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Abstract. In contrast to traditional machine learning algorithms, where all data
are available in batch mode, the new paradigm of streaming data poses additional
difficulties, since data samples arrive in a sequence and many hard decisions have
to be made on-line. The problem addressed here consists of classifying streaming
data which not only are unlabeled, but also have a number l of attributes arriving
after some time delay τ . In this context, the main issues are what to do when the
unlabeled incomplete samples and, later on, their missing attributes arrive; when
and how to classify these incoming samples; and when and how to update the
training set. Three different strategies (for l = 1 and constant τ ) are explored
and evaluated in terms of the accumulated classification error. The results reveal
that the proposed on-line strategies, despite their simplicity, may outperform clas-
sifiers using only the original, labeled-and-complete samples as a fixed training
set. In other words, learning is possible by properly tapping into the unlabeled,
incomplete samples, and their delayed attributes. The many research issues iden-
tified include a better understanding of the link between the inherent properties
of the data set and the design of the most suitable on-line classification strategy.
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1 Introduction

Most of traditional learning algorithms assume the availability of a training set of la-
beled objects (examples or instances) in memory. In recent years, however, advances in
information technology have lead to a variety of applications in which huge volumes
of data are collected continuously, thus making impossible to store all data, or process
any particular object more than once. Under these circumstances, data are not available
as a batch but comes one object at a time (called streaming data). In general, a data
stream is defined as a sequence of instances [2,9]. Data streams differ from the conven-
tional model in important elements [3] that bring new challenges: (i) The objects in the
stream arrive on-line; (ii) The system has no control over the order in which incoming
data arrive to be processed; (iii) Data streams are potentially unbounded in size.

Classification is perhaps the most widely studied problem in the context of data
stream mining. Although substantial progress has been made on this topic [1, 8, 13],
a number of issues still remain open. For example, many classification models do not
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make adequate use of the history of data streams in order to accommodate changes
in class distribution (known as concept drift). The scenario we consider in this paper
faces a new problem that may appear in several real-world applications. We assume
that each object of a data stream is a vector of d attribute values without a class label.
The aim of the classification model is to predict the true class of each incoming object
as soon as possible (ideally, in real time). However, suppose that the attribute values
are obtained from different sensors. These may produce that the attribute values will
become available at different times if some sensor requires more processing time to
compute an attribute value than the others or even, if some sensors fail. Therefore we
are considering the problem of classifying streaming data where one or more attributes
arrive with a delay. As an example, when a sensor fails in a production process, it
might not be feasible to stop everything and in this case, the system should employ the
information available at present time. Three main issues here are: (i) How to classify the
incoming sample with missing attributes; (ii) Whether to update the training (reference)
set after predicting the class label of an incomplete object or wait until the attribute
vector has been completed; and (iii) What to do when the missing attributes arrive.

In the literature, there exist many algorithms for handling data with missing attri-
butes in off-line learning [4, 6, 7, 10, 16], but no one is absolutely better than the others.
The most representative categories of these are:

1. Removing examples with missing attributes: The simplest way of dealing with
missing values is to discard the examples that contain the missing values. Due to
its simplicity, this technique may lose relevant information.

2. Projection: The l missing attributes are ignored. This implies to map the d dimen-
sional input vectors onto an (d− l) instance space.

3. Imputation: It tries to guess the missing values. In fact, usually missing values
depend on other values, and if we find a correlation between two attributes, we
may use it to impute missing items. Imputations may be deterministic or random
(stochastic). In the first case, imputations are determined by using the complete
data, and are the same if the method is applied again. In the second case, imputa-
tions are randomly drawn.

Despite the problem of missing attributes has been widely studied in off-line learn-
ing, to the best of our knowledge it has not previously been considered in the context
of on-line learning with streaming data, which makes the problem considerably more
challenging. This paper reports a preliminary study of three straightforward strategies
for an early classification of streaming data with missing attributes. By early we mean
that classification of an incoming object is done before the whole attribute vector is
known. Many applications can benefit from performing this early classification, since
there may be some kind of loss associated with waiting for the missing attributes to ar-
rive. In the present work we concentrate on the case of a single missing attribute which
happens to be the same and arrive with a constant delay.

