
1.  Introduction
Due to their tuneable surface properties, engineered nanoparticles are widely used in various consumer products, 
industries, and biomedical fields (Grillo et al., 2015; Kessler, 2011; Rudramurthy & Swamy, 2018). This results 
in their inevitable release into wastewater. Traditional municipal wastewater treatment plants are not capable of 
removing engineered nanoparticles (Chauque et al., 2014; Khan et al., 2021). Hence, engineered nanoparticles, 
along with active bio-nanoparticles, such as viruses, may enter the subsurface through land application of treated 
wastewater, and wastewater disposal to surface water bodies, and eventually enter the subsurface. Before reaching 
groundwater, they get transported through the vadose zone, where a fraction of the infiltrated particles is retained 
at grain surfaces (also called solid-water interface, SWI), air-water interface (AWI), and air-water-solid (AWS) 
contact region (Gao et al., 2008; Sang et al., 2013; Sirivithayapakorn & Keller, 2003; Wan et al., 1994; Wan & 
Wilson, 1994; Zevi et al., 2005, 2009). However, the retained particles can also be released back into the bulk 
water due to temporal variations in flow and chemistry (El-Farhan et al., 2000; Gomez-Suarez et al., 1999a, 19
99b, 2000, 2001; Kaplan et al., 1993; Ryan et al., 1998). The particles which are not retained in the vadose zone 
move down and contaminate the groundwater. Hence, it is important to study the transport mechanisms of nano-
particles in partially saturated porous media to evaluate the potential for the groundwater contamination.

A vast majority of literature on particle transport in porous media pertains to saturated conditions (Bradford & 
Bettahar, 2005; Foppen et al., 2005; Li et al., 2004, 2005; Redman et al., 2001; Schijven & Hassanizadeh, 2000; 
Tong et al., 2005; Tufenkji & Elimelech, 2004). However, there are only a few formulas for estimating particle 
deposition rate coefficients in saturated porous media as a function of various physicochemical parameters. This 
includes the theoretical models such as (a) colloid filtration theory which estimates particle attachment rate 
coefficient under favorable conditions for deposition (Logan et al., 1995; Schijven & Hassanizadeh, 2000; Yao 
et al., 1971), and (b) the model of Seetha et al. (2017) which predicts nanoparticle attachment and detachment 
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rate coefficients under unfavorable conditions. There are also a few empirical models, including (a) the model of 
Krishna and Seetha (2022), which predicts the deposition rate coefficient of viruses, bacteria, titanium dioxide 
nanoparticles, graphene oxide nanoparticles, silver nanoparticles, and carboxylate-modified latex microspheres, 
and (b) models of Bai and Tien (1999), Sadeghi et al. (2011), and Y. Park et al. (2012) which predict the sticking 
efficiency of latex particles, bacteriophage PRD1, and Cryptosporidium parvum Oocysts, respectively. Compar-
atively, few studies have focused on particle transport in partially saturated porous media (Chen & Flury, 2005; 
L. Chen et al., 2005, 2008, 2010, 2012; Saiers & Lenhart, 2003; Saiers et al., 2003; Schafer, Harms, et al., 1998; 
Schafer, Ustohal, et al., 1998; Wan & Tokunaga, 1997; Wan & Wilson, 1994; Wan et al., 1994). Moreover, formu-
las to estimate colloid deposition parameters under partially saturated conditions do not exist.

Colloid retention in a porous medium has been observed to be greater under partially saturated conditions than 
under fully saturated conditions due to the presence of multiple retention sites, including SWI, AWI, and AWS 
(Crist et al., 2004, 2005; Wan et al., 1994; Wan & Wilson, 1994; Zevi et al., 2005; Zhang et al., 2013, 2014), 
and thin liquid films (Cherrey et al., 2003; Crist et  al., 2004, 2005; Saiers & Lenhart, 2003; Schafer, Harms, 
et al., 1998; Torkzaban et al., 2006; Wan & Tokunaga, 1997; Zevi et al., 2005). Colloid transport in partially 
saturated porous media depends on geometrical parameters, such as pore-size distribution, pore shape, particle 
size, and particle shape (Wan & Tokunaga, 1997; Zhuang et al., 2005), on chemical parameters, such as solution 
ionic strength, pH, and surface properties of grains and particles (Chen & Flury, 2005; Choi & Corapcioglu, 1997; 
Torkzaban et al., 2008), on flow velocity (Knappenberger et al., 2014; Wan & Tokunaga, 1997), and on degree of 
saturation (Knappenberger et al., 2014; Saiers et al., 2003; Saiers & Lenhart, 2003; Torkzaban et al., 2006; Wan 
& Tokunaga, 1997). Particle retention in porous media is found to increase with decreasing degree of saturation 
due to the availability of more AWIs for deposition and straining in thin films that form at low saturation (Schafer, 
Harms, et al., 1998; Schafer, Ustohal, et al., 1998; Wan & Wilson, 1994; Wan & Tokunaga, 1997; Zevi et al., 2005). 
However, the interplay among various mechanisms and their relative importance in retaining particles with change 
in degree of saturation is not clear. For example, many studies have concluded retention at AWI to be the most 
important mechanism and the contribution of SWI in particle retention to be negligible (Cherrey et al., 2003; 
Schafer, Harms, et al., 1998; Torkzaban et al., 2008; Wan & Tokunaga, 1997; Wan & Wilson, 1994). It is also 
suggested that the retention at AWI is due to the capillary force exerted on the attached particles (Kralchevsky & 
Nagayama, 2001; Sang et al., 2013). Several researchers have found that the capillary force acting on particles at 
AWI is orders of magnitude greater than the van der Waals and electrostatic forces between particles and AWI 
(Butt et al., 2005; Gao et al., 2008; Ishida, 2007; Shang et al., 2008; Sharma et al., 2008). Moreover, particles 
have been observed to be retained irreversibly at AWI with the retention being larger for hydrophobic colloids 
than hydrophilic colloids (Schafer, 1998a, 1998b; Wan & Wilson, 1994; Wan et al., 1994). This is due to a large 
negative interfacial free energy change associated with transferring a fully immersed hydrophobic particle from 
bulk solution to the AWI, which is an energetically favorable process (Abdel-Fattaha & El-Genk, 1998a, 1998b; 
Flury & Aramrak, 2017). Saiers and Lenhart (2003) and Lenhart and Saiers (2002) reported that the dominant 
retention mechanism changes from film straining to AWI attachment to SWI attachment with increasing degree 
of saturation. Saiers and Lenhart (2003a) found a similar transition in the deposition mechanism of silica colloids 
in partially saturated porous media with increasing ionic strength of  the background solution. At lower moisture 
contents, film straining efficiency has been observed to increase with decreasing grain size and increasing colloid 
size (Wan and Tokunaga, 1997). In contrast to the above observations on the importance of AWI on particle 
retention, many other studies have later observed that the retention at AWS to be the most important mechanism, 
and the contribution by AWI for particle retention to be negligible due to the charge similarity between particles 
and AWI (Chen & Flury, 2005; Crist et al., 2004, 2005; Gao et al., 2008; Steenhuis et al., 2006; Zevi et al., 2005). 
Water at AWI has been found to be mobile and particles at AWI have been observed to undergo Brownian motion 
and rotation (Gehring & Fischer, 2011; Manoharan, 2015; Radoev et al., 1992; Stocco et al., 2019; Tan et al., 2009; 
Toro- Mendoza et al., 2017). This helps with the particles at AWI to diffuse or advect to AWS, where they get 
pinned by capillary forces (Bradford & Saeed, 2008; Flury & Aramrak, 2017; Kralchevsky & Nagayama, 2001; 
Sang et al., 2013; Xu et al., 2016). Also, particles from the aqueous phase can get strained directly at AWS.

Saiers and Lenhart  (2003) observed that as ionic strength increases, retention of colloids at AWI and SWI 
increases. Similar observation was made by Zhuang et al. (2007), where they observed greater mobilization of 
colloidal particles at low ionic strengths than at high ionic strengths. However, this is contradictory to the obser-
vations of Bridge et al. (2007), who found significant attachment of colloids to AWI to happen only at low ionic 
strengths when the attachment to SWI is negligible. This is in line with the findings of Zevi et al. (2009), who 
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observed lesser retention of particles at AWS with increasing ionic strength as attachment to SWI becomes the 
dominant retention mechanism. Lazouskaya and Jin (2008) and Zhang et al. (2014b) observed greater retention of 
hydrophobic than hydrophilic particles at AWI. This is supported by the measurements using atomic force micros-
copy, which has shown that hydrophobic particles are attracted toward AWI and hydrophilic particles are repelled 
from AWI (Butt, 1994; Ducker et al., 1994; Fielden et al., 1996; Ishida, 2007). Schafer, Harms, et al. (1998) and 
Schafer, Ustohal, et al. (1998) observed greater retention of hydrophilic bacteria with increasing ionic strength 
in partially saturated porous media. But, the retention of hydrophobic bacteria was found to be not affected by 
variations in ionic strength (Mitropoulou et al., 2013; Torkzaban et al., 2008; Zevi et al., 2009). Colloid transport 
behavior also depends on the wetting history of the soil, and the colloids retained during drainage may get rapidly 
remobilized back into the pore water during imbibition (Crist et al., 2005; Gao et al., 2004). Colloid remobiliza-
tion was found to increase with increasing velocity of AWI (Saiers et al., 2003; Zhang et al., 2013).

The above-mentioned studies under partially saturated conditions each focused on the effect of a single parameter 
on colloid retention and remobilization (e.g., degree of saturation, hydrophobicity of colloids, flow velocity, or ionic 
strength). However, one would expect a nonlinear effect of combination of these parameters on the fate of colloids. 
To the best of our knowledge, colloid transport and retention in partially saturated porous media while varying a 
wide range of physicochemical conditions has not been explored yet. Also, the interplay of the role of various reten-
tion sites on colloid attachment under different physicochemical conditions has not been understood completely. 
Mathematical modelling offers the advantage of studying the transport behavior of particles under a wide range of 
physicochemical conditions which is otherwise difficult through experiments. The smallest scale in porous media 
that can be studied to understand the flow and transport behavior is that of a single pore. Pore-scale modelling, 
and the subsequent upscaling to continuum scale using a pore-network model, offers the advantage of studying the 
effect of various pore-scale parameters on particle deposition behavior at the continuum scale, and to identify the 
dominant retention mechanisms under various physicochemical conditions. This in turn helps to develop formulas 
to estimate colloid deposition parameters at continuum scale in terms of various physicochemical parameters.

The goal of this study is to find algebraic relationships for average mass transfer rate coefficients governing 
the fate of nanocolloids transported within a single pore. We have done this in two steps. In the first step, we 
have developed a three-dimensional (3D) mathematical model to simulate the transport of nano-sized particles 
in a single partially saturated soil capillary. We assume the pore to be a parallelopiped with an angular cross 
section. We consider situations where the water saturation is low such that the whole pore cross-section is not 
filled. As we assume the pore wall to be hydrophilic, water occupies the pore corners. Due to symmetry, we 
only need to consider a half-corner region of the pore corner for our simulations. First, steady-state fluid flow 
is simulated by solving Stokes and continuity equations. Then, transient particle transport is simulated by solv-
ing advection-diffusion equation in the bulk with terms for first-order deposition on SWI and AWI. We have 
proposed a novel mathematical formulation for simulating nanoparticle deposition at AWS. The model consists 
of 12 dimensionless parameters representing various physicochemical system properties. The solution of the set 
of 3D equations results in 3D fields of concentrations in bulk phase and in adsorbed form.

In the second step, the pore-scale results are averaged over the water-wet cross-section of the pore. This results 
in one-dimensional (1D) fields of averaged concentrations in bulk phase and in adsorbed form. These results 
are fitted to the solution of a 1D advection-dispersion-sorption equation with three kinetic sites of adsorption to 
SWI, AWI, and AWS. The fitting results in a large data set of values of averaged deposition rate coefficients for 
a wide range of chemical, hydraulic, and geometrical conditions. Using this data set, a power-law relationship is 
proposed between 1D averaged deposition rate coefficients at SWI, AWI, and AWS and the various pore-scale 
parameters. This is the first study that provides such formulas for various mass transfer rate coefficients for a wide 
range of conditions in a partially saturated soil capillary.

