
XTaGe: A flexible generation system
for complex XML collections

Maŕıa Pérez, Ismael Sanz, and Rafael Berlanga

Universitat Jaume I, Spain
{mcatalan,isanz,berlanga}uji.es

Abstract. We introduce XTaGe (XML Tester and Generator), a sys-
tem for the synthesis of XML collections meant for testing and micro-
benchmarking applications. In contrast with existing approaches, XTaGe
focuses on complex collections, by providing a highly extensible frame-
work to introduce controlled variability in XML structures. In this paper
we present the theoretical foundation, internal architecture and main fea-
tures of our generator; we describe its implementation, which includes a
GUI to facilitate the specification of collections; we discuss how XTaGe’s
features compare with those in other XML generation systems; finally,
we illustrate its usage by presenting a use case in the Bioinformatics
domain.

1 Introduction

Testing is an essential step in the develoment of XML-oriented applications and
in most practical settings, this requires the creation of synthetic data.

Existing XML generators focus on either the creation of collections of a given
size (for stress testing and workload characterization purposes) or with a fixed
schema and little variation. These systems do not suit the requirements of an
emerging class of important applications in fields such as Bioinformatics and
GIS, which have to deal with large collections that present complex structural
features, and specialized content such as protein sequences or vectorial map data.

In this context, the main drawback of existing systems in our application
context is the lack of extensibility, since all systems are limited by the support
of a limited number of predefined generation primitives. Another limitation is
the uneven support for the introduction of controlled variability in generated
structures, useful for example for micro-benchmarking purposes. Finally, the
specification of collections is generally done through the manual creation of a
text-based specification file, which can be tedious and error-prone.

In this paper we introduce XTaGe (XML Tester and Generator), which fo-
cuses on the creation of collections with complex structural constraints and
domain-specific characteristics. XTaGe contributes (i) a flexible component-
based framework to create highly tailored generators, (ii) a ready-made set of
components that model common patterns that arise in complex collections, (iii)
easy adaptability to new use cases using a high-level language (XQuery itself)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositori Institucional de la Universitat Jaume I

https://core.ac.uk/display/61392655?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The resulting system makes it possible to generate test collections whose char-
acteristics would be very difficult, or impossible, to replicate using the existing
generic XML generators.

Related work. As indicated above, current approaches for generating synthetic
XML data can be classified as either schema-unaware or template-based. The for-
mer are based on the specification of a few global structural characteristics, such
as maximum depth, fan-out and amount of textual data. They are commonly
used in benchmarking applications. Examples include Niagdatagen [2], xmlgen
(developed for the XMark [16]) and genxml (used in the X007 Benchmark [5]).

In contrast, template-based generators use as input an annotated schema
that precisely describe the desired structure of the output documents. The best-
known example is ToXgene [4], which defines an extension of XML Schema, the
Template Specification Language (TSL) to describe the generated XML docu-
ment content. It has some support for generating variability through the use of
probability distributions to create heterogeneous structures. Many benchmarks
applications, such as [17] and [14], generate their testing collections using ToX-
gene. Other examples of template-based generators are: VeXGene [10], MeM-
BeR [3] and [6], which bases the XML data generation on a DTD and examples
of XML instances and support the specifications of constraints of the generated
collection, such required XPath expressions.

As a special case, other approaches attempt to create new collections by
transforming existing ones, such as [7], which can adapt existing documents
for experiments meant to evaluate semantic query optimization methods; they
provide a set of four transformations to adapt existing XML documents. Another
relevant system is [15], which can modify the content of XML documents by
creating duplicates or by removing content of the documents in order to create
“dirty” documents suitable for testing data cleaning algorithms.

Outline of the paper. The remainder of this paper is structured as follows.
First, the foundations of XTaGe are presented in Section 2. Then, the XTaGe
component-based framework is described in detail in Section 3. In Section 4 we
present the prototype and a use case that shows an application of the generation
model. Finally, Section 5 presenta a short discussion of XTaGe’s features and
introduces directions of future work.

2 Foundations of XTaGe

One of the main goals of XTaGe is to provide precise control of the generated
data when creating heterogeneous collections and, as a consequence, we will use
template-based techniques as a basis for our approach. In this section we provide
a formal basis for the definition of XML generators, which will allow us to define
a flexible mechanism for the creation and adaptation of XML generators for
complex domains.