2 Classification of Streaming Data with Delayed Attributes

At time step t in the scenario of attributes arriving with a delay, we have a reference
set St (a set of labeled examples with all attributes available). Then, a new unlabeled



object xt+1 with one missing attribute x(i)
t+1 arrives. After predicting the label for xt+1,

the system receives the value of the attribute x
(i)
t−τ+1 corresponding to the object that

came τ steps earlier, xt−τ+1. Therefore, objects from xt−τ+2 to xt+1 are still with one
missing attribute.

Here, one key question is whether to use the unlabeled data with missing attributes
to update the reference set St and in such a case, how to do it. In addition, we have
to decide how to best utilize the value of the missing attribute x

(i)
t when this becomes

available.
When a new unlabeled object xt+1 arrives, the system has to provide a prediction

for its label based on the information available up to time t. In this situation, it would
be desirable to make use of the confidence with which the previous classifications have
been made. That is why a modification of the k-Nearest Neighbor (k-NN) rule [15] is
here used, since its stochastic nature results suitable to properly manage the confidence
measurements. On the other hand, for handling the missing attribute of object xt+1, we
employ the projection strategy because of its simplicity and its proven good behavior.

2.1 A Classifier with Confidence Measurements

All instances in the reference set have a confidence value for each class, indicating the
probability of belonging to the corresponding class. When a new unlabeled object xt+1

from the data stream arrives, its confidence values (one per class) are estimated. Thus
the object will be assigned to the class with the highest confidence value.

To estimate the confidence values of the incoming object xt+1, its k nearest neigh-
bors from the reference set St are used. The confidences of its k nearest neighbors,
which contribute a weight by each class to the object xt+1, and the distances between
them and the new object xt+1 are also employed.

More formally, let k be the number of nearest neighbors, let nj be the j-th nearest
neighbor of xt+1, let pm(nj) denote the confidence (probability) that the j-th nearest
neighbor belongs to class m, and let d(xt+1,nj) be the Euclidean distance between the
object xt+1 and nj . The confidence of the object xt+1 in relation with the class m, say
Pm(xt+1), is given by the following equation [15]:

Pm(xt+1) =
k∑

j=1

pm(nj)
1

ϵ+ d(xt+1,nj)
, (1)

where ϵ is a constant value (ϵ = 1), which is employed to avoid uncertain values in the
division when the object xt+1 is very similar or very close to its j-th nearest neighbor.

The above expression states that the confidence that an object xt+1 belongs to a
class m is the weighted average of the confidences that its k nearest neighbors belong
to class m. The weight is inversely proportional to the distance from the object to the
corresponding k nearest neighbors. In order to get a proper probability, the confidence
Pm(xt+1) in Eq. (1) is divided by the sum of the confidences of the k nearest neighbors
to all the classes:

pm(xt+1) =
Pm(xt+1)∑c
r=1 Pr(xt+1)

, (2)



where pm(xt+1) is the normalized confidence (called the posterior probability) of the
object xt+1, c is the number of classes, and Pr(xt+1) is the confidence of the object
xt+1 to belong to class r.

As the objects of the reference set St are labeled elements, their confidence values
were initially set to 1 for the true class (the class to which they belonged), and zero for
the remaining classes. During the on-line learning, the confidence of all new objects
incorporated into the training set will be updated according to the probability values of
Eq. (2).