2.  Methodology
2.1.  Mathematical Model

A mathematical model, describing the transport and deposition of nanoparticles in a single partially saturated soil 
capillary with a length 𝐴𝐴 𝐴𝐴 , is presented in this section. The pore is assumed to be a parallelopiped with an angular 
cross-section. Figure 1a shows the triangular cross-section of a very low saturated pore, which is filled with air in 
middle and water in corners. The pore wall is assumed to be hydrophilic and hence, the water phase is present in 
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the pore corners only. The presence of air and water inside the pore creates two interfaces, namely SWI and AWI, 
and a common region, AWS line, where the three phases intersect. Due to symmetry, we consider the computa-
tional domain to be the half-corner region of water-occupied corner, as shown in Figure 1b, where, 𝐴𝐴 𝐴𝐴 represents 
the half-corner angle, and 𝐴𝐴 𝐴𝐴 is the radius of curvature of the AWI.

Various assumptions involved in the model are: (a) flow is fully developed, laminar, and at steady state; (b) the 
suspension of nanoparticles is dilute and stable, and hence, particle-particle interactions are neglected; (c) nanopar-
ticles, AWI, and SWI are assumed to be negatively charged; (d) hydrodynamic wall effects which effect the transport 
of particles are neglected; and (e) particles are sufficiently small such that gravitational and lift forces are neglected.

All governing equations of flow and transport are introduced in Text S1 in Supporting Information S1 in detail. The 
equations have been made dimensionless, as described in Text S2 in Supporting Information S1. In this section, we 
provide the full set of dimensionless equations that have been solved numerically, using COMSOL Multiphysics 
software (version 5.6). Flow of water along the half-corner region of the pore is governed by the Stokes equation 
and continuity equation. Their dimensionless forms (developed in Text S2 in Supporting Information S1) are:

𝜕𝜕
2
𝑣𝑣
∗
𝑧𝑧

𝜕𝜕𝜕𝜕∗2
+

𝜕𝜕
2
𝑣𝑣
∗
𝑧𝑧

𝜕𝜕𝜕𝜕∗
2
= 1� (1a)

𝜕𝜕𝜕𝜕
∗
𝑧𝑧

𝜕𝜕𝜕𝜕∗
= 0� (1b)

Here, 𝐴𝐴 𝐴𝐴
∗
𝑧𝑧 [–] is the dimensionless flow velocity in the 𝐴𝐴 𝐴𝐴 direction, and 𝐴𝐴 𝐴𝐴

∗ , 𝐴𝐴 𝐴𝐴
∗ , and 𝐴𝐴 𝐴𝐴

∗ are dimensionless distances 
along 𝐴𝐴 𝐴𝐴 , 𝐴𝐴 𝐴𝐴 , and 𝐴𝐴 𝐴𝐴 directions, respectively. Equations 1a and 1b are solved subject to constant pressure conditions 
at the inlet and the outlet of the pore with a unit dimensionless pressure gradient in the z-direction along with the 
following boundary conditions:

𝑣𝑣
∗
𝑧𝑧 (𝑥𝑥

∗
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��∗�
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Equation 2 represents no-slip boundary condition at the SWI, Equation 3 represents stress-free boundary condi-
tion at AWI, and Equation 4 represents symmetry condition at AB line of symmetry (see Figure 1b).

The transport of nanoparticles in the pore is modeled using the following dimensionless advection-diffusion 
equation:

𝜕𝜕𝜕𝜕
∗
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𝜕𝜕𝜕𝜕∗
2
+

𝜕𝜕
2
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∗

𝜕𝜕𝜕𝜕∗
2

)

−
𝑣𝑣𝑧𝑧
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∗
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∗
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� (5)

where, 𝐴𝐴 𝐴𝐴
∗ is the dimensionless nanoparticle concentration, 𝐴𝐴 𝐴𝐴𝐴𝐴 is the Peclet number, 𝐴𝐴 𝐴𝐴

∗
𝑧𝑧(𝑥𝑥

∗
, 𝑦𝑦

∗) is the dimensionless 
pore-water velocity, and 𝐴𝐴 𝐴𝐴

∗
𝑚𝑚 is the dimensionless mean pore-water velocity. For solving this equation, we need 

Figure 1.  Conceptual representation of (a) the partially filled triangular cross-section of a soil capillary, and (b) half-corner region as the computational domain.
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boundary conditions at inlet and outlet of the pore as well along SWI and AWI. Nanoparticle deposition on SWI 
and AWI depends on the particle-interface interaction forces which act within a distance of a few 100 nm from the 
interface (Elimelech et al., 1998; Lazouskaya & Jin, 2008; Ruckenstein & Prieve, 1973). Three different profiles 
of energy distribution (Types I, II, and III) for nanoparticle interactions with SWI and AWI are shown in Figures 2 
and 3, respectively. There, 𝐴𝐴 Φ∗

𝑆𝑆𝑆𝑆 𝑆𝑆
 , and 𝐴𝐴 Φ∗

𝐴𝐴𝐴𝐴 𝐴𝐴
 denote the total dimensionless interaction energies between a parti-

cle and SWI and AWI, respectively, and 𝐴𝐴 𝐴
∗ is the dimensionless distance between the particle and the interface. 

There  are three different regions in the energy profiles: primary minimum (in Types I and III), secondary mini-
mum (in Types I and II), and energy barrier (in Types I and II). Types I and II energy profiles represent unfavora-
ble conditions for deposition due to the presence of an energy barrier, whereas Type III energy profile represents 
a favorable condition for deposition. The calculation of interaction energies for particle-SWI and particle-AWI 
interactions are given in Text S3 in Supporting Information S1. The type of the energy profile between particles 
and SWI depends on the particle size, the surface potentials of the nanoparticle and SWI, solution ionic strength, 
and the Hamaker constant for particle-water-solid surface (refer to Text S3 in Supporting Information S1). For 
example, Type II energy profile at SWI occurs for relatively larger magnitudes of surface potentials of both nano-
particles and SWI, and smaller values of ionic strength and Hamaker constant for particle-water-solid surface. 
Due to its shallow depth, the secondary minimum deposited particles are reversibly attached. However, Type III 
energy profile occurs for relatively smaller magnitudes of surface potentials of nanoparticles and SWI, and larger 
values of ionic strength and Hamaker constant. The primary minimum depth of Type III profile at SWI is finite, 
and the particles deposited there can get detached if they can overcome the primary minimum attraction through 
Brownian motion. Type I energy profile has the characteristics of both Types II and III profiles, and particle 
deposition can happen at both secondary and primary minima. The favourability of Type I profile for deposition 
depends on the relative magnitudes of the primary and secondary minima depths and energy barrier height. 
The type of the energy profile between particles and AWI depends on the contact angle of the particles with 
AWI, particle size, the surface potentials of the nanoparticle and AWI, solution ionic strength, and the Hamaker 
constant for particle-water-AWI, with the contact angle playing the major role (refer to Text S3 in Supporting 
Information S1). Type II energy profile corresponds to small values of contact angle and ionic strength, relatively 
larger magnitudes of surface potentials of both nanoparticles and AWI, and large values of Hamaker constant. 

Figure 2.  Types of interaction energy profiles for nanoparticles with solid-water interface (SWI). The secondary minimum 
region is enlarged and shown in the inset.
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Type III energy profile at AWI occurs for large values of the contact angle and ionic strength, relatively smaller 
magnitudes of surface potentials of both nanoparticles and AWI, and small values of Hamaker constant. Since the 
depth of the primary minimum is infinite for Types I and III energy profiles at AWI, particles deposited there are 
assumed to be irreversibly attached. Also, the secondary minimum deposited particles at Types I and II profiles 
at AWI are assumed to be reversible due to its shallow depth.

Since the length scale over which the interaction forces act is much smaller than the pore size, the effect of 
nanoparticle-interface interactions can be incorporated in the form of a boundary condition for the advection-diffusion 
equation (Equation  2) of the bulk phase (Ruckenstein & Prieve,  1973; Seetha et  al.,  2015; Spielman & 
Friedlander,1974). The interfacial conditions at SWI and AWI are presented in Text S1 in Supporting Informa-
tion S1 and made nondimensional in Text S2 in Supporting Information S1. Assuming the mass exchange between 
the bulk water and SWI to follow a first-order kinetics, the boundary condition at bulk-SWI in dimensionless form is

− 1
��

��∗

��∗
|

|

|

|���
= ��������

∗
|��� −��������

∗
2,��� for Type I and Type II energy prof iles at SWI� (6a)

− 1
��

��∗

��∗
|

|

|

|���
= ��������

∗
|��� −��������

∗
1,��� for Type III energy prof ile at SWI� (6b)

Here, 𝐴𝐴 𝐴𝐴
∗

1,𝑠𝑠𝑠𝑠𝑠𝑠
 [–] and 𝐴𝐴 𝐴𝐴

∗

2,𝑠𝑠𝑠𝑠𝑠𝑠
 [–] are dimensionless average concentrations of particles adsorbed to SWI in the primary 

and secondary minima regions, respectively, 𝐴𝐴 𝐴𝐴𝐴𝐴
𝑏𝑏𝑏𝑏

𝑠𝑠𝑠𝑠𝑠𝑠
 and 𝐴𝐴 𝐴𝐴𝐴𝐴

𝑠𝑠𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠
 are advective Damkohler numbers corresponding 

for forward and backward mass transfer of particles between bulk and secondary minimum region at SWI for 
Types I and II profiles, respectively, and 𝐴𝐴 𝐴𝐴𝐴𝐴

𝑏𝑏𝑏𝑏

𝑠𝑠𝑠𝑠𝑠𝑠
and𝐷𝐷𝐷𝐷

𝑝𝑝𝑝𝑝

𝑠𝑠𝑠𝑠𝑠𝑠
 are advective Damkohler numbers at SWI but for Type 

III energy profile for particle transport from bulk to primary minimum region, and primary minimum to bulk 
region, respectively. The calculation of advective Damkohler numbers at SWI using the interaction energy profile 
between particle and SWI is given in Text S1, Text S2, and Text S3 in Supporting Information S1. Similarly, 
assuming the mass exchange between the bulk water and AWI to follow a first-order kinetics, the boundary condi-
tion to advection-diffusion equation at AWI in dimensionless form is given as:

− 1
��

��∗

��∗
|

|

|

|���
= ��������

∗
|��� −��������

∗
2,��� for Type I and Type II energy prof iles at AWI� (7a)

− 1
��

��∗

��∗
|

|

|

|���
= ��������

∗
|��� for Type III energy prof ile at AWI� (7b)

where, 𝐴𝐴 𝐴𝐴
∗

2,𝑎𝑎𝑎𝑎𝑎𝑎
 [–] is the dimensionless average adsorbed concentration in the secondary minimum region of the 

energy profile at AWI, 𝐴𝐴 𝐴𝐴𝐴𝐴
𝑏𝑏𝑏𝑏

𝑎𝑎𝑎𝑎𝑎𝑎
 and 𝐴𝐴 𝐴𝐴𝐴𝐴

𝑠𝑠𝑠𝑠

𝑎𝑎𝑎𝑎𝑎𝑎
 are the advective Damkohler numbers at AWI for Types I and II profiles 

for particle transport from bulk to secondary minimum region, and secondary minimum to bulk region, respec-
tively, and 𝐴𝐴 𝐴𝐴𝐴𝐴

𝑏𝑏𝑏𝑏

𝑎𝑎𝑎𝑎𝑎𝑎
 is the advective Damkohler number at AWI for Type III profile for particle transport from bulk 

to primary minimum region. The calculation of advective Damkohler numbers at AWI using the interaction 
energy profile between particle and AWI is given in Text S1, Text S2, and Text S3 in Supporting Information S1. 
The attachment to primary minimum region at AWI is assumed to be irreversible (Equation 7b) due to its infinite 
depth (Figure 3) and the particles there are retained by strong capillary forces.

We need to provide mass balance equations for particles that are attached to SWI, AWI, and AWS. Equations S5a 
and S5b (see Text S1 in Supporting Information S1), representing the governing equations for average adsorbed 
concentration of nanoparticles in the secondary and primary minima regions for a Type I profile at SWI, can be 
written in dimensionless form as given in Equations 8a and 8b, respectively.