We adopt the XML Store [9] as a suitable abstraction of XML collections,
which is commonly used in the context of XML update languages. Following [8],

we will use the following notations: the set A denotes the set of all atomic values,
V is the set of all nodes, S ⊆ A is the set of all strings, and N ⊆ S is the set of
strings that may be used as tag names. The set V is partitioned into the sets of
document nodes (Vd), element nodes (Ve), attribute nodes (Va), and text nodes
(Vt).

Definition 1 (XML Store). An XML store is a 6-tuple St = (V,E,<, ν, σ, δ)
where:

– V is a finite subset of V; we write V d for V ∩ Vd (resp. V e for V ∩ Ve, V a

for V ∩ Va,V t for V ∩ Vt);
– (V,E) is an acyclic directed graph (with nodes V and directed edges E) where

each node has an in-degree of at most one, and hence it is composed of trees;
if (m,n) ∈ E then we say that n is a child of m; we denote by E∗ the reflexive
transitive closure of E;

– < is a strict partial order on V that compares exactly the different children
of a common node. Hence for two distinct nodes n1 and n2 it holds that
((n1 < n2) ∨ (n2 < n1))⇔ ∃m ∈ V ((m,n1) ∈ E ∧ (m,n2) ∈ E))

– ν : V e ∪ V a → N labels the element and attribute nodes with their node
name

– σ : V a ∪ V t → S labels the attribute and text nodes with their string value
– δ : S → Vd a partial function that associates a document node with an URI

or a file name. It is called the document function. This function represents
all the URIs of the Web and all the names of the files, together with the
documents they contain. We suppose that all these documents are in the
store.

The following properties must hold for an XML store: each document node
of V d is the root of a tree and has only one child element; attribute nodes of
V a and text nodes of V t do not have any children; in the <-order attribute
children precede the element and text children, i.e. if n1 < n2 and n ∈ V a then
n1 ∈ V a; there are no adjacent text children, i.e. if n1, n2 ∈ V t and n1 < n2

then there is an n3 ∈ V e with n1 < n3 < n2; for all text nodes nt of V t holds
σ(nt) 6= ”” ; all the attribute children of a common node have a different name,
i.e. if (m,n1), (m,n2) ∈ E and n1, n2 ∈ V a then ν(n1) 6= ν(n)2.

Given an XML Store St we will use following auxiliary notations and func-
tions:

– VSt,ESt,νSt,σSt and δSt return the corresponding components of St. We also
define V d

St, V
e
St and V a

St.
– genDocNode(), genElement(), genAttribute() return members from Vd, Ve

and Va which do not exist in V d
St, V

e
St and V a

St respectively. These func-
tions are abstractions of the creation of new element document and attribute
nodes. Note that text nodes will be generated by appropriately specific func-
tions.

– root(St) is the root node of the store.
– descendantsSt(n) is the set of all nodes in St which are descendants of n.

For simplicity, and without loss of generality, in the remainder of this paper we
will ignore the partial order <, and we will not indicate the name of the XML
Store when it is obvious from context.

2.1 Creating XML documents from scratch

We will model XML generators as functions that create XML Stores. Like in
other schema-based systems, the generation will be based on the specification of
a base model, whose expressivity must be the same of XML Schema languages
([13]).

Definition 2 (base model, generator, interpretation). An XTaGe base
model, M , is a tree that represents a generating functional expression (or gen-
erator, for short) f whose interpretation GenM (f) is an XML store.

A base model is, therefore, conceptually similar to the expression trees that
appear when parsing programming languages. For example, consider the follow-
ing operation:

Example 1. Given a generator model tree M , The element(name) component is
a generating functional expression whose interpretation GenM (element(name))
generates a XML Store (V,E,<, ν, σ, δ) such that:

– newNode = genElement(), that is, a new node
– V = {newNode} ∪ VGen(ci) for each ci ∈ childrenT (c)
– E = {(newNode, root(Gen(ci))} ∪ (

⋃
EGen(ci)) for each ci ∈ childrenT (c)

– ν = {(newNode, name)}∪(
⋃
{(a, b) : (a, b) ∈ νGen(ci)}) for each ci ∈ childrenT (c)

– δ =
⋃
{(a, b) : (a, b) ∈ δGen(ci)} for each ci ∈ childrenT (c)

– σ =
⋃
{(a, b) : (a, b) ∈ σGen(ci)} for each ci ∈ childrenT (c)

where childrenM (c) represents the children of node c in the generation model
tree M . We treat the attribute nodes similarly.1

Figure 1 represents a simple generation tree that uses the element generator.

element(root)

element(a) element(b)

(a)

<root>
<a/>

</root>

(b)

Fig. 1. A simple tree generation using the element generator component and the cor-
responding XML tree.