2.2 Managing Incomplete Objects and Their Delayed Attribute

Assuming that at step t we have a reference set St available, on-line classification of
incomplete streaming data consists of three main elements: (i) The technique to handle
the situation of a missing attribute x

(i)
t+1 of the new unlabeled object xt+1; (ii) The

classifier to predict the class label for this object; and (iii) The strategy to manage the
new information derived from the value of the attribute x

(i)
t+1 when it arrives τ steps

later.
Regarding the first issue, as stated before, the projection strategy is used: the arriving

object as well as those in the reference set are simply mapped onto the d−1 dimensional
space. Second, as for the prediction of the class label for xt+1, the k-NN classifier based
on posterior probabilities (Sect. 2.1), is used. Finally, since it is not obvious which is
the best way to profit from the new information gained with the arrival of the attribute
x
(i)
t−τ+1 at time step t+ 1, three different strategies are explored:

1. Do-nothing: This is a passive strategy where, while the incoming object is incor-
porated into the current reference set St, nothing is done when the value of the
missing attribute x

(i)
t−τ+1 arrives after τ time steps. However, the attribute value of

the corresponding object, xt−τ+1, is set to the value x
(i)
t−τ+1.

2. Put and reclassify: This is a proactive strategy differing from the do-nothing stra-
tegy in that the object xt−τ+1 is also reclassified, this time using all attributes.

3. Wait and classify: This is a reactive strategy where, unlike the two previous strate-
gies, the new object xt+1 is not included in the reference set St until its missing
attribute is received after τ time steps. Only by then, the complete object is classi-
fied and incorporated into the reference set St+1+τ .

The different nature of these strategies will allow to gain some insight into which
may be the best way to proceed in the context of on-line classification of streaming
data with missing (but delayed) attributes. This will also provide cues on what further
research avenues to follow. The assessment of the different strategies proposed has been
done on extensive experimental work, which is subsequently presented.

3 Experiments and Results

The experiments here carried out are directed to empirically evaluate each strategy des-
cribed in the previous section, pursuing to determine which of these is the most suitable



for the classification of incomplete streaming data. The ultimate purpose of this preli-
minary study is to investigate whether the employment of attribute values that arrive
with a delay allows to improve the system performance or not.

Table 1. Characteristics of the real data sets used in the experiments.

Data set Features Classes Objects Reference Set Data Stream Source
iris 4 3 150 12 138 UCI1

wine 13 3 178 39 139 UCI
crabs 6 2 200 12 188 Ripley2

sonar 60 2 208 120 88 UCI
laryngeal1 16 2 213 32 181 Library3

thyroid 5 3 215 15 200 UCI
breast 9 2 277 18 259 UCI

intubation 17 2 302 34 268 Library
heart 13 2 303 26 277 UCI
ecoli 7 8 336 56 280 UCI
liver 6 2 345 12 333 UCI

spect 44 2 349 88 261 Library
voice9 10 9 428 90 338 Library

wbc 30 2 569 60 509 UCI
palynomorphs 31 3 609 93 516 Private4

australian 42 2 690 84 606 UCI
laryngeal2 16 2 692 32 660 Library

pima 8 2 768 16 752 UCI
vehicle 18 4 846 72 774 UCI
vowel 11 10 990 110 880 UCI

german 24 2 1000 48 952 UCI
image 19 7 2310 133 2177 UCI

1UCI [14]
2Ripley [11]
3Library http://www.bangor.ac.uk/˜mas00a/activities/real_data.htm
4Images of pieces of kerogen extracted from microscope images of palynomorphs

Experiments were conducted as follows:

Data sets: Twenty-two real data sets (summary of whom is given in Table 1) were em-
ployed in the experiment. Data were normalized in the range [0, 1] and all features
were numerical. In the table, the data sets are sorted by increasing size.

Partitions: For each database, 10 runs were carried out. A random stratified sample of
d × c, being d the number of attributes and c the number of classes, was taken as
the initial labeled references set S0. The remaining part of each database was used
as the incoming on-line streaming data. To simulate independent and identically-
distributed sequences, the data were shuffled before each of these 10 runs.

Incomplete objects: A new object with one missing attribute from the on-line data
was fed to the system at a time step. Both the most and the least relevant attributes



of each database were simulated to be missing. Attribute relevance was estimated
by means of the Jeffries-Matusita distance [5].

Delay: The missing attribute comes after τ = 5 time steps. When the delayed attribute
arrives, the corresponding object is completed with the true attribute value.