��∗2,���

��∗
= ��������

∗
|��� −��������

∗
2,��� −��������

∗
2,��� +��������

∗
1,���

� (8a)

𝜕𝜕𝜕𝜕
∗

1,𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝜕𝜕∗
= 𝐷𝐷𝐷𝐷

𝑠𝑠𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠
∗

2,𝑠𝑠𝑠𝑠𝑠𝑠
−𝐷𝐷𝐷𝐷

𝑝𝑝𝑝𝑝

𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠
∗

1,𝑠𝑠𝑠𝑠𝑠𝑠
� (8b)

Here, 𝐴𝐴 𝐴𝐴𝐴𝐴
𝑠𝑠𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠
 and 𝐴𝐴 𝐴𝐴𝐴𝐴

𝑝𝑝𝑝𝑝

𝑠𝑠𝑠𝑠𝑠𝑠
 are the advective Damkohler numbers at SWI for Type I energy profile for particle trans-

port from secondary to primary minimum region, and primary minimum to secondary minimum region, respec-
tively. Note that the particles attached to SWI in the secondary minimum region may be transferred to the primary 
minimum region. This exchange is accounted for by the last two terms in Equation 8a. The driving force for 
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particle transport from the primary to the secondary minimum region and vice versa is the kinetic energy of 
the particles due to its Brownian motion. The mass transfer rate coefficients and the corresponding advective 
Damkohler numbers for particle transfer from bulk to secondary minimum region, secondary minimum region 
to bulk, secondary minimum region to primary minimum region, and primary minimum region to secondary 
minimum region are all functions of both interaction energy and the particle diffusion coefficient (see Text S1 
and Text S2 in Supporting Information S1). If the kinetic energy of particles imparted by Brownian motion is 
greater than the energy barrier to detachment from primary minimum, which is the sum of the primary minimum 
depth and energy barrier height, then the particles will detach from the primary minimum. This results in a large 
value for 𝐴𝐴 𝐴𝐴𝐴𝐴

𝑝𝑝𝑝𝑝

𝑠𝑠𝑠𝑠𝑠𝑠
 . Else, the value of 𝐴𝐴 𝐴𝐴𝐴𝐴

𝑝𝑝𝑝𝑝

𝑠𝑠𝑠𝑠𝑠𝑠
 will be small, indicating slow detachment. Similarly, if the kinetic energy 

of particles imparted by Brownian motion is greater than the energy barrier to attachment at primary minimum, 
which is the sum of the secondary minimum depth and energy barrier height, then the value of 𝐴𝐴 𝐴𝐴𝐴𝐴

𝑠𝑠𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠
 will be large 

and the particles will move from secondary minimum to the primary minimum. The diffusion energy is inversely 
proposal to particle size. Hence, for a given set of chemical conditions, the larger particles will have a lesser 
chance of jumping the energy barrier to attach to the primary minimum than the smaller ones.

Equations S6 and S7 (refer to Text S1 in Supporting Information S1), representing the governing equations for 
average adsorbed concentration of nanoparticles at SWI for Types II and III profiles, can be written in dimension-
less form as given in Equations 9 and 10, respectively.

��∗2,���

��∗
= ��������

∗
|��� −��������

∗
2,���

� (9)

��∗1,���

��∗
= ��������

∗
|��� −��������

∗
1,���

� (10)

Particles attached to AWI are assumed to be mobile due to advection (as molecules forming AWI do not have a 
zero average velocity and may move along the flow direction) and diffusion within the interface (caused by Brown-
ian motion and rotation; Lemelle et al., 2010; Stocco et al., 2019; Tan et al., 2009; Toro-Mendoza et al., 2017). 
Though many researchers have reported that the particle diffusion coefficient at liquid-gas interface is different 
from that in the bulk water due to the difference in the viscosity of the two domains (Manoharan,  2015), a 
quantitative relationship between the two does not exist. Hence, for simplicity, we assume that the particle diffu-
sion coefficient within AWI to be the same as that in the bulk water. The dimensionless form of the governing 

Figure 3.  Types of interaction energy profiles of nanoparticles with air-water interface (AWI). The secondary minimum 
region is enlarged and shown in the inset.
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equations for average adsorbed concentration of nanoparticles at AWI for 
Type I profile (Equations S8a and S8b in Text S1 in Supporting Informa-
tion S1) is given in Equations 11a and 11b, respectively.

��∗2,���

��∗
= 1

��

[

�2�∗2,���

��∗2
+

�2�∗2,���

��∗2
+

�2�∗2,���

��∗2

]

−
��∗|���

�∗�

��∗2,���

��∗
+��
�����

∗
|��� −���
����

∗
2,��� −��������

∗
2,���

� (11a)

��∗1,���

��∗
= 1

��

[

�2�∗1,���

��∗2
+

�2�∗1,���

��∗2
+

�2�∗1,���

��∗2

]

−
��∗|���

�∗�

��∗1,���

��∗
+���
����

∗
2,���

� (11b)

Here, 𝐴𝐴 𝐴𝐴
∗

1,𝑎𝑎𝑎𝑎𝑎𝑎
 [–] is the dimensionless average adsorbed concentration in the primary minimum region of the energy 

profile at AWI, 𝐴𝐴 𝐴𝐴𝐴𝐴
𝑠𝑠𝑠𝑠

𝑎𝑎𝑎𝑎𝑎𝑎
 [–] is the advective Damkohler number at AWI for Type I energy profile for particle 

transport from secondary to primary minimum region, and 𝐴𝐴 𝐴𝐴𝑧𝑧
∗
|𝐴𝐴𝐴𝐴 𝐴𝐴 is the dimensionless velocity at AWI. Since 

the secondary minimum region is away from the AWI and particles experience a weak attractive force there, the 
secondary minimum deposited particles can get detached and reach the bulk fluid if the kinetic energy due to 
Brownian motion is larger than the attractive energy at secondary minimum. We have assumed that the average 
velocity of molecules forming AWI is the same as the bulk water velocity at the interface.

The governing equation for average adsorbed concentration of nanoparticles at AWI for Type II profile (Equation 
S9 in Text S1 in Supporting Information S1) can be written in dimensionless form as follows:

��∗2,���

��∗
= 1

��

[

�2�∗2,���

��∗2
+

�2�∗2,���

��∗2
+

�2�∗2,���

��∗2

]

−
��∗|���

�∗�

��∗2,���

��∗
+��
�����

∗
|��� −���
����

∗
2,���� (12)

The governing equation for average adsorbed concentration of nanoparticles at AWI for Type III profile (Equation 
S10 in Text S1 in Supporting Information S1) can be written in dimensionless form as follows:

��∗1,���

��∗
= 1

��

[

�2�∗1,���

��∗2
+

�2�∗1,���

��∗2
+

�2�∗1,���

��∗2

]

−
��∗|���

�∗�

��∗1,���

��∗
+��
�����

∗
|���� (13)

Colloids at AWI have been observed to diffuse along AWI to reach AWS where they are retained irreversibly 
due to strong capillary forces and film straining (Butt et al., 2005, Crist et al., 2004, 2005; Gao et al., 2008; 
Ishida, 2007; Shang et al., 2008; Sharma et al., 2008, Zevi et al., 2005, 2012). Zevi et al. (2005) observed that 
polystyrene latex colloids were retained irreversibly in the contact region where the thickness of the water film 
was smaller than the diameter of the particle. In this study, we assume that the particles attached to AWI can move 
toward AWS through diffusion with the rate coefficient for particle transport from AWI to AWS to be the same as 
that from bulk to AWI. Figure 4 shows a schematic representation of particle retention at AWS, where the location 
of the vertical line AB represents the horizontal distance from the contact point, C, beyond which the water film 
thickness is greater than particle diameter, and hence, particles are not retained by capillary forces. Particles are 
retained irreversibly by film straining and capillary forces in the region ABC, where particle size is greater than 
or equal to the water film thickness. Particles in the region ABC are assumed to be retained irreversibly at AWS, 
and the line AB is taken as the boundary in numerical simulations representing AWS. The flux continuity condi-
tion at the contact line for a zero-contact angle of AWI with the solid surface in dimensionless form is given as

−
1

𝑃𝑃𝑃𝑃

(
𝜕𝜕𝜕𝜕

∗
𝑎𝑎𝑎𝑎𝑎𝑎

𝜕𝜕𝜕𝜕∗
+

𝜕𝜕𝜕𝜕
∗
𝑎𝑎𝑎𝑎𝑎𝑎

𝜕𝜕𝜕𝜕∗

)
|
|
|
|
|𝐴𝐴

= 𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎

(

1 −
𝑠𝑠
∗
𝑎𝑎𝑎𝑎𝑎𝑎

𝑠𝑠
∗
𝑚𝑚𝑚𝑚𝑚𝑚

)

𝑠𝑠
∗
𝑎𝑎𝑎𝑎𝑎𝑎

|
|𝐴𝐴� (14)

Here, 𝐴𝐴 𝐴𝐴
∗
𝑎𝑎𝑎𝑎𝑎𝑎

 [–] is the dimensionless total adsorbed particle concentration at AWI, 𝐴𝐴 𝐴𝐴
∗
𝑎𝑎𝑎𝑎𝑎𝑎

= 𝑠𝑠
∗

1,𝑎𝑎𝑎𝑎𝑎𝑎
+ 𝑠𝑠

∗

2,𝑎𝑎𝑎𝑎𝑎𝑎
 for a Type 

I profile, 𝐴𝐴 𝐴𝐴
∗
𝑎𝑎𝑎𝑎𝑎𝑎

= 𝑠𝑠
∗

2,𝑎𝑎𝑎𝑎𝑎𝑎
 for Type II energy profile, and 𝐴𝐴 𝐴𝐴

∗
𝑎𝑎𝑎𝑎𝑎𝑎

= 𝑠𝑠
∗

1,𝑎𝑎𝑎𝑎𝑎𝑎
 for Type III energy profile, 𝐴𝐴 𝐴𝐴

∗
𝑎𝑎𝑎𝑎𝑎𝑎 [–] is the 

dimensionless average adsorbed concentration at AWS (number of adsorbed particles per length of contact line 
in dimensionless form), 𝐴𝐴 𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 [–] is the advective Damkohler number for mass transfer from AWI to AWS, and 

Figure 4.  Schematic representation of particle transfer from air-water 
interface (AWI) to air-water-solid (AWS).
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is assumed to be equal to (a) 𝐴𝐴 𝐴𝐴𝐴𝐴
𝑏𝑏𝑏𝑏

𝑎𝑎𝑎𝑎𝑎𝑎
 for Types I and II energy profiles at AWI, and (b) 𝐴𝐴 𝐴𝐴𝐴𝐴

𝑏𝑏𝑏𝑏

𝑎𝑎𝑎𝑎𝑎𝑎
 for Type III energy 

profile at AWI, and 𝐴𝐴 𝐴𝐴
∗
𝑚𝑚𝑚𝑚𝑚𝑚 [–] is the dimensionless maximum sorption capacity of AWS.

The dimensionless form of the governing equation for average adsorbed concentration of nanoparticles at AWS 
(Equation S12 in Text S1 in Supporting Information S1) is

𝜕𝜕𝜕𝜕
∗
𝑎𝑎𝑎𝑎𝑎𝑎

𝜕𝜕𝜕𝜕
∗

= 𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎

(

1 −
𝑠𝑠
∗
𝑎𝑎𝑎𝑎𝑎𝑎

𝑠𝑠
∗
𝑚𝑚𝑚𝑚𝑚𝑚

)

𝑠𝑠
∗
𝑎𝑎𝑎𝑎𝑎𝑎

|𝐴𝐴� (15)

In addition to the boundary conditions given in Equations 6, 7, and 14, the following initial and boundary condi-
tions are also needed to solve the coupled set of governing equations for transport:

�∗(�∗, �∗, �∗, 0) = 0 ; �∗1,���(�
∗, �∗, 0) = 0 ; �∗2,���(�

∗, �∗, 0) = 0 ;

�∗1,���(�
∗, �∗, �∗, 0) = �∗2,���(�

∗, �∗, �∗, 0) = �∗���(�∗, 0) = 0
� (16)

𝑐𝑐
∗(𝑥𝑥∗

, 𝑦𝑦
∗
, 0, 𝑡𝑡∗) =

⎧

⎪

⎨

⎪
⎩

1; 𝑡𝑡
∗ ≤ 𝑡𝑡

∗
𝑖𝑖𝑖𝑖

0; 𝑡𝑡
∗
> 𝑡𝑡

∗
𝑖𝑖𝑖𝑖

� (17)

𝑠𝑠
∗

1,𝑎𝑎𝑎𝑎𝑎𝑎
(𝑥𝑥∗

, 𝑦𝑦
∗
, 0, 𝑡𝑡∗) = 𝑠𝑠

∗

2,𝑎𝑎𝑎𝑎𝑎𝑎
(𝑥𝑥∗

, 𝑦𝑦
∗
, 0, 𝑡𝑡∗) = 0� (18)

𝜕𝜕𝜕𝜕
∗

𝜕𝜕𝜕𝜕∗
(𝑥𝑥∗

, 𝑦𝑦
∗
, 𝐿𝐿

∗
, 𝑡𝑡

∗) = 0� (19)

��∗1,���

��∗
|

|

|

|

|���

(�∗, �∗) =
��∗2,���

��∗
|

|

|

|

|���

(�∗, �∗) = 0� (20)

Here, 𝐴𝐴 𝐴𝐴
∗
𝑖𝑖𝑖𝑖

 is the duration of injection of nanoparticle suspension at pore inlet.