1 The main difference with the treatment of element nodes is that the attribute nodes
cannot be nested.

In order to provide a functionality similar to basic XML Schema, we introduce
the following generators that account for the possible content models:

– sequence(name, attr, n,minOccurs,maxOccurs): A functional component
that is a generalization of the previously introduced element, including sup-
port for attributes (attr) a number of repetitions (n) and cardinality con-
straints (minOccurs and maxOccurs).

– choice(name, attr, n,minOccurs,maxOccurs): A functional equivalent of the
XML Schema choice content model, represented by a bar (|) in DTDs.

The features of the generation model presented so far support the creation of
XML documents based on a fixed XML-like schema. We now introduce two
features which are specifically designed to introduce controlled variability in
collections: distributions and probability-labeled arcs.

Value distributions. In XTaGe, every value is extracted from a probability dis-
tribution, including constant numbers and strings (which are considered to be
extracted from a suitably defined constant distribution). This includes:

– Parameters of functional components, for example the number of repetitions
n in sequences or choices.

– Synthetic content in attributes or text nodes.

This allows us to easily express empirical properties of the generated data, such
as that the number of children of a given node is normally distributed, or Zipf-like
distribution for words in textual content.

Probability-labeled tree arcs. Another mechanism to introduce controlled vari-
ability in generated XML is introducing the notion of probabilistic labeling. Each
arc (u, v) in a generator tree M is labeled with a probability value p((u, v)) ∈
[0, 1]. The meaning of a probability-labeled arc is that the child functional ex-
pression v will be ignored with probability 1− p((u, v)).

Example 2. Figure 9 shows a simple generator tree that includes probability-
labeled arcs, and some of the XML trees that could be generated by it.

element(root)

element(a)

0.5

element(b)

0.7

(a)

<root>
<a/>

</root>

(b)

<root>

</root>

(c)

<root/>

(d)

<root>
<a/>

</root>

(e)

Fig. 2. A generator tree with probabilistic arcs and some possible generated trees.

2.2 Transforming XML documents

The second mechanism by which a new XML collection may be generated is
by the controlled transformation of an existing one. Analogously to tree genera-
tion model trees, we introduce a transforming functional expressions (or trans-
formations, in short). Moreover, these transformations provide the foundations
required to model global contraints over XML documents. Since there are many
transformation languages available for XML (XSLT, XDuce), we will focus in the
introduction of controlled variability into XML collections through the definition
of transforms.

Definition 3 (locator). A locator is a function that takes an XML Store St
and returns an XML Store St′ such that:

– V ′St ⊆ VSt

– E′St ⊆ ESt

– St′ is well formed according to Definition 1

Example 3. Given a locator and an XML Store St, the delChild transformation
removes a random child of the root node of a tree with probability p, and returns
a new XML Store St′. We can define it as follows:

– Choose a node n ∈ children(root(l)), where l is the subtree induced by the
locator, with probability p.

– VSt′ = Vl\({n} ∪ descendantsl(n))
– ESt′ = El\{(u, v) such that u, v ∈ {n} ∪ descendants(n)}
– νSt′ , δSt′ and σSt′ are suitably modified.

Probability-labeled tree arcs are also used in transformation trees to de-
termine if a transformation will be applied or not in the XML documents.
It is important also to remark that transformations are applied on the origi-
nal XML Store, and not on a “different” XML store induced by the locator,
which must then be grafted on the original tree. This property allows us to
define meta-transformation operations, which can be used to combine different
transformations into complex operations. The main meta-transformation is the
macro-transformation:

Definition 4 (macro-operation). Given an XML Store St and list of (loca-
tor, transformation) pairs, the macro-operation macroSt[(l1, t1), . . . , (ln, tn)] is
defined as the sequential application of all pairs to St.

