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Abstract. Satellite hyperspectral imaging deals with heterogenous images con-
taining different texture areas. Filter banks are frequently used t@actesize
textures in the image performing pixel classification. This filters are dedigs-

ing different scales and orientations in order to cover all areas in thadrgial
domain. This work is aimed at studying the influence of the different seaded

in the analysis, comparing texture analysis theory with hyperspectrainmag-
cessities. To pursue this, Gabor filters over complex planes and apifeatures

are taken into account and also compared in the feature extractiorsproce

1 Introduction

Nowadays imaging spectrometers are significantly incngasieir spatial resolution.
As their resolution increases, smaller areas are represdmt each pixel in the im-
ages, encouraging the study of the relations of adjacentpftexture analysis) [9] [6].
However, not only the spatial resolution increases but tlespectral resolution. This
entails dealing with a large number of spectral bands wighllgicorrelated data [7].

Both dimensionality and texture analysis in hyperspedatraginary have been tack-
led from different points of view in literature. Several sibns to the dimensionality
problem can be found, such as selection methods based ornmatibal dimensional-
ity reduction [10] or methods based on information theoryolhry to maximize the
information provided by different sets of spectral bands [7

Moving to texture analysis, literature survey provides uthva wide variety of
well known texture analysis methods based on filtering [§] [dis well known that,
when dealing with microtextures, the most discriminanbinfation falls in medium
and high frequencies [1] [9]. It has been recently propobatigpatial/texture analysis
may significantly improve the results in pixel classificatimsks for satellite images
using a very reduced number of spectral bands [11]. Thexgifiamay be convenient to
identify the influence of each frequency band separatelyderdo compare the textural
information with the specific necessities of hyperspedsatllite imaging.

Besides, color opponent features were first introduced ior dexture character-
ization with fairly good performance [3] and later extendeddeal with multi-band
texture images [4]. However, they have never been used forpepixel classification
tasks in satellite images. In this paper, we study severhb@Gfiter banks as well as
multi-band opponent features for pixel classification sask



2 Filter banks and feature extraction

Applying a filter over an image band provides a response fcin péel. If a filter bank
is applied, a pixel can be characterized by means of the neggogenerated by all
filters. It is possible to apply a filter in the space domain bgoavolution or in the
frequency domain by a product. In both cases, the respotise t®rresponding part of
the original pixel value which responds to the filter appli&2]].

When using filter banks, they are generally designed coneglardyadic tessella-
tion of the frequency domain, that is, each frequency bacal€} considered is double
the size of the previous one. It should not be ignored thattédgsellation of the fre-
quency domain thoroughly analyzes low frequencies givisg importance to medium
and higher frequencies. Because the purpose of this work ssudy the importance
of texture in the pixel classification task, an alternatisastant tessellation (given the
same width to all frequency bands) is proposed in order tarerasn equal analysis of
all frequencies.

2.1 Gabor filters

Gabor filters consist essentially of sine and cosine funstimodulated by a Gaussian
envelope that achieve optimal joint localization in spand &equency. They can be
defined by eq. (1) and (2) where is the index for the scaley, for the orientation and
um, is the central frequency of the scale.
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If symmetrical filters are considered only the real part nfagstaken into account.

2.2 Gabor filters over complex planes

Texture analysis in multi-channel images has been gegpdaaktd as a multi-dimensional
extension of techniques designed for mono-channel imag#sis way, images are de-
composed into separated channels and the same featurgtiextrzrocess is performed
over each channel. This fails in capturing the interchapraperties of a multi-channel
image.

To describe the inter-channel properties of textures wegse features obtained
using Gabor filters over complex planes. This means thagaasof using each spectral
band individually, we take advantage of the complex definitand introduce the data
of two spectral bands into one complex band, one as the reahpd the other one
as the imaginary part. In this way we involve pairs of bandedioh characterization
process, as it happens for the opponent features. As a,rsudt cluster of spectral



bands, we will consider all possible complex bands (pairsasfds). The Gabor filter
bank will be applied over all complex bands as shown in eq.f&rel’(z, y) is thei'”
spectral band.