The set of dimensionless governing Equation 5, one among 8–10 for SWI, one among 11–13 for AWI, and 15 subject 
to appropriate initial and boundary conditions as given in Equations 6, 7, 14, and 16–20 are solved numerically using 
COMSOL Multiphysics software (version 5.6). For comparison with the solution of 1D advection-dispersion-ad-
sorption equation, we need to have the breakthrough curve at a given position. We have selected the position 𝐴𝐴 𝐴𝐴

∗ = 5.0 
and have averaged the 3D field of nanoparticle concentration obtained from the pore-scale model over a control 
volume between 𝐴𝐴 𝐴𝐴

∗ = 4.5 and 5.5 and over the whole water-wetted cross-section of the half corner region of the pore. 
This results in obtaining the 1D-averaged dimensionless nanoparticle concentration, 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑐𝑐∗|𝑧𝑧∗=5.0(𝑡𝑡

∗) . Similarly, the 
1D-averaged dimensionless concentrations adsorbed on SWI (𝐴𝐴 i.e., 𝑠𝑠∗

𝑠𝑠𝑠𝑠𝑠𝑠
) , AWI (𝐴𝐴 i.e., 𝑠𝑠∗

𝑎𝑎𝑎𝑎𝑎𝑎
) , and AWS (𝐴𝐴 i.e., 𝑠𝑠∗𝑎𝑎𝑎𝑎𝑎𝑎) at 

𝐴𝐴 𝐴𝐴
∗ = 5.0 are obtained by averaging the corresponding adsorbed concentrations within the same control volume.

2.2.  Pore-Scale Parameters

Table 1 lists the 12 dimensionless parameters involved in the pore-scale model developed in this study along with 
the typical range of their values, which are obtained from data reported in the literature (Crist et al., 2005; C. M. 
Park et al., 2016; Patzek, 2000; Patzek & Kristensen, 2001; Qi et al., 2014; Schafer, Harms, et al., 1998; Seetha 
et al., 2014, 2015; van Oss, 2006; Wang et al., 2017; Williams & Berg, 1992). Except for the parameter 𝐴𝐴 𝐴𝐴1 , we 
chose three specific values for each parameter within its range as given in Table 1. The 3D model presented above 
was run for a large number of random combinations of these pore-scale parameters (in total 3,601 runs). For each 
run, the averaged nanoparticle breakthrough concentration curve was obtained. The resulting data were fitted to 
the 1D advection-dispersion-adsorption equation presented below.

2.3.  1D-Averaged Model

The average transport behavior of nanoparticles in z-direction can be described using a 1D advection-dispersion 
equation with three-site kinetics, which account for nanoparticle deposition on SWI, AWI, and AWS. These are:

𝜕𝜕𝑐𝑐∗

𝜕𝜕𝜕𝜕∗
=

1

𝑃𝑃𝑃𝑃(1𝐷𝐷)

𝜕𝜕
2
𝑐𝑐∗

𝜕𝜕𝜕𝜕∗2
−

𝜕𝜕𝑐𝑐∗

𝜕𝜕𝜕𝜕∗
−𝐷𝐷𝐷𝐷

𝑎𝑎

𝑠𝑠𝑠𝑠𝑠𝑠
𝑐𝑐∗ +𝐷𝐷𝐷𝐷

𝑑𝑑

𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠
∗
𝑠𝑠𝑠𝑠𝑠𝑠

−𝐷𝐷𝐷𝐷
𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎
𝑐𝑐∗ +𝐷𝐷𝐷𝐷

𝑑𝑑

𝑎𝑎𝑎𝑎𝑎𝑎
𝑠𝑠
∗
𝑎𝑎𝑎𝑎𝑎𝑎

� (21)
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𝜕𝜕𝑠𝑠
∗
𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝜕𝜕∗
= 𝐷𝐷𝐷𝐷

𝑎𝑎

𝑠𝑠𝑠𝑠𝑠𝑠
𝑐𝑐∗ −𝐷𝐷𝐷𝐷

𝑑𝑑

𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠
∗
𝑠𝑠𝑠𝑠𝑠𝑠

� (22)

𝜕𝜕𝑠𝑠
∗
𝑎𝑎𝑎𝑎𝑎𝑎

𝜕𝜕𝜕𝜕∗
= −

𝑣𝑣
∗
𝑎𝑎𝑎𝑎𝑎𝑎

𝑣𝑣𝑚𝑚
∗

𝜕𝜕𝑠𝑠
∗
𝑎𝑎𝑎𝑎𝑎𝑎

𝜕𝜕𝜕𝜕∗
+𝐷𝐷𝐷𝐷

𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎
𝑐𝑐∗ −𝐷𝐷𝐷𝐷

𝑑𝑑

𝑎𝑎𝑎𝑎𝑎𝑎
𝑠𝑠
∗
𝑎𝑎𝑎𝑎𝑎𝑎

−𝐷𝐷𝐷𝐷
𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠
∗
𝑎𝑎𝑎𝑎𝑎𝑎

� (23)

𝜕𝜕𝑠𝑠
∗
𝑎𝑎𝑎𝑎𝑎𝑎

𝜕𝜕𝜕𝜕∗
= 𝐷𝐷𝐷𝐷

𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠
∗
𝑎𝑎𝑎𝑎𝑎𝑎

� (24)

Here, 𝐴𝐴 𝐴𝐴𝐴𝐴(1𝐷𝐷)[−] =
𝑣𝑣𝑚𝑚𝑅𝑅

𝐷𝐷𝐿𝐿

 is the 1D Peclet number, 𝐴𝐴 𝐴𝐴𝐿𝐿 [L 2 T −1] is the Taylor dispersion coefficient of nanoparti-

cles, 𝐴𝐴 𝑣𝑣
∗
𝑎𝑎𝑎𝑎𝑎𝑎

 is the dimensionless average velocity at AWI, 𝐴𝐴 𝐴𝐴𝐴𝐴
𝑎𝑎

𝑠𝑠𝑠𝑠𝑠𝑠
[−] =

𝑘𝑘
𝑎𝑎

𝑠𝑠𝑠𝑠𝑠𝑠
𝑅𝑅

𝑣𝑣𝑚𝑚

 is the advective Damkohler number 
for particle attachment to SWI, 𝐴𝐴 𝐴𝐴

𝑎𝑎

𝑠𝑠𝑠𝑠𝑠𝑠
 [T −1] is the average rate coefficient for nanoparticle attachment to SWI, 

𝐴𝐴 𝐴𝐴𝐴𝐴
𝑑𝑑

𝑠𝑠𝑠𝑠𝑠𝑠
[−] =

𝑘𝑘
𝑑𝑑

𝑠𝑠𝑠𝑠𝑠𝑠
𝑅𝑅

𝑣𝑣𝑚𝑚

 is the advective Damkohler number for particle detachment from SWI, 𝐴𝐴 𝐴𝐴
𝑑𝑑

𝑠𝑠𝑠𝑠𝑠𝑠
 [T −1] is the average 

rate coefficient for nanoparticle detachment from SWI, 𝐴𝐴 𝐴𝐴𝐴𝐴
𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎
[−] =

𝑘𝑘
𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎
𝑅𝑅

𝑣𝑣𝑚𝑚

 is the advective Damkohler number 
for particle attachment to AWI, 𝐴𝐴 𝐴𝐴

𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎
 [T −1] is the average rate coefficient for nanoparticle attachment to AWI 

and 𝐴𝐴 𝐴𝐴𝐴𝐴
𝑑𝑑

𝑎𝑎𝑎𝑎𝑎𝑎
[−] =

𝑘𝑘
𝑑𝑑

𝑎𝑎𝑎𝑎𝑎𝑎
𝑅𝑅

𝑣𝑣𝑚𝑚

 is the advective Damkohler number for detachment from AWI, 𝐴𝐴 𝐴𝐴
𝑑𝑑

𝑎𝑎𝑎𝑎𝑎𝑎
 [T −1] is the average 

rate coefficient for nanoparticle detachment from AWI, 𝐴𝐴 𝐴𝐴𝐴𝐴
𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎[−] =
𝑘𝑘
𝑎𝑎
𝑎𝑎𝑎𝑎𝑎𝑎

𝑅𝑅

𝑣𝑣𝑚𝑚

 is the advective Damkohler number 
for particle attachment to AWS, and 𝐴𝐴 𝐴𝐴

𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎 [T −1] is the average rate coefficient for nanoparticle attachment to 
AWS. Equations  21–24 are solved numerically by imposing the following initial and boundary conditions 
(Equations 25–27):

𝑐𝑐∗ (𝑧𝑧∗, 0) = 0 ; 𝑠𝑠∗
𝑠𝑠𝑠𝑠𝑠𝑠

(𝑧𝑧∗, 0) = 𝑠𝑠
∗
𝑎𝑎𝑎𝑎𝑎𝑎

(𝑧𝑧∗, 0) = 𝑠𝑠
∗
𝑎𝑎𝑎𝑎𝑎𝑎(𝑧𝑧

∗
, 0) = 0� (25)

Parameter Expression Description Range Chosen values

𝐴𝐴 𝐴𝐴
∗  𝐴𝐴

𝜆𝜆

𝑎𝑎
  Ratio of characteristic wavelength of interaction to nanoparticle radius 1–10 1, 2, and 10

𝐴𝐴 𝐴𝐴   – Half corner angle 0.087–1.31 radians 0.087, 0.785, and 1.31

𝐴𝐴 𝐴𝐴𝐴𝐴  𝐴𝐴
𝑣𝑣𝑚𝑚𝑅𝑅

𝐷𝐷
  Peclet number 0.05–50 0.05, 5, and 50

𝐴𝐴 𝐴𝐴  𝐴𝐴
𝑎𝑎

𝑅𝑅
  Interception parameter (ratio of nanoparticle radius to radius of curvature of AWI) 4 × 10 − 5 to 0.005 4 × 10 − 5, 0.0001, and 

0.001 (𝐴𝐴 𝐴𝐴
∗ = 10 )

4 × 10 − 5, 0.001, and 
0.005 𝐴𝐴 (𝜆𝜆∗ = 1 and 2 )

𝐴𝐴 𝐴𝐴1  – System-specific hydrophobic constant −21 to −22 −21 and −22

𝐴𝐴 𝐴𝐴1  – System-specific hydrophobic constant −5 to −7 −5, −6, and −7

𝐴𝐴 𝐴𝐴
∗  𝐴𝐴

𝐻𝐻

𝑘𝑘𝐵𝐵𝑇𝑇
  Dimensionless Hamaker constant for particle-water-SWI 0.247–2.47 0.247, 1, and 2.47

𝐴𝐴 𝐴𝐴
∗
𝑎𝑎  𝐴𝐴

𝐻𝐻𝑎𝑎

𝑘𝑘𝐵𝐵𝑇𝑇
  Dimensionless Hamaker constant for particle-water-AWI −0.247 to −2.47 −0.247, −1, and −2.47

𝐴𝐴 𝐴𝐴𝐷𝐷𝐷𝐷  𝐴𝐴 𝐴𝐴𝐴𝐴  Ratio of nanoparticle radius to double layer thickness 5.5–100 5.5, 10, and 100 (𝐴𝐴 𝐴𝐴
∗ = 10 )

5.5, 25, and 100 𝐴𝐴 (𝜆𝜆∗ = 2 )

5.5, 50, and 100 𝐴𝐴 (𝜆𝜆
∗
= 1)

𝐴𝐴 𝐴𝐴𝐸𝐸1 
𝐴𝐴

𝜋𝜋𝜋𝜋𝜋𝜋0𝑎𝑎(𝜓𝜓1
2
+𝜓𝜓2

2)

𝑘𝑘𝐵𝐵𝑇𝑇
  Represents the magnitude of surface potentials of nanoparticle and interface 10–400 1, 20, and 40 (𝐴𝐴 𝐴𝐴

∗ = 10 )

10, 40, and 200 (𝐴𝐴 𝐴𝐴
∗ = 2 )

10, 40, and 400 (𝐴𝐴 𝐴𝐴
∗ = 1 )

𝐴𝐴 𝐴𝐴𝐸𝐸2  𝐴𝐴
2(𝜓𝜓1∕𝜓𝜓2)

1+ (𝜓𝜓1∕𝜓𝜓2)
2 

Represents the ratio of surface potentials of nanoparticle and interface 0.8–1 0.8, 0.9, and 1

𝐴𝐴 𝐴𝐴𝑐𝑐  – Contact angle of nanoparticle with AWI 0 to 𝐴𝐴
𝜋𝜋

2
0, 𝐴𝐴

𝜋𝜋

3
 , and 𝐴𝐴

𝜋𝜋

2
 (𝐴𝐴 𝐴𝐴1 = −22 )

0, 𝐴𝐴
𝜋𝜋

6
 , and 𝐴𝐴

5𝜋𝜋

12
 (𝐴𝐴 𝐴𝐴1 = −21 )

Table 1 
Pore-Scale Parameters Involved in the Model Developed in This Study

 19447973, 2023, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022W

R
034302 by U

trecht U
niversity, W

iley O
nline L

ibrary on [20/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Water Resources Research

JAYARAJ ET AL.