3 Component-based framework

The concepts outlined in the previous section have been realized in XTaGe by
means of a lightweight component-oriented software model, outlined in Figure 3.
The use of components as an abstraction of the generation and transformation
functional expressions has a number of benefits directly related to the goals of
XTaGe.

First of all, it makes metadata about components and their relationships ex-
plicit. This facilitates greatly the construction of support tools such as GUIs,
and it also allows the simplified creation of new components without requiring
the modification of the XTaGe code. This can be accomplished by a simple two-
stage process: (i) create the function in a high-level language (XQuery in our
case, as we will explain presently) and (ii) register it by filling in the appro-
priate metadata. For the most complex cases (usually involving calling external
libraries), new components can be coded by implementing the appropriate in-
terface. Libraries of related components (e.g. for testing of biomedical data sets)
may be put together and maintained independently.

Fig. 3. Simplified UML diagram of the XTaGe component architecture.

3.1 Generators in XTaGe

In addition to the basic XML Schema-related components described in Section 2,
a number of components useful for the generation of collections with controlled
variability are pre-defined:

XOR This generator chooses one node between all its descendants according
to their xor probability values. The descendants of a XOR constructor have
an additional probability parameter, xor probability, which determines the
likelihood of a node of being chosen by its parent.

Combi This generator creates a new node whose tag is a combination of the
tags of its descendants.

DminDmax The functionality of this generator is creating a new node located
n levels below its ancestor. The value of n depends on the values of the

attributes dmin and dmax of the constructor. The value of n is a random
number between dmin and dmax.

IfAncestor This generator determines if a node appears in the new document
depending on the tag of its ancestor.

An XML node generated by one of these components is assigned a unique id
value, which can be specified by the user, automatically by the system, or by a
user-defined function. Attributes (and IDREFs, which are treated as a special
case) can be defined by the user in the generator model tree.

As mentioned above, the preferred way to create new components is by means
of the creation of an XQuery functions. XQuery was chosen because it is inher-
ently well-suite to define operations on XML trees. The function must conform
to the following signature:

declare function component−name($comp as node()) as node()∗;

where $comp represents the component metainformation (serialized as XML),
including its parameters.

To support the creation of components, a library of XQuery functions has
been defined that permits access to the defined distributions and the structure
of the model tree.

Example 4. The following XQuery function implements the componentDminDmax,
using an auxiliary function to handle recursion:

declare function dmindmax($comp as node())) as node()∗ {
let $dist := $comp/param/dist
return dmindmax aux($comp, $dist) }

declare function dmindmax aux($comp as node()∗, $dist)) as node()∗ {
if ($dist = 1)
then xtg:create node($comp)
else(let $actual dist := xs: integer($dist) − 1

let $random tag := xtg::randomTag()
return element{$random tag} {dmindmax aux($comp, $actual dist)})

}

where library function xtg:create node($comp) creates an element based on
the parameters of the component and xtg:randomTag() returns random strings.

Note the use of XPath to extract the value of the parameters from the com-
ponent metadata object. Besides the $comp parameter, the component accepts
$dist, that is a number obtained from a user-defined distribution that must lie
between the values of the parameters dmin and dmax of the component.

3.2 Transformations in XTaGe

In order to apply controlled transformations, XTaGe includes a few pre-defined
XML transformation components:

Add This transformation component takes as input two XML trees, t1 and t2.
The component adds t2 to t1 as a descendant of the node or nodes of t1
determined by the component locator.

Delete This component removes the node determined by the component locator
of the XML document tree. The component has a parameter called recursive,
whose value determines if the operation is executed recursively or not. If its
value is 1, the node and all its descendants are removed; if its value is 0, only
the node is removed and its descendants occupy its place. In case the nodes
have references, XTaGe allows the user to specify whether the references
must be automatically re-calculated.

Change Order This component changes the order of a node and one of its
siblings by changing their positions. The user has to determine the ancestor
of the node that is going to be changed and, optionally, the node that is going
to change its position. If the user does not specify this node, the component
chooses a descendant of the ancestor node randomly. The user can also
determine the new position of the node; in case the user does not specify it,
the component determines randomly the new position.