B (@,y) = (I (2,9) + P (2,9)i) * frun(a.y) 3)

The feature vector for each pixel in the image is composetefésponse for that
pixel to all filters in the filter bank, that is:

1/}1734 - {h%n(x7y)}W,j/i;ﬁj,Vm,n (4)

The size of the feature vector varies with the number of cemphlnds. For each
complex band, one feature is obtained for each filter applieat means that there will
be as many features as filters for each complex band and as coamplex bands as
combinations without order nor repetition may be done witb bands in the cluster
B. The total number of features is given by eq. 5 whifestands for the number of
scales anaV for the number of orientations.

size(hz,y) = M X N x <§) (5)

2.3 Opponent features

Opponent features combine spatial information acrossigdéands at different scales
and are related to processes in human vision [3]. They ar@eated from Gabor filters

as the difference of outputs of two different filters. The tamation among filters are
made for all pair of spectral bandsj with : #£ j and|m — m/| < 1:

dgm’n(‘r’ y) = hfnn ('Tv y) - thL'rn (.73, y) (6)

In this case, the feature vector for a pixel is the set of gflaygent features for all
spectral bands.

Pay = {d:rjmz,’n('r’ Z/) }Vi,j/i#j7Vm7m’/\mfm’\SLVn (7)

Hence, the size of the opponent feature vector also deperttie mumber of bands,
scales, and orientations:

size(pay) = (<§) x M+ B*x(M—1))x N = @®

=size(Yypy) + BXx (B—1)x (M —1)x N

Note that, in this case, the number of features is consitieradreased.



3 Experimental setup

The hyperspectral image database 92AvV3C image has beemubedoixel classifica-
tion experiments. It was provided by the Airborne Visiblérdmed Imaging Spectrom-
eter (AVIRIS) [13]. The 20-m GSD data was acquired over titkdn Pine Test Site in
Northwestern Indiana in 1992. From the original 220 AVIR[&stral bands our band
selection method provides us with ten clusters of bandsiwénie sets of bands that are
intended to maximize the information provided [7]. The fithister contains just one
bands, the second contains two bands, and so on.

The experimental activity was held using two filter bankst #ee first one, six
dyadic scales (the maximum starting from width one and dogeaill the image) and
four orientations were used. For the second one, eight aohftequency bands and
four orientations were considered. It has been introdueeidio degree of overlapping
as recommended in [2]. Gaussian distributions are designaeerlap each other when
achieving a value of 0.5.

For each of the scales a classification experiment was héid osly the features
provided for that scale. In addition, an analysis of the cioration of adjacent scales
have been performed. In order to study the importance of tegufencies an ascendent
joining was performed, characterizing pixels with the datavided by joined ascendent
scales. Similarly, the study of the high frequencies wasezout by a descendant join-
ing. Also for medium frequencies, central scales are cemsitlinitially and adjacent
lower and higher scales are joined gradually.

The pixels in the image database are divided in twenty norlagmging sets keeping
the a priori probability of each class. Therefore, no redunies are introduced and
each set is a representative set of the bigger original ome .classification attempts
were carried out for each experiment with the k-nearesthteigalgorithm withk = 3
and the mean of the error rates of these attempts was takhe &isdl performance of
the classifier. Each classification attempt uses one of getsdor training and another
as test set. Therefore, each set was never used twice inrtteeesgeriment.

4 Evaluation of the results

Figure 1 shows the percentages of correct pixel classibicatbtained for the experi-
ments that used the dyadic filter bank. Figure 2 shows simgkarlts when the constant
filter bank was used.