10.1029/2022WR034302

11 of 22

𝑐𝑐∗ (0, 𝑡𝑡∗) =

⎧

⎪

⎨

⎪
⎩

1; 𝑡𝑡
∗ ≤ 𝑡𝑡

∗
𝑖𝑖𝑖𝑖

0; 𝑡𝑡
∗
> 𝑡𝑡

∗
𝑖𝑖𝑖𝑖

; 𝑠𝑠
∗
𝑎𝑎𝑎𝑎𝑎𝑎

(0, 𝑡𝑡∗) = 0� (26)

𝜕𝜕𝑐𝑐∗

𝜕𝜕𝜕𝜕∗
(𝐿𝐿∗

, 𝑡𝑡
∗) = 0� (27)

The 1D-averaged model (Equations 21–24) involves six parameters (𝐴𝐴 𝐴𝐴𝐴𝐴(1𝐷𝐷) ; 𝐴𝐴 𝐴𝐴𝐴𝐴
𝑎𝑎

𝑠𝑠𝑠𝑠𝑠𝑠
 ; 𝐴𝐴 𝐴𝐴𝐴𝐴

𝑑𝑑

𝑠𝑠𝑠𝑠𝑠𝑠
 ; 𝐴𝐴 𝐴𝐴𝐴𝐴

𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎
 ; 𝐴𝐴 𝐴𝐴𝐴𝐴

𝑑𝑑

𝑎𝑎𝑎𝑎𝑎𝑎
 ; 𝐴𝐴 𝐴𝐴𝐴𝐴

𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎 ), 
whose values are estimated by following the fitting procedure as explained below. First, the value of 𝐴𝐴 𝐴𝐴𝐴𝐴(1𝐷𝐷) is 
estimated by simulating the transport of a conservative tracer in the pore, that is, by solving Equation 5 with 
zero deposition at SWI, AWI, and AWS subject to the conditions given by Equations 16, 17, and 19, and then 
fitting the tracer breakthrough curve (𝐴𝐴 𝑐𝑐∗ vs. 𝐴𝐴 𝐴𝐴

∗ ) with Equation 21 with 𝐴𝐴 𝐴𝐴𝐴𝐴
𝑎𝑎

𝑠𝑠𝑠𝑠𝑠𝑠
= 𝐷𝐷𝐷𝐷

𝑑𝑑

𝑠𝑠𝑠𝑠𝑠𝑠
= 𝐷𝐷𝐷𝐷

𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎
= 𝐷𝐷𝐷𝐷

𝑑𝑑

𝑎𝑎𝑎𝑎𝑎𝑎
= 0 . 

Since the particle suspension is assumed to be dilute and the particle size is between 10 and 100  nm, the 
adsorbed concentration of particles at SWI, AWS, and AWS will not be sufficiently large to affect the flow 
field, and hence, the 1D Peclet number. Hence, for simplicity, we assume in this study that nanoparticles have 
the same dispersivity as that of the tracer. Next, nanoparticle breakthrough curve (𝐴𝐴 𝑐𝑐∗ vs. 𝐴𝐴 𝐴𝐴

∗ ) and adsorbed 
concentration curves (𝐴𝐴 𝑠𝑠

∗
𝑠𝑠𝑠𝑠𝑠𝑠

 vs. 𝐴𝐴 𝐴𝐴
∗ , 𝐴𝐴 𝑠𝑠

∗
𝑎𝑎𝑎𝑎𝑎𝑎

vs. 𝑡𝑡∗ , and 𝐴𝐴 𝑠𝑠
∗
𝑎𝑎𝑎𝑎𝑎𝑎 vs. 𝑡𝑡

∗ ) obtained from the 3D pore-scale model are fitted 
with Equations 21–24 to estimate the values of 𝐴𝐴 𝐴𝐴𝐴𝐴

𝑎𝑎

𝑠𝑠𝑠𝑠𝑠𝑠
 , 𝐴𝐴 𝐴𝐴𝐴𝐴

𝑑𝑑

𝑠𝑠𝑠𝑠𝑠𝑠
 , 𝐴𝐴 𝐴𝐴𝐴𝐴

𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎
 , 𝐴𝐴 𝐴𝐴𝐴𝐴

𝑑𝑑

𝑎𝑎𝑎𝑎𝑎𝑎
 , and 𝐴𝐴 𝐴𝐴𝐴𝐴

𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎 . Figure 5 shows a good 
match between the nanoparticle breakthrough curve and adsorbed concentration curves obtained from the 3D 
pore-scale model and the corresponding fitted curves obtained from the 1D-averaged model. The effects of 
variation of each of the parameters in the 3D pore-scale model on the 1D-averaged deposition rate coefficients 
at SWI, AWI, and AWS, such as 𝐴𝐴 𝐴𝐴𝐴𝐴

𝑎𝑎

𝑠𝑠𝑠𝑠𝑠𝑠
 , 𝐴𝐴 𝐴𝐴𝐴𝐴

𝑑𝑑

𝑠𝑠𝑠𝑠𝑠𝑠
 , 𝐴𝐴 𝐴𝐴𝐴𝐴

𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎
 , 𝐴𝐴 𝐴𝐴𝐴𝐴

𝑑𝑑

𝑎𝑎𝑎𝑎𝑎𝑎
 , and 𝐴𝐴 𝐴𝐴𝐴𝐴

𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎 , are discussed in detail in Text S4 in 
Supporting Information S1.

Figure 5.  Comparison of (a) nanoparticle breakthrough curve, (b) adsorbed concentration curve at solid-water interface (SWI), (c) adsorbed concentration curve at 
air-water interface (AWI), and (d) adsorbed concentration curve at air-water-solid (AWS) obtained from the 3D pore-scale model versus the 1D averaged model. The values 
of parameters used in this simulation are 𝐴𝐴 𝐴𝐴

∗ = 2, 𝛽𝛽 = 45
0
, 𝑃𝑃 𝑃𝑃 = 5, 𝐴𝐴 = 0.005, 𝑏𝑏1 = −21, 𝑎𝑎1 = −7,𝐻𝐻∗ = 0.247,𝐻𝐻∗

𝑎𝑎 = −0.247, 𝑁𝑁𝐷𝐷𝐷𝐷 = 5.5, 𝑁𝑁𝐸𝐸1 = 10, 𝑁𝑁𝐸𝐸2 = 1, and 𝜃𝜃𝑐𝑐 = 00 .
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3.  Relationship Between 1D-Averaged Deposition Rate Coefficients and Pore-Scale 
Parameters
The 1D-averaged advective Damkohler numbers for deposition to SWI, AWI, and AWS obtained from the 3,601 
simulations formed the data set that is further analyzed to find their relationship with 12 pore-scale parame-
ters, including 𝐴𝐴 𝐴𝐴

∗ , 𝐴𝐴 𝐴𝐴 , A, 𝐴𝐴 𝐴𝐴𝐴𝐴 , 𝐴𝐴 𝐴𝐴1 , 𝐴𝐴 𝐴𝐴1 , 𝐴𝐴 𝐴𝐴
∗ , 𝐴𝐴 𝐴𝐴

∗
𝑎𝑎 , NDL, NE1, NE2, and 𝐴𝐴 𝐴𝐴𝑐𝑐 . We found that a power-law relation could 

satisfactorily describe the variation of 𝐴𝐴 𝐴𝐴𝐴𝐴
𝑎𝑎

𝑠𝑠𝑠𝑠𝑠𝑠
 , 𝐴𝐴 𝐴𝐴𝐴𝐴

𝑑𝑑

𝑠𝑠𝑠𝑠𝑠𝑠
 , 𝐴𝐴 𝐴𝐴𝐴𝐴

𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎
 , 𝐴𝐴 𝐴𝐴𝐴𝐴

𝑑𝑑

𝑎𝑎𝑎𝑎𝑎𝑎
 , and 𝐴𝐴 𝐴𝐴𝐴𝐴

𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎 vis-à-vis various pore-scale param-
eters as given below:

𝐷𝐷𝐷𝐷
𝑎𝑎

𝑠𝑠𝑠𝑠𝑠𝑠
= 𝑘𝑘1𝛽𝛽

𝑘𝑘2𝐴𝐴
−𝑘𝑘3𝑃𝑃𝑃𝑃

−𝑘𝑘4
(

2.72𝜆𝜆
∗
)−𝑘𝑘5

𝐻𝐻
∗𝑘𝑘6� (28)

𝐷𝐷𝐷𝐷
𝑑𝑑

𝑠𝑠𝑠𝑠𝑠𝑠
= 𝑙𝑙1𝛽𝛽

𝑙𝑙2𝐴𝐴
−𝑙𝑙3𝑃𝑃𝑃𝑃

−𝑙𝑙4
(

2.72𝜆𝜆
∗
)−𝑙𝑙5� (29)

𝐷𝐷𝐷𝐷
𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎
= 𝑚𝑚1𝛽𝛽

𝑚𝑚2𝐴𝐴
𝑚𝑚3𝑃𝑃𝑃𝑃

−𝑚𝑚4 |𝑏𝑏1|
−𝑚𝑚5 |𝑎𝑎1|

−𝑚𝑚6
(

2.72𝜆𝜆
∗
)𝑚𝑚7

(𝜃𝜃𝑐𝑐 + 𝜋𝜋)
𝑚𝑚8� (30)

𝐷𝐷𝐷𝐷
𝑑𝑑

𝑎𝑎𝑎𝑎𝑎𝑎
= 𝑛𝑛1𝛽𝛽

𝑛𝑛2𝐴𝐴
−𝑛𝑛3𝑃𝑃𝑃𝑃

−𝑛𝑛4 |𝑏𝑏1|
−𝑛𝑛5 |𝑎𝑎1|

−𝑛𝑛6
(

2.72𝜆𝜆
∗
)−𝑛𝑛7

(𝜃𝜃𝑐𝑐 + 𝜋𝜋)
−𝑛𝑛8� (31)

𝐷𝐷𝐷𝐷
𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑜𝑜1𝛽𝛽
𝑜𝑜2𝐴𝐴

−𝑜𝑜3𝑃𝑃𝑃𝑃
−𝑜𝑜4 |𝑏𝑏1|

−𝑜𝑜5 |𝑎𝑎1|
−𝑜𝑜6

(

2.72𝜆𝜆
∗
)−𝑜𝑜7

(𝜃𝜃𝑐𝑐 + 𝜋𝜋)
𝑜𝑜8� (32)