Classification: At each time step t, the respective strategy to handle delayed attributes
was applied. The accumulated classification error (the total number of misclassifi-
cations divided by the number of samples processed up to t) was computed. In this
way we created a progression curve (trend line), which is the classification error as
a function of the number of on-line objects seen by the classifier. The results were
averaged across the 10 runs giving a single progression curve for each data set.

For each of the 10 runs of the experiment, all strategies received the same partitions
of the data into initial labeled reference set and streaming data set. These on-line data
were presented to all methods in the same order so that performance differences can not
be attributable to different data (order).

3.1 Results

Table 2 reports the average errors estimated across all incoming objects for each stra-
tegy. To evaluate whether the performance improves at all with streaming data, we have
also included the error using only the initial reference set S0. For each database, the
first row corresponds to the classification errors when the least relevant attribute arrives
with a delay. The second row is for the most relevant attribute. Highlighted in bold are
the results being better than those obtained by using only the initial reference set for
classification. Underlined values correspond to the best strategy for each database and
each attribute.

As can be seen, out of the 22 databases, the strategies here proposed give better
results than using the initial reference set on 14 cases when the missing attribute co-
rresponds to the most relevant, and on 12 for the least relevant attribute. Performance
differences are small among the proposed strategies as well as between each of them
and the baseline case.

Detailed results for four databases are provided in the plots in Fig. 1, with the x and
y axes representing, respectively, the number of objects fed to the system at each time
step, and the accumulated classification error averaged over the 10 runs. The results
on the vowel database (Fig. 1(a)) are very interesting, since all the proposed strategies
outperform the baseline case (which uses only the full and labelled samples in the initial
reference set). Furthermore, the accumulated classification error decreases over time,
which is a clear evidence of how the system is learning from the incoming, incomplete
and unlabeled samples. Finally, in this case, where the delayed attribute was the one
with the most relevance, the strategies Put and reclassify and Wait and classify can
be seen to work better than Do-nothing. A likely explanation for this behavior is that,
since the attribute is important for the correct classification, it is worth waiting for the
delayed attribute to arrive either for reclassifying the object (Put and reclassify), or
for incorporating the object into the reference set only once it is complete (Wait and
classify).



Results for the image database (Fig. 1(b)) illustrate again how the considered strate-
gies can boost the classification performance with respect to the conservative baseline
approach. Interestingly, it is the Do-nothing strategy which now behaves better than the
other two. Since the delayed attribute was the least relevant, it might happen that this
attribute is hindering the classifier rather than helping it. As a consequence, and in the
context of the projection technique that is being used in this work, it turns out to be
better to passively ignore the attribute when it arrives than trying to make the most of it.
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Fig. 1. Average error computed for ten runs using the Do-nothing, Put and reclassify and Wait
and classify strategies. The baseline case (i.e., using only the initial reference set) is included for
comparison with an off-line strategy. The delayed attribute was either the most (a, c) or the least
relevant (b, d)

Figs. 1(c,d) provide two examples where the performance of the compared strategies
was similar to or slightly worse than the baseline case when the delayed attribute is
the most (Figs. 1(c)) or the least (Fig. 1(d)) relevant. To explain the rationale behind
these differences in performance, a good insight must be gained into what makes these
databases different. This understanding will help us devise more general and robust
strategies.



While in all examples above the missing attribute was delayed τ = 5 time steps, it
is interesting to evaluate how the actual delay affects the performance of the strate-
gies under analysis. To this end, the same testing procedure was repeated for τ ∈
{5, 15, 30, 45} for several data sets. It was found that the Do-nothing and Put and re-
classify strategies did not exhibit a significant performance difference for distinct de-
lays. However, differences were observed for the Wait and classify strategy, as illus-
trated in Fig. 2 for two of the tested databases.