Change Level This component changes the position of a node and one of its
descendants, chosen by the user or randomly. The descendant will be now the
ancestor of its siblings and its ancestor will become one of its descendants.

XTaGe also allows the definition of new transformations using XQuery. The
functions must conform to the following signature:

declare function component−name($context as node(), $locator as node()∗,
$comp as node()) as node()∗;

where $context represents the current context node in the source XML docu-
ment, that defines where the transformation will be applied; $locator is the set
of nodes induced by the locator; and $comp contains metainformation about the
component.

Example 5. The XQuery function that implements the functionality of the com-
ponent Change order may be implemented as follows:

declare function change order($context, $loc, $config) as node()∗ {
let $newpos:= xtg:newPos($config)
let $child:= xtg:child($context, $config)
let $sibling := xtg: sibling ($context, $config)
return element{fn:local−name($context)}

{for $att in $context/@∗
return attribute{fn:local−name($att)}{$att},

for $c at $pos in $context/∗
return if ($pos = $newpos)

then xtg:traverse($child , $context, $config)
else (if ($c is $child)

then xtg:traverse($sibling , $context, $config)
else xtg: traverse($c,$context, $config))}

}

where:

newPos($config) returns the new position of the node, if this value is not set
in the parameter NewPos of the component Change order, the function
returns a random value in the range of [1, number of descendants of the
context node].

child($context, $config) returns the element that is going to be changed.
This node is retrieved by the locator component.

sibling($context, $config) returns the element that now occupies the po-
sition newpos.

traverse($context, $loc, $config) is a function that traverses the XML
document, element by element.

This set of transformations does not allow the user to model global con-
straints but it is possible to create and add new components that support non-
local contraints models.

4 Prototype and Use Cases

The next section presents a use case in the Bioinformatics domain in which
XTaGe is applied. It addresses the problem of evaluating techniques based on
the modification of specific characteristics of a XML collection.

4.1 Generating controlled testing collections

We consider a problem of exploratory search of XML collections in the Bioinfor-
matics domain. This domain is characterized by the existence of a great number
of complex, large and heterogeneous XML data sources, which poses serious is-
sues in data integration applications [11]. Usually, a first step in the design of
these applications is the characterization of a sample of these collections, which
requires the use of approximate querying techniques due to the lack of a schema
and the presence of complex, domain-specific data such as protein sequences,
which inherently require approximate matching algorithms.

Testing of these systems is difficult, since (i) they may not correspond well
with the expected work load (ii) they might not exercise all possible structural
variations that might appear in the production system or (iii) they may contain
errors which need to be corrected [12].

In such a context, the features of XTaGe for the introduction of controlled
variability in collections may facilitate the design process greatly. Consider the
case of an application trying to integrate information coming from the complex
BioPAX collection [1], which is derived from OWL specifications and exhibits
an essentially free-form schema when translated into XML.

To account for the possible variations, XTaGe can be used to automatically
generate test cases that can be used to check for unexpected structural varia-
tions. For example, Figure 4 shows an example of a user-defined schema that

Fig. 4. An example of a user-defined schema. Note that the GUI shows the list of
available components (left pane) which can be dragged and dropped to create the
schema.

generates XML structures with BioPAX-derived information. Figure 5 shows dif-
ferent XML structures generated by this schema. Note how the structure of the
documents varies due to the probabilities and the patterns of the components.

This is also useful to help assess the performance of the approximate tech-
niques being used for data exploration, in particular in the presence of charac-
teristics of interest. This calculation requires the generation of different versions
of a same collection, each one exhibiting a different characteristic. To achieve
this goal, XTaGe can be used to generate such a set of XML collections.

Figure 6 shows the steps to generate the new versions of the XML collection.
The approach is based in a multi-step process. First, a “background collection”
is determined; this can be synthetic, or a sample of existing. Next, to facilitate
comparisons, a XML structure suitable for transformation is determined. A num-
ber of transformations are written, in order to exercise the different structural
characteristics that should be tested (e.g. presence/absence of nodes or sub-
trees, changes in ordering, and so on). Finally, new versions of the background
collections are created and subjected to testing.

Next we explain with further details the two main steps required to obtain
the different versions of the background collection and we clarify them with an
example.