Here, 𝐴𝐴 𝐴𝐴𝑖𝑖, 𝑙𝑙𝑗𝑗 , 𝑚𝑚𝑘𝑘, 𝑛𝑛𝑘𝑘 and 𝐴𝐴 𝐴𝐴𝑘𝑘 𝐴𝐴 (𝑖𝑖 = 1, 2, . . . , 6; 𝑗𝑗 = 1, 2, . . . , 5; and 𝑘𝑘 = 1, 2, . . . , 8) are the coefficients whose values are 
estimated through multiple-linear regression analysis. The deposition rate coefficients at SWI, 𝐴𝐴 𝐴𝐴𝐴𝐴

𝑎𝑎

𝑠𝑠𝑠𝑠𝑠𝑠
 and 𝐴𝐴 𝐴𝐴𝐴𝐴

𝑑𝑑

𝑠𝑠𝑠𝑠𝑠𝑠
 , are 

found to be insensitive to variation in the values of parameters such as 𝐴𝐴 𝐴𝐴
∗
𝑎𝑎 , NDL, NE1, NE2, 𝐴𝐴 𝐴𝐴1 , 𝐴𝐴 𝐴𝐴1 , and 𝐴𝐴 𝐴𝐴𝑐𝑐 (refer to Text 

S4 and Figures S4–S6 in Supporting Information S1), and hence, are not included in Equations 28 and 29. Simi-
larly, the deposition rate coefficients at AWI and AWS, such as 𝐴𝐴 𝐴𝐴𝐴𝐴

𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎
 , 𝐴𝐴 𝐴𝐴𝐴𝐴

𝑑𝑑

𝑎𝑎𝑎𝑎𝑎𝑎
 , and 𝐴𝐴 𝐴𝐴𝐴𝐴

𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎 , are found to be insensitive 
to parameters such as 𝐴𝐴 𝐴𝐴

∗
𝑎𝑎 , NDL, NE1, NE2, and 𝐴𝐴 𝐴𝐴

∗ (refer to Text S4 and Figure S3 in Supporting Information S1), 
and thus are not included in Equations 30–32. Table 2 lists the estimated values of coefficients in Equations 28–32. 
Figure 6 compares the predicted values of 𝐴𝐴 𝐴𝐴𝐴𝐴

𝑎𝑎

𝑠𝑠𝑠𝑠𝑠𝑠
 , 𝐴𝐴 𝐴𝐴𝐴𝐴

𝑑𝑑

𝑠𝑠𝑠𝑠𝑠𝑠
 , 𝐴𝐴 𝐴𝐴𝐴𝐴

𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎
 , 𝐴𝐴 𝐴𝐴𝐴𝐴

𝑑𝑑

𝑎𝑎𝑎𝑎𝑎𝑎
 , and 𝐴𝐴 𝐴𝐴𝐴𝐴

𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎 obtained from Equations 28–32 
versus the corresponding values estimated by fitting the 3D pore-scale simulations using the 1D-averaged model. 
It is clear that there is a good agreement between the predicted and estimated values of 𝐴𝐴 𝐴𝐴𝐴𝐴

𝑎𝑎

𝑠𝑠𝑠𝑠𝑠𝑠
 , 𝐴𝐴 𝐴𝐴𝐴𝐴

𝑑𝑑

𝑠𝑠𝑠𝑠𝑠𝑠
 , 𝐴𝐴 𝐴𝐴𝐴𝐴

𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎
 , 𝐴𝐴 𝐴𝐴𝐴𝐴

𝑑𝑑

𝑎𝑎𝑎𝑎𝑎𝑎
 , 

and 𝐴𝐴 𝐴𝐴𝐴𝐴
𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎 (Figure 6). It can be inferred from Equations 28–32 that the parameters describing pore geometry (𝐴𝐴 𝐴𝐴 , 𝐴𝐴 𝐴𝐴 , 
and 𝐴𝐴 𝐴𝐴

∗ ), flow (𝐴𝐴 𝐴𝐴𝐴𝐴 ), and the hydrophobic energy (𝐴𝐴 𝐴𝐴1 , 𝐴𝐴 𝐴𝐴1 , and 𝐴𝐴 𝐴𝐴𝑐𝑐 ) govern the retention of nanoparticles at SWI, AWI, 
and AWS, with negligible contribution from the chemical parameters (𝐴𝐴 𝐴𝐴

∗
𝑎𝑎 , NDL, NE1, and NE2).

Equations  28–32 are further converted into the dimensional form which results in the following relation-
ship between 1D-averaged deposition rate coefficients at SWI, AWI, and AWS vis-à-vis various dimensional 
pore-scale parameters.

𝑘𝑘
𝑎𝑎

𝑠𝑠𝑠𝑠𝑠𝑠
= 𝑝𝑝1𝛽𝛽

𝑝𝑝2𝑎𝑎
−𝑝𝑝3𝑅𝑅

−𝑝𝑝4𝑣𝑣𝑚𝑚
𝑝𝑝5𝐻𝐻

𝑝𝑝6𝜇𝜇
−𝑝𝑝7𝑇𝑇

𝑝𝑝8� (33)

𝑘𝑘
𝑑𝑑

𝑠𝑠𝑠𝑠𝑠𝑠
= 𝑞𝑞1𝛽𝛽

𝑞𝑞2𝑎𝑎
−𝑞𝑞3𝑅𝑅

−𝑞𝑞4𝑣𝑣𝑚𝑚
𝑞𝑞5𝜇𝜇

−𝑞𝑞6𝑇𝑇
𝑞𝑞7� (34)

𝑘𝑘
𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎
= 𝑟𝑟1𝛽𝛽

𝑟𝑟2𝑎𝑎
−𝑟𝑟3𝑅𝑅

−𝑟𝑟4 |𝑏𝑏1|
−𝑟𝑟5 |𝑎𝑎1|

−𝑟𝑟6𝑣𝑣𝑚𝑚
𝑟𝑟7𝜇𝜇

−𝑟𝑟8𝑇𝑇
𝑟𝑟9 (𝜃𝜃𝑐𝑐 + 𝜋𝜋)

𝑟𝑟10� (35)

𝑘𝑘
𝑑𝑑

𝑎𝑎𝑎𝑎𝑎𝑎
= 𝑠𝑠1𝛽𝛽

𝑠𝑠2𝑎𝑎
−𝑠𝑠3𝑅𝑅

−𝑠𝑠4 |𝑏𝑏1|
𝑠𝑠5 |𝑎𝑎1|

−𝑠𝑠6𝑣𝑣𝑚𝑚
𝑠𝑠7𝜇𝜇

−𝑠𝑠8𝑇𝑇
𝑠𝑠9 (𝜃𝜃𝑐𝑐 + 𝜋𝜋)

−𝑠𝑠10� (36)

𝑘𝑘
𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑡𝑡1𝛽𝛽
𝑡𝑡2𝑎𝑎

−𝑡𝑡3𝑅𝑅
−𝑡𝑡4 |𝑏𝑏1|

−𝑡𝑡5 |𝑎𝑎1|
−𝑡𝑡6𝑣𝑣𝑚𝑚

𝑡𝑡7𝜇𝜇
−𝑡𝑡8𝑇𝑇

𝑡𝑡9 (𝜃𝜃𝑐𝑐 + 𝜋𝜋)
𝑡𝑡10� (37)

Here, 𝐴𝐴 𝐴𝐴𝑖𝑖, 𝑞𝑞𝑗𝑗 , 𝑟𝑟𝑘𝑘, 𝑠𝑠𝑘𝑘 and 𝐴𝐴 𝐴𝐴𝑘𝑘 𝐴𝐴 (𝑖𝑖 = 1, 2, . . . , 8; 𝑗𝑗 = 1, 2, . . . , 7; and 𝑘𝑘 = 1, 2, . . . , 10) are the coefficients whose values are 
given in Table 2. 𝐴𝐴 𝐴𝐴1 , 𝐴𝐴 𝐴𝐴1 , 𝐴𝐴 𝐴𝐴1 , 𝐴𝐴 𝐴𝐴1 , and 𝐴𝐴 𝐴𝐴1 are calculated using the following expressions:

𝑝𝑝1 = 𝑘𝑘1(2.72𝜆𝜆)
−𝑘𝑘5 (6𝜋𝜋)

−𝑘𝑘4𝑘𝑘𝐵𝐵
(𝑘𝑘6−𝑘𝑘4)� (38)

𝑞𝑞1 = 𝑙𝑙1(2.72𝜆𝜆)
−𝑙𝑙5 (6𝜋𝜋)

−𝑙𝑙4𝑘𝑘𝐵𝐵
𝑙𝑙4� (39)

𝑟𝑟1 = 𝑚𝑚1(2.72𝜆𝜆)
𝑚𝑚7 (6𝜋𝜋)

−𝑚𝑚4𝑘𝑘𝐵𝐵
𝑚𝑚4� (40)

𝑠𝑠1 = 𝑛𝑛1(2.72𝜆𝜆)
−𝑛𝑛7 (6𝜋𝜋)

−𝑛𝑛4𝑘𝑘𝐵𝐵
𝑛𝑛4� (41)
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𝑡𝑡1 = 𝑜𝑜1(2.72𝜆𝜆)
−𝑜𝑜7 (6𝜋𝜋)

−𝑜𝑜4𝑘𝑘𝐵𝐵
𝑜𝑜4� (42)

Equations 35 and 36 and Table 2 show an increasing trend for 𝐴𝐴 𝐴𝐴
𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎
 and 𝐴𝐴 𝐴𝐴

𝑑𝑑

𝑎𝑎𝑎𝑎𝑎𝑎
 versus 𝐴𝐴 𝐴𝐴 . This is because an increase in 

the value of 𝐴𝐴 𝐴𝐴 leads to a decrease in the velocity of flow near the AWI. This results in increased transport of parti-
cles through diffusion toward AWI. Larger particle concentration at AWI leads to greater particle transport from 
AWI to AWS. Hence, 𝐴𝐴 𝐴𝐴

𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎 shows a positive trend with increasing 𝐴𝐴 𝐴𝐴 (Equation 37). As the diffusion length for parti-
cles to reach SWI decreases with increasing 𝐴𝐴 𝐴𝐴 , 𝐴𝐴 𝐴𝐴

𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎
 shows an increasing trend with 𝐴𝐴 𝐴𝐴 (Equation 33 and Table 2).

Equations 33–37 and Table 2 indicate a decreasing trend for the deposition rate coefficients at SWI, AWI, and 
AWS versus particle size. This is due to decreasing value of particle diffusion coefficient with increasing particle 
size, which decreases the rate of transport of particles toward interfaces. Also, particle size plays a role in the 
interaction energy profiles between the particle and interface. This is also due to the decrease in depth of second-
ary energy minimum and increasing height of energy barrier for deposition to primary minimum for particle-AWI 

Figure 6.  Comparison of predicted values of (a) 𝐴𝐴 𝐴𝐴𝐴𝐴
𝑎𝑎

𝑠𝑠𝑠𝑠𝑠𝑠
 , (b) 𝐴𝐴 𝐴𝐴𝐴𝐴

𝑑𝑑

𝑠𝑠𝑠𝑠𝑠𝑠
 , (c) 𝐴𝐴 𝐴𝐴𝐴𝐴

𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎
 , (d) 𝐴𝐴 𝐴𝐴𝐴𝐴

𝑑𝑑

𝑎𝑎𝑎𝑎𝑎𝑎
 , and (e) 𝐴𝐴 𝐴𝐴𝐴𝐴

𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎 obtained from Equations 28–32 versus the corresponding values 
estimated by fitting the 3D simulations with the 1D-averaged model. Straight line in all the above figures represents 1:1 line.
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with increasing particle size, which makes the conditions unfavorable for deposition. In addition, the energy 
barrier for deposition at SWI increases with increasing particle size.

The deposition rate coefficients of nanoparticles at SWI, AWI, and AWS decrease with increasing radius of 
curvature of the AWI (or increasing degree of saturation) due to larger diffusion length of particles from bulk to 
the interfaces (Equations 33–37 and Table 2). This is comparable to the experimental results reported in the liter-
ature which observed larger number of particles getting attached to SWI and AWI with decreasing water content 
of the soil (Gargiulo et al., 2008; Torkzaban et al., 2008; Wan et al., 1994; Wan & Wilson, 1994).

