyses for bladder

cancer susceptibility were performed based on a large-scale cohort,

by which the results indicated genetic interactions or epistasis may

also explain the missing heritability of bladder cancer.

All of the 10 identified SNP-SNP pairs were found to be cross-

gene. Of them, 3:59807681 located in FHIT showed binding with

CHDH (3:53878616) and IL17RB (3:53879372) in relation to bladder

cancer risk, suggesting FHIT plays an important regulatory role in blad-

der cancer development. In line with this result, previous studies dem-

onstrated that an aberrant FHIT expression inactivates the expression

level of the FHIT protein, which is an important suppressor for tumor

growth.36-38 In addition, the FHIT, located at the FRA3B site of chro-

mosome 3p14.2, is one of the histidine triad gene family members,

which has been reported to be correlated with multiple human can-

cers.39 Therefore, an aberrant FHIT may alter multiple biological func-

tions in human malignancies including decreased apoptosis, increased

epithelial-mesenchymal transition (EMT), increased resistance to gen-

otoxic agents, altered production of reactive oxygen species, and

ongoing genome instability.40 The identified interaction between FHIT

and CHDH was also validated in the non-Caucasian participants.

Intriguingly, to our best knowledge, only one study linked to human

diseases41; in this study it was shown that SNPs within the CHDH

may be involved in the one-carbon metabolism and in reduction of

the responses to arsenic metabolism. Arsenic contamination has

shown to be an established risk factor for bladder cancer, and there-

fore, based on the finding of current study, it could be hypothesized

that the interaction between the arsenic metabolism-related gene (ie,

CHDH) and FHIT support the promotion of bladder cancer develop-

ment. In addition, FHIT also showed to interact with the IL17RB in

relation to bladder cancer risk; it has been demonstrated the changed

patterns of the IL-17 family receptors expression, including IL17RB

receptor, might be associated with infiltration of inflammatory cells

and structural cells (CD90+ fibroblasts and CD31+ blood vessels),

which may contribute to the development of bladder cancer.42

However, the FHIT-IL17RB interaction could not be replicated in non-

Caucasians, which suggested the generalizability of this specific

interaction in trans-ethnic populations should be interpreted with cau-

tion. Further experimental studies are warranted to verify these results.

SCARA5 (8:27808579) also showed to interact with multiple

genes (ie, CSMD1 (8:4568747)-SCARA5 and LACTB2-AS1 (8:71542644)-

SCARA5) in Caucasian participants. However, neither of these interactions

could be replicated in non-Caucasian participants. While there is no

solid evidence for the effect of SCARA5 in the regulation of bladder

cancer development, it has been reported to be involved in the

growth, migration and invasion of several other cancers.43-45

A notable finding in the current study is the ST7L (1:113085197)-

ADSS2 (1:244597892) interaction, causing an increased bladder can-

cer risk in both Caucasian and non-Caucasian participants. So far, no

previous studies showed either of these genes to be related to blad-

der cancer risk. As ST7L is a key factor of Wnt/GSK-3β/β-catenin sig-

naling pathway,46,47 the interaction with ADSS2 might inhibit the

function of ST7L that is the suppression of tumorigenicity, and

thereby enhance the development of bladder cancer. Similarly, the

LARP4B (10:890252)-LHPP (10:126164319) interaction was also

found to increase the bladder cancer risk in both Caucasian and non-

Caucasian participants. Since LHPP suppresses bladder cancer cell pro-

liferation and growth via inactivating AKT/p65 signaling pathway,48

and LARP4B was reported to serves as a tumor-suppressor gene, the

aberrant alteration of each gene including their interaction might

impede the favorable functions and suggest highly deleterious effects

on bladder cancer.

In addition, the current study identified an interaction between

RBFOX3 (17:77206245) and MPRIP (17:17017961), showing a nega-

tive association with bladder cancer risk. According to a recent

study,49 the rs978416 G > A SNP in RBFOX3 may be related to blad-

der cancer predisposition in a Chinese population and might serve as

a novel biomarker for bladder cancer risk. However, the effects of all

the identified genetic interactions still need to be verified in future

studies.

Although the underlying mechanisms of identified SNP-SNP

interactions are poorly understood, accumulative evidence has

emerged suggesting that identifying high-risk individuals can enable

enhanced screening and lead to better treatment options. This could

directly result in a reduced cancer incidence. Therefore, the clinical

use of the PRS, which integrates multiple SNPs and might distinguish

individual with high or low disease risk, has been widely recognized.

However, the discriminatory ability in distinguishing cancer cases from

healthy controls by PRSs still needs to be enhanced.

According to Zhu et al,50 screening of asymptomatic subjects with

high cancer risk is a well-recognized way to reduce cancer morbidity

and mortality by detecting very early-stage cases or those predis-

posed to bladder cancer. Therefore, many cancer risk screening

models have been created in the last couple of decades. Whereas at

first theses models only included including clinical factors, more

recently also genetic factors (ie, PRS) have been included. The inclu-

sion of the PRS showed to have a significant influence on the ability

of targeting subjects at high risk for bladder cancer.51 The current
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study showed that the proposed iPRS, including the SNP-SNP interac-

tions, outperformed the classically used PRS, thereby possessing an

additional capability to substantially enhance the guideline- and

model-based bladder cancer screening strategies. Since the individual

genome-wide genetic measurement has yet to widely applied in real-

word clinical practice due to high costs and technological limitation.

Future development of simple and rapid methods to detect genes and

SNPs will therefore enhance the clinical use of the iPRS, by develop-

ing custom-designed chips for screening usage.

The current study has several limitations. First, the focus was

only on pairwise interactions, as the computational burden of

high-order interactions is prohibitive and the interpretation of

high-order interactions is difficult. Second, the biological mecha-

nisms of the SNPs involved in the identified genetic interactions

were not verified, which may warrant further functional studies.

Third, since the current study was primarily designed for a

European-ancestry population with most participants being

Europeans, future G-G interaction studies on subjects with other

ancestries are needed.

In summary, a machine-learning based approach was applied to

construct a genetic interaction framework and identified several novel

SNP-SNP interactions in association with bladder cancer risk, which

might reduce the gap in genetic risk screening. In addition, an iPRS

was derived from genome-wide SNPs that showed to be able to

effectively classify bladder cancer cases and non-bladder cancer con-

trols, which may help to enhance the identification of individuals at

high-risk for bladder cancer.
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