In those data sets where this strategy did not work well, such as intubation (Fig. 2(a)),
the accumulated classification error decreased when the delay increased. This can be ex-
plained as follows: the missing attribute happens to be unimportant (even harmful) for
the classification and therefore, the longer it takes the attribute to arrive, the longer it
takes to be incorporated into the object (and then into the training set) and thereby, less
time it is affecting in the classification of subsequent objects. However, in cases such as
sonar (Fig. 2(b)), where this strategy tends to work well, the more the delay, the higher
the error. In this situation, the missing attribute appears to be necessary for the correct
prediction of incoming objects.
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Fig. 2. Average accumulated classification errors computed for ten runs over two databases, using
the Wait and classify strategy, when the delayed attribute arrived τ = 5, τ = 15, τ = 30 and
τ = 45 time steps after the incomplete object. In both figures the delayed attribute corresponds
to the most relevant

4 Conclusions and Further Extensions

In this paper, we have explored three simple strategies for the classification of streaming
data with a single missing attribute. More specifically, we have presented a preliminary
study for handling on-line data where the complete attribute vector arrives with a cons-
tant delay. Despite their simplicity, the results of the three strategies have shown some
gains in performance when compared to the use of the initial reference set. Although
these benefits are still marginal, the most important finding is that it seems possible to



Table 2. Average errors estimated across all incoming objects

Data set Initial Do-nothing Put and Wait and
reference set reclassify classify

iris 0.1076 0.0954 0.0919 0.0893
0.1236 0.1134 0.1111 0.1093

wine 0.0473 0.0515 0.0515 0.0476
0.0483 0.0550 0.0577 0.0555

crabs 0.4695 0.4332 0.4226 0.4313
0.4875 0.4341 0.4334 0.4456

sonar 0.2299 0.2205 0.2206 0.2207
0.2319 0.2225 0.2223 0.2239

laryngeal1 0.1974 0.2033 0.2044 0.2051
0.1931 0.1915 0.1915 0.1957

thyroid 0.1860 0.1639 0.1751 0.1763
0.2531 0.2336 0.2158 0.2168

breast 0.3108 0.3287 0.3226 0.3196
0.3010 0.3284 0.3279 0.3285

intubation 0.3214 0.3714 0.3631 0.3655
0.3581 0.3899 0.3859 0.3838

heart 0.4641 0.4704 0.4707 0.4653
0.4731 0.4809 0.4780 0.4732

ecoli 0.2060 0.2146 0.2115 0.2120
0.1834 0.1841 0.1786 0.1782

liver 0.4689 0.4610 0.4607 0.4648
0.4732 0.4686 0.4631 0.4695

spect 0.2862 0.2852 0.2883 0.2925
0.2895 0.2928 0.2943 0.2955

voice9 0.6366 0.6352 0.6333 0.6368
0.6428 0.6407 0.6430 0.6447

wbc 0.0427 0.0417 0.0414 0.0423
0.0467 0.0432 0.0411 0.0428

palynomorphs 0.1878 0.1904 0.1902 0.1890
0.1974 0.2003 0.1985 0.1966

australian 0.1590 0.1570 0.1576 0.1589
0.1661 0.1710 0.1714 0.1730

laryngeal2 0.0545 0.0538 0.0533 0.0526
0.0538 0.0526 0.0524 0.0516

pima 0.3120 0.3290 0.3271 0.3287
0.3415 0.3383 0.3353 0.3400

vehicle 0.4451 0.4336 0.4334 0.4368
0.4383 0.4366 0.4337 0.4339

vowel 0.4410 0.4180 0.4162 0.4169
0.4960 0.4608 0.4530 0.4541

german 0.3156 0.3225 0.3216 0.3202
0.3367 0.3434 0.3350 0.3334

image 0.1204 0.1117 0.1169 0.1166
0.1410 0.1269 0.1254 0.1251



design some method to consistently handle the incomplete data in on-line classification
of data streams.

The ultimate purpose of this work was to describe a novel and relevant problem that
can be present in many real-world applications. Our study has revealed a number of in-
teresting research directions regarding the classification of streaming (and incomplete)
unlabeled data, such as: (i) An analysis of how the relevance of the missing attribute
affects the different strategies; (ii) The design of more elaborated methods for early
classification of streaming data; (iii) The study of the benefits of different techniques
for handling missing attributes; (iv) An analysis of the case where the environment does
change with time, and the reference sets will have to track these changes; and (v) An ex-
ploration of a more general situation with more than one delayed attribute and varying
time delays.
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