The rate coefficients for particle attachment to SWI, AWI and AWS increase with increasing pore-water velocity 
(Equations 33, 35, and 37 and Table 2). AWS offers a favorable site for particle deposition. Hence, the larger the 
pore-water velocity, the faster will be the rate at which particles are brought to AWI, which in turn results in greater 
attachment to AWS. Equations 34 and 36 show that the detachment rate coefficients of nanoparticles from SWI and 
AWI increase with increasing pore-water velocity. We could not find any paper in the literature where the rate coeffi-
cients of attachment/detachment of particles from/to various interfaces are reported for different pore-water velocities 
at the same saturation. However, the findings from this study are consistent with the studies of Gargiulo et al. (2008), 
Torkzaban et al. (2006), and Zhang et al. (2013, 2014) who reported increased values of attachment and detachment 
rate coefficients of bacteria, bacteriophages, polystyrene microspheres, and silica microspheres at SWI with increas-
ing pore-water velocity caused by decreasing saturation (i.e., the above papers maintained a constant flow rate for 
different saturations). Similarly, Torkzaban et al. (2006) found increasing values of attachment and detachment rate 
coefficients of bacteriophages at SWI with increasing pore-water velocity caused by decreasing saturation.

Equations 35 and 37 predict greater retention of hydrophobic nanoparticles than hydrophilic ones at AWI and 
AWS, with 𝐴𝐴 𝐴𝐴

𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎
 and 𝐴𝐴 𝐴𝐴

𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎 showing a positive trend with 𝐴𝐴 𝐴𝐴𝑐𝑐 and 𝐴𝐴 k𝑑𝑑

𝑎𝑎𝑎𝑎𝑎𝑎
 showing a negative trend with 𝐴𝐴 𝐴𝐴𝑐𝑐 . This is due to 

the greater depth of primary minimum and smaller height of energy barrier with increasing 𝐴𝐴 𝐴𝐴𝑐𝑐 , which makes the 
conditions more favorable for deposition. This is in line with the results of Bradford et al. (2013) who observed 
greater affinity of hydrophobic colloids (𝐴𝐴 𝐴𝐴𝑐𝑐  = 65°) to AWI than relatively hydrophilic colloids (𝐴𝐴 𝐴𝐴𝑐𝑐  = 30°). Similar 
observations were reported by Wan and Wilson (1994), and Lazouskaya and Jin (2008). Later, Zhang et al. (2014) 
observed greater remobilization of hydrophilic colloids than hydrophobic colloids during imbibition as the hydro-
phobic particles were observed to be irreversibly attached to liquid-liquid interface and triple contact line.

4.  Summary and Conclusions
A 3D mathematical model is developed to simulate the transport of nanoparticles in a water-filled corner of a 
partially saturated soil capillary by accounting for particle deposition at SWI, AWI, and AWS. Particle deposition 
rates at SWI and AWI depend on their interaction energy profiles at the interfaces. The model includes a novel 
formulation for particle transport from AWI interface to AWS common region, where it gets retained irreversi-
bly by capillary forces. The contribution of AWS toward particle retention is found to increase with increasing 
hydrophobicity of the particles, with the SWI playing a major role in the retention of relatively hydrophilic 
particles. The 1D-averaged breakthrough curves and adsorbed concentration curves obtained from the 3D model 
are then fitted with 1D advection-dispersion-sorption equation with three-site kinetics to estimate the values 
of 1D-averaged deposition rate coefficients at SWI, AWI, and AWS. The geometrical parameters such as half 
corner angle, particle size, and radius of curvature of AWI, and mean flow velocity have been found to signif-
icantly affect the 1D-averaged deposition rate coefficients at SWI, AWI, and AWS. Moreover, the parameters 
representing hydrophobic energy of particles at AWI, including the contact angle of particles at AWI and hydro-
phobic constants, are found to have a significant effect only on 1D-averaged deposition rate coefficients at AWI 
and AWS, and negligible effect on particle deposition at SWI. Hamaker constant is found to have a significant 
effect only on particle deposition at SWI. However, chemical parameters such as surface potentials of particles, 
SWI, and AWI, and solution ionic strength are found to have negligible effect on 1D-averaged deposition rate 
coefficients at SWI, AWI, and AWS. The 1D model results are further used to develop relationships between 
1D-averaged deposition rate coefficients at SWI, AWI, and AWS vis-à-vis various pore-scale parameters includ-
ing half corner angle, particle size, radius of curvature of AWI, mean flow velocity, contact angle of particles with 
AWI, hydrophobic constants, and Hamaker constant. We found that a power-law relation describes the variation 
of 1D-averaged deposition rate coefficients at SWI, AWI, and AWS vis-à-vis various pore-scale parameters. The 
rate coefficients for particle attachment to SWI, AWI, and AWS, and detachment from SWI and AWI increase 
with increasing half corner angle, and mean flow velocity, and decrease with increasing radius of curvature of 
AWI and particle radius. In addition, the rate coefficient for particle attachment to SWI increases with increasing 
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Hamaker constant, and the rate coefficients for particle attachment to AWI and AWS increase with increasing 
contact angle of particle with AWI. Moreover, the rate coefficient for particle detachment from AWI decreases 
with increasing contact angle of particle with AWI.

We assumed in this study that the diffusion coefficients of nanoparticles in bulk and at AWI to be the same. 
However, this assumption is not always true. The diffusive force experienced by a particle at AWI depends on 
the amount of protrusion of the particle at AWI, which in turn depends on the difference in the viscosities of air 
and water. Since water is more viscous than air, particles will protrude more toward the air and thus will have 
lesser contact area with water phase. Boniello et al. (2015) found that the viscous drag force acting on particles 
increased with decreasing contact area of particles with the water, and hence, the translational diffusion coef-
ficient decreased. Radoev et al. (1992) estimated the diffusion coefficient of particles of size between 0.5 and 
0.9 μm in the bulk and AWI to be 0.6 and 0.4 μm 2/s, respectively. Hence, if the nanoparticle diffusion coefficient 
at AWI is smaller than that in the bulk, then the mass transfer rate coefficient for particle transfer from secondary 
minimum at AWI (Types I and II energy profiles) to bulk decreases and also, the transfer rate from AWI to AWS 
decreases. As a result, the average rate coefficients for nanoparticle detachment from AWI (𝐴𝐴 𝐴𝐴

𝑑𝑑

𝑎𝑎𝑎𝑎𝑎𝑎
 ) and attachment 

to AWS (𝐴𝐴 𝐴𝐴
𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎 ) will be smaller than the values estimated in this study.

This is the first study where nanoparticle transport is simulated in a single partially saturated pore under a 
wide range of physicochemical conditions. We have obtained relationships for 1D-averaged deposition rate 
coefficients at SWI, AWI, and AWS vis-à-vis various physicochemical parameters. These relationships can 
be further incorporated into a pore-network model to upscale nanoparticle transport to the continuum scale. 
Of course, a pore network model may involve both fully saturated and partially saturated pores. The formu-
lations for 1D-averaged deposition rate coefficients at SWI, AWI, and AWS proposed in this study are appli-
cable only for partially drained pores. For fully saturated pores, the deposition rate coefficients at SWI can 
be calculated using the formulations proposed by Seetha et al. (2017), or by following the approach of Lin 
et al. (2021, 2022).

Notation
a	 nanoparticle radius [L]

𝐴𝐴 𝐴𝐴1 	 system-specific hydrophobic constant [-]
A	 interception parameter [-]

𝐴𝐴 𝐴𝐴1 	 system-specific hydrophobic constant [-]
c	 nanoparticle number concentration in the pore [no. L −3]

𝐴𝐴 𝐴𝐴
∗ 	 dimensionless nanoparticle concentration [-]

𝐴𝐴 𝑐𝑐∗ 	 dimensionless nanoparticle breakthrough concentration [-]
𝐴𝐴 𝐴𝐴0 	 nanoparticle concentration at the pore inlet [no. L −3]

D	 particle diffusion coefficient [L 2 T −1]
𝐴𝐴 𝐴𝐴𝐿𝐿 	 nanoparticle dispersion coefficient
𝐴𝐴 𝐴𝐴𝐴𝐴

𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎
 	 advective Damkohler number for particle attachment to AWI [-]

𝐴𝐴 𝐴𝐴𝐴𝐴
𝑏𝑏𝑏𝑏

𝑎𝑎𝑎𝑎𝑎𝑎
 	 advective Damkohler number at AWI for particle transport from bulk to primary minimum 

region  [-]
𝐴𝐴 𝐴𝐴𝐴𝐴

𝑏𝑏𝑏𝑏

𝑎𝑎𝑎𝑎𝑎𝑎
 	 advective Damkohler number at AWI for particle transport from bulk to secondary minimum 

region [-]
𝐴𝐴 𝐴𝐴𝐴𝐴

𝑑𝑑

𝑎𝑎𝑎𝑎𝑎𝑎
 	 advective Damkohler number for detachment from AWI [-]

𝐴𝐴 𝐴𝐴𝐴𝐴
𝑠𝑠𝑠𝑠

𝑎𝑎𝑎𝑎𝑎𝑎
 	 advective Damkohler number at AWI for particle transport from secondary minimum to bulk 

region [-]
𝐴𝐴 𝐴𝐴𝐴𝐴

𝑠𝑠𝑠𝑠

𝑎𝑎𝑎𝑎𝑎𝑎
 	 advective Damkohler number at AWI for particle transport from secondary to primary minimum 

region [-]
𝐴𝐴 𝐴𝐴𝐴𝐴

𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎 	 advective Damkohler number for particle attachment to AWS [-]
𝐴𝐴 𝐴𝐴𝐴𝐴

𝑎𝑎

𝑠𝑠𝑠𝑠𝑠𝑠
 	 advective Damkohler number for particle attachment to SWI [-]

𝐴𝐴 𝐴𝐴𝐴𝐴
𝑏𝑏𝑏𝑏

𝑠𝑠𝑠𝑠𝑠𝑠
 	 advective Damkohler number corresponding for mass transfer of particles between bulk and 

primary minimum region at SWI
𝐴𝐴 𝐴𝐴𝐴𝐴

𝑏𝑏𝑏𝑏

𝑠𝑠𝑠𝑠𝑠𝑠
 	 advective Damkohler number corresponding for mass transfer of particles between bulk and 

secondary minimum region at SWI [-]
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𝐴𝐴 𝐴𝐴𝐴𝐴
𝑑𝑑

𝑠𝑠𝑠𝑠𝑠𝑠
 	 advective Damkohler number for particle detachment from SWI [-]

𝐴𝐴 𝐴𝐴𝐴𝐴
𝑝𝑝𝑝𝑝

𝑠𝑠𝑠𝑠𝑠𝑠
 	 advective Damkohler number corresponding for mass transfer of particles between primary mini-

mum and bulk region at SWI [-]
𝐴𝐴 𝐴𝐴𝐴𝐴

𝑝𝑝𝑝𝑝

𝑠𝑠𝑠𝑠𝑠𝑠
 	 advective Damkohler numbers at SWI for particle transport from primary minimum to secondary 

minimum region [-]
𝐴𝐴 𝐴𝐴𝐴𝐴

𝑠𝑠𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠
 	 advective Damkohler number corresponding for mass transfer of particles between secondary 

minimum and bulk region at SWI [-]
𝐴𝐴 𝐴𝐴𝐴𝐴

𝑠𝑠𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠
 	 advective Damkohler number at SWI for particle transport from secondary to primary minimum 

region [-]
𝐴𝐴 𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 	 advective Damkohler number for mass transfer from AWI to AWS

e	 elementary charge [-]
𝐴𝐴 𝐴 	 separation distance between the particle surface and the interface [L]
𝐴𝐴 𝐴

∗ 	 dimensionless distance between the particle and the interface [-]
𝐴𝐴 𝐴𝐴

∗ 	 dimensionless Hamaker constant for SWI [-]
𝐴𝐴 𝐴𝐴

∗
𝑎𝑎 	 dimensionless Hamaker constant for AWI [-]

𝐴𝐴 𝐴𝐴  	 solution ionic strength [Molar]
𝐴𝐴 𝐴𝐴132 	 force constant for asymmetric interactions between nanoparticles and AWI in water [M L 2 T −2]
𝐴𝐴 𝐴𝐴𝐵𝐵 	 Boltzmann constant [M 1 L 2 T −2 K −1]
𝐴𝐴 𝐴𝐴

𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎
 	 average rate coefficient for nanoparticle attachment to AWI [T −1]