As it can be observed from both figures, when the charactaniz@rocesses in-
cluded all scales, the filter bank using the dyadic tes$atiatutperforms the constant
one. It seems clear that the better the low frequencies algzau the better the pix-
els are characterized. This means that, for this sort of @nailpe texture information,
although still helps in the characterization process gaificantly lower than the infor-
mation contained in the low frequencies. It can be seen thacale can ever outper-
form the classification rates achieved by scale one whickeeghup to 81% by itself.
In general, the more detail is obtained from low frequenthiesbest the image is char-
acterized.

For the dyadic tessellation, although scales two and thoeotl outperform scale
one when characterizing independently (Fig. 1a-b), theifggmance is considerably



92AV3C Gabor dyadic pixel classification

92AV3C Opponent dyadic pixel classification
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Fig. 1. Pixel classification rates using the filter bank with dyadic tessellation. (@)dGabor
features over complex planes (b,d,f,h) Opponent featuresiaivjdual scales (c,d) Ascendent
join (e,f) Descendent join (g,h) Central join. Note the different rangeer the Y-axis in each
graph.
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Fig. 2. Pixel classification rates using the filter bank with constant tessellatione @),&abor
features over complex planes (b,d,f,h) Opponent featuresiaivjdual scales (c,d) Ascendent
join (e,f) Descendent join (g,h) Central join. Note the different rangeer the Y-axis in each
graph.



high. Because the first scales cover a very small part of thguéncy domain, the

characterization joining scales 1, 2 and 3 improve the mibedsification rates (Fig. 1c-

d). In anutshell, when all (six) scales are used, the claasifin rates are better than the
ones obtained using just the first scale. However, it is wtitaa the results obtained

for the first three scales although having a double numbegatfifes. The descendent
and central joinings (Figs. le-f and 1g-h) clearly show thatperformance increases
significantly as features derived from lower frequenciescansidered.

Regarding the filter bank, using a constant tessellatiog. (), the first scale is
the only one containing discriminant information. This tfissale is wide enough in
this case to include the information of several scales ofdyexdic tessellation. It is
very clear from the graphs that the features derived fromerogbales do not help the
characterization processes as the classification rateysldecrease. It can be noticed
that the best classification rates obtained for the dyad&eltation is over 84% but is
only about 77% for the constant tessellation.

Last but not least, the comparison between the featureatitnamethods suggest
that opponent features perform similarly to Gabor filtersrasomplex planes. It seems
that Gabor features provide better results when using asreafl number of spectral
bands whereas opponent features provide slightly higlssiication rates when more
spectral bands are used. Nevertheless, on the whole, thectdr@zation with opponent
features requires a larger number of features than Gabersfiltvhich may worsen
performance if a large number of spectral bands is to be deresil.

Briefly, spatial analysis between pixels improves hyperspésatellite images char-
acterization [11] but the nature of this kind of images, vih&ze heterogeneous due
to being composed of different homogeneous areas, madedouedncies very impor-
tant for the characterization task, while texture inforim@tmay help the process, but
not significantly. Furthermore, including much more infation but the provided by
the low frequency analysis may even decrease the perfoertzacause of the so call
Hughes phenomenon [5].

5 Conclusions

An analysis of the contribution of each scale to the charaetgon of hyperspectral
images has been performed. As it is known in the texture arsafield, medium and
high frequencies play an essential role in texture charaetéon. However, satellite
images cannot be considered as pure texture images sinbertwgeneity of the dif-
ferent areas in the image is more important than the texh@setareas may content. A
thoroughly analysis of the contribution of each indepemndenle and the group com-
posed by low, medium or high frequencies has been carriedttwats been shown that a
detailed analysis of low frequencies helps the charaetioiz improving performance.
Also a few scales could be considered in the feature extraqtiocess providing by
themselves very high classification rates with a few numléeatures. The compar-
ison between Gabor filters over complex plains and opporeaitifes has shown that
the classification rates obtained are almost identical th bases. The main difference
is the number of features required in each case, being mugbrléor the opponent
features.
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