𝐴𝐴 𝐴𝐴
𝑏𝑏𝑏𝑏

𝑎𝑎𝑎𝑎𝑎𝑎
 	 rate coefficient mass transfer of particles between bulk and primary minimum region at AWI 

[L  T −1]
𝐴𝐴 𝐴𝐴

𝑏𝑏𝑏𝑏

𝑎𝑎𝑎𝑎𝑎𝑎
 , 𝐴𝐴 𝐴𝐴

𝑠𝑠𝑠𝑠

𝑎𝑎𝑎𝑎𝑎𝑎
	 rate coefficients for forward [L T −1] and backward [T −1] mass transfer of particles between bulk 

and secondary minimum region at AWI respectively
𝐴𝐴 𝐴𝐴

𝑑𝑑

𝑎𝑎𝑎𝑎𝑎𝑎
 	 average rate coefficient for nanoparticle detachment from AWI [T −1]

𝐴𝐴 𝐴𝐴
𝑠𝑠𝑠𝑠

𝑎𝑎𝑎𝑎𝑎𝑎
 	 mass transfer rate coefficient at AWI for particle transport from secondary to primary minimum 

region [T −1]
𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 	 mass transfer rate coefficient from AWI to AWS [L T −1]
𝐴𝐴 𝐴𝐴

𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎 	 average rate coefficient for nanoparticle attachment to AWS [T −1]
𝐴𝐴 𝐴𝐴

𝑎𝑎

𝑠𝑠𝑠𝑠𝑠𝑠
 	 average rate coefficient for nanoparticle attachment to SWI [T −1]

𝐴𝐴 𝐴𝐴
𝑏𝑏𝑏𝑏

𝑠𝑠𝑠𝑠𝑠𝑠
 , 𝐴𝐴 𝐴𝐴

𝑝𝑝𝑝𝑝

𝑠𝑠𝑠𝑠𝑠𝑠
	 rate coefficients for forward [L T −1] and backward [T −1] mass transfer of particles between bulk 

and primary minimum region at SWI respectively
𝐴𝐴 𝐴𝐴

𝑏𝑏𝑏𝑏

𝑠𝑠𝑠𝑠𝑠𝑠
 , 𝐴𝐴 𝐴𝐴

𝑠𝑠𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠
	 rate coefficients for forward [LT −1] and backward [T −1] mass transfer of particles between bulk 

and secondary minimum region at SWI respectively
𝐴𝐴 𝐴𝐴

𝑑𝑑

𝑠𝑠𝑠𝑠𝑠𝑠
 	 average rate coefficient for nanoparticle detachment from SWI [T −1]

𝐴𝐴 𝐴𝐴
𝑠𝑠𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠
 , 𝐴𝐴 𝐴𝐴

𝑝𝑝𝑝𝑝

𝑠𝑠𝑠𝑠𝑠𝑠
	 mass transfer rate coefficients at SWI for particle transport from secondary to primary minimum 

region, and primary minimum to secondary minimum region, respectively [T −1]
𝐴𝐴 𝐴𝐴𝐴𝐴 	 Avogadro's number
𝐴𝐴 𝐴𝐴𝐷𝐷𝐷𝐷 	 dimensionless parameter representing the ratio of nanoparticle radius to double layer thickness [-]
𝐴𝐴 𝐴𝐴𝐸𝐸1 	 dimensionless parameter representing the magnitudes of surface potentials [-]
𝐴𝐴 𝐴𝐴𝐸𝐸2 	 dimensionless parameter representing the ratio of surface potentials [-]
𝐴𝐴 𝐴𝐴 	 fluid pressure [M 1 L −1 T  −2]
𝐴𝐴 𝐴𝐴𝐴𝐴 	 Peclet number [-]
𝐴𝐴 𝐴𝐴𝐴𝐴(1𝐷𝐷) 	 1D Peclet number [-]

R	 radius of curvature of the AWI [L]
𝐴𝐴 𝐴𝐴1,𝑎𝑎𝑎𝑎𝑎𝑎 , 𝐴𝐴 𝐴𝐴2,𝑎𝑎𝑎𝑎𝑎𝑎	 average concentrations of particles adsorbed to SWI in the primary and secondary minima regions 

[no L −2]
𝐴𝐴 𝐴𝐴

∗

1,𝑎𝑎𝑎𝑎𝑎𝑎
 	 dimensionless average adsorbed concentration in the primary minimum region of the energy 

profile at AWI [-]
𝐴𝐴 𝐴𝐴1,𝑠𝑠𝑠𝑠𝑠𝑠 , 𝐴𝐴 𝐴𝐴2,𝑠𝑠𝑠𝑠𝑠𝑠	 average concentrations of particles adsorbed to SWI in the primary and secondary minima regions 

[no L −2]
𝐴𝐴 𝐴𝐴

∗

1,𝑠𝑠𝑠𝑠𝑠𝑠
 	 dimensionless average concentration of particles adsorbed to SWI in the primary minima region [-]

𝐴𝐴 𝐴𝐴
∗

2,𝑎𝑎𝑎𝑎𝑎𝑎
 	 dimensionless average adsorbed concentration in the secondary minimum region of the energy 

profile at AWI [-]
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𝐴𝐴 𝐴𝐴
∗

2,𝑠𝑠𝑠𝑠𝑠𝑠
 	 dimensionless average concentration of particles adsorbed to SWI in the secondary minima 

region  [-]
𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 	 total adsorbed particle concentration at AWI [no L −2]
𝐴𝐴 𝐴𝐴

∗
𝑎𝑎𝑎𝑎𝑎𝑎

 	 dimensionless total adsorbed particle concentration at AWI [-]
𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 	 average adsorbed concentration at AWS [no. L −1]
𝐴𝐴 𝐴𝐴

∗
𝑎𝑎𝑎𝑎𝑎𝑎 	 dimensionless total adsorbed particle concentration at AWS [-]

𝐴𝐴 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 	 maximum sorption capacity of AWS [no. L −1]
𝐴𝐴 𝐴𝐴

∗
𝑚𝑚𝑚𝑚𝑚𝑚 	 dimensionless maximum sorption capacity of AWS [-]

𝐴𝐴 𝑠𝑠
∗
𝑎𝑎𝑎𝑎𝑎𝑎

 	 dimensionless average adsorbed concentration at AWI [-]
𝐴𝐴 𝑠𝑠

∗
𝑎𝑎𝑎𝑎𝑎𝑎 	 dimensionless average adsorbed concentration at AWS [-]

𝐴𝐴 𝑠𝑠
∗
𝑠𝑠𝑠𝑠𝑠𝑠

 	 dimensionless average adsorbed concentration at SWI [-]
𝐴𝐴 𝐴𝐴  	 time [T]
𝐴𝐴 𝐴𝐴  	 absolute temperature [K]
𝐴𝐴 𝐴𝐴𝑚𝑚 	 mean pore-water velocity 𝐴𝐴

[

LT−1
]

𝐴𝐴 𝐴𝐴
∗
𝑚𝑚 	 dimensionless mean pore-water velocity [-]

𝐴𝐴 𝐴𝐴𝑧𝑧 	 flow velocity in the 𝐴𝐴 𝐴𝐴 direction [L T −1].
𝐴𝐴 𝐴𝐴

∗
𝑧𝑧 	 dimensionless flow velocity in the 𝐴𝐴 𝐴𝐴 direction

𝐴𝐴 𝑣𝑣
∗
𝑎𝑎𝑎𝑎𝑎𝑎

 	 dimensionless average velocity at AWI [-]
𝐴𝐴 𝐴𝐴

∗ , 𝐴𝐴 𝐴𝐴
∗ , and 𝐴𝐴 𝐴𝐴

∗	 dimensionless distances along 𝐴𝐴 𝐴𝐴 , 𝐴𝐴 𝐴𝐴 , and 𝐴𝐴 𝐴𝐴 directions, respectively
𝐴𝐴 𝐴𝐴 	 half corner angle
𝐴𝐴 𝐴𝐴𝑝𝑝1 	 distance of the beginning of the primary minimum well from the solid surface at which 

𝐴𝐴 Φ𝑆𝑆𝑆𝑆 𝑆𝑆 = 0  [L]
𝐴𝐴 𝐴𝐴𝑝𝑝2 	 location of the ending of the primary minimum well from the solid surface at which 𝐴𝐴 Φ𝑆𝑆𝑆𝑆 𝑆𝑆 = 0 [L]
𝐴𝐴 𝐴𝐴𝑠𝑠 	 distance from the solid surface at which 𝐴𝐴 Φ𝑆𝑆𝑆𝑆 𝑆𝑆 = 0 in the secondary minimum region of SWI [L]
𝐴𝐴 𝐴𝐴𝜑𝜑 	 position of the SWI between the bulk and potential regions measured from the surface of the 

pore  [L]
𝐴𝐴 𝐴𝐴𝑝𝑝

′ 	 location of the ending of the primary minimum well from the solid surface at which 𝐴𝐴 Φ𝐴𝐴𝐴𝐴 𝐴𝐴 = 0 [L]
𝐴𝐴 𝐴𝐴𝑠𝑠

′ 	 distance from the solid surface at which 𝐴𝐴 Φ𝐴𝐴𝐴𝐴 𝐴𝐴 = 0 in the secondary minimum region of AWI [L]
𝐴𝐴 𝐴𝐴𝜑𝜑

′ 	 position of the AWI between the bulk and potential regions measured from the surface of the 
pore  [L]

𝐴𝐴 𝐴𝐴 	 dielectric constant of water [-]
𝐴𝐴 𝐴𝐴0 	 permittivity of vacuum [M −1L −3 T 4 I 2]
𝐴𝐴 𝐴𝐴𝑎𝑎 	 contact angle of AWI with SWI
𝐴𝐴 𝐴𝐴𝑐𝑐 	 contact angle of AWI with SWI
𝐴𝐴 𝐴𝐴 	 inverse Debye-Huckel length [L −1]
𝐴𝐴 𝐴𝐴 	 characteristic wavelength of the interaction [L]
𝐴𝐴 𝐴𝐴

∗ 	 dimensionless parameter representing the ratio of characteristic wavelength of the interaction to 
nanoparticle radius [-]

μ	 dynamic viscosity of water [M L −1 T −1]
𝐴𝐴 𝐴𝐴 	 Poisson ratio [-]
𝐴𝐴 𝐴𝐴 	 collision diameter [L]
𝐴𝐴 𝐴𝐴

∗ 	 dimensionless parameter representing the ratio of collision diameter to nanoparticle radius
𝐴𝐴 Φ𝑠𝑠

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
 	 Born potential energy between particle and solid surface [ML 2T −2]

𝐴𝐴 Φ∗

𝐴𝐴𝐴𝐴 𝐴𝐴
 	 dimensionless interaction energy between nanoparticle and AWI [-]

𝐴𝐴 Φ∗

𝑆𝑆𝑆𝑆 𝑆𝑆
 	 dimensionless interaction energy between nanoparticle and SWI [-]

𝐴𝐴 Φ𝑠𝑠

𝐸𝐸𝐸𝐸𝐸𝐸
 	 electric double layer energy between particle and solid surface [M L 2 T −2]

𝐴𝐴 Φ𝑎𝑎

𝐸𝐸𝐸𝐸𝐸𝐸
 	 electrostatic double layer energy between particle and AWI [M L 2 T −2]

𝐴𝐴 Φ𝑎𝑎

𝐻𝐻𝐻𝐻𝐻𝐻
 	 hydrophobic energy between particle and AWI [M L 2 T −2]

𝐴𝐴 Φ𝐴𝐴𝐴𝐴 𝐴𝐴 	 interaction energy between nanoparticle and AWI [M L 2 T −2]
𝐴𝐴 Φ𝑆𝑆𝑆𝑆 𝑆𝑆 	 interaction energy between nanoparticle and SWI [M L 2 T −2]
𝐴𝐴 Φ𝑎𝑎

𝑣𝑣𝑣𝑣𝑣𝑣
 	 London van der Waals energy between particle and AWI [M L 2 T −2]

𝐴𝐴 Φ𝑠𝑠

𝑣𝑣𝑣𝑣𝑣𝑣
 	 London van der Waals energy between particle and solid surface [M L 2 T −2]

𝐴𝐴 𝐴𝐴1, 𝜓𝜓2 	 surface potentials of nanoparticle and interface, respectively [ML 2I −1T −3]
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Data Availability Statement
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