Creating the new XML structure. In this first phase the user has to define the
schema of the XML fragment that, in the following phase, is going to be modified

Fig. 5. Structures generated by the schema shown in Figure 4.

Fig. 6. Steps to generate new versions of an existing XML collection.

and finally, added to the background collection. The result of executing this
schema is an XML document, which we call synthetic XML document, whose
structure and tags are well-known by the user.

In our example, we have designed a XML document that contains informa-
tion about publications, its schema is shown in Figure 7. Figure 8b shows the
synthetic XML document generated by it.

Creating synthetic collections. In this phase, the user has to define the schemas
of the transformations that are going to be executed in the synthetic XML
document in order to exercise the different structural characteristics that should
be tested. The goal is to create a set of n synthetic collections where each one
differs from the others in a known characteristic. The steps to do that are the
following:

1. Create n transformation schemas, one per each characteristic to be analyzed.
Each schema is composed by a set of transformations whose execution mod-
ifies a specific characteristic of the synthetic XML document.

Fig. 7. A schema that generates XML documents with information about publications.

2. Execute each transformation schema on the synthetic XML document. The
result is a set of n modified versions of this synthetic XML document.

3. Add each modified version of the synthetic XML document to the back-
ground collection. The result of this last step is a set of n versions of the
background collection ready to testing experiments.

Figure 8a shows the transformation schema we have created to modify the
synthetic XML document. Then, Figure 8b shows the result of executing this
transformation schema on the synthetic XML document generated by the gen-
erator schema shown in Figure 7. The execution of this schema consists on:

1. Change Level: The execution of this component will change the positions
of the elements “Publication” and “ID”, being now the element “ID” the
ancestor and “Publication” the descendant.

2. Change order: The element “Author” will occupy the second position in its
siblings set wherever it appears, due to the ancestor’s path specified in the
location parameter, “.// ∗ /[Author]”.

Later, this modified XML structure will be added to the background collection
by using an Add transformation component.

5 Discussion and Conclusions

We have presented how the XTaGe XML generator can be used to overcome the
limitations of existing system when dealing with complex collections.

The first issue that XTaGe addresses is the lack of adaptability of the current
generators to new domains or new use cases. Most of them cannot be adapted

Fig. 8. (a) A transformation schema and (b) a resulting document.

to new domains because they have been designed for specific purposes in a spe-
cific domain. XTaGe provides a flexible component-based framework that makes
possible to adapt it to new specifications. The user can add new components
that implement new functionalities in order to fulfill the new requirements.

In addition, XTaGe also supports creating different versions of an existing
XML collection by applying a set of user-defined transformations as [7] does.
However, [7] supports only a limited set of 4 functions that have been imple-
mented for their specific purpose, the evaluation of semantic query optimization
techniques, and they don’t mention any way to expand this set with new func-
tions. XTaGe also provides a set of basic transformation components that encap-
sulate typical XML tree-based transformations but, in contrast to [7], XTaGe
allows the user to expand this set with other components according to the new
requirements.

Future directions for research include extending and generalizing the features
of XTaGe. We are currently focusing on the automatic generation of preliminary
generation models by examining existing samples of collections. Another impor-
tant issue is the lack of support for non-local constraint specification (as in [6]),
although XTaGe’s architecture sets the foundations to model these constraints,
specific components have to be implemented and added. Another relevant di-
rection is the extension of the component model to be able to better organize
collections of pre-defined components and managing their dependencies. Finally,
we aim to design specific generators, such as OWL instances generator and GIS
data generator, based on XTaGe. The implementation of these specific genera-
tors will be based on an MDA architecture, where the specific generator models
will be transformed into the XTaGe’s model.

In conclusion, XTaGe builds upon the main features of existing schema-aware
generators, and extends them in order to provide support for complex collections.
The resulting system has excellent support for the creation of controlled vari-
ability, which is useful in testing complex and highly specific features of XML
collections in particular domains. The component-based architecture is the basis
for a GUI, which facilitates the specification of new collections.

Acknowledgements

This work has been partially supported by the Ministry of Science and Innovation
(TIN2008-01825).

References

1. Biopax. http://www.biopax.org/.
2. Ashraf Aboulnaga, Jeffrey F. Naughton, and Chun Zhang. Generating Synthetic

Complex-structured XML Data. In WebDB’2001, 2001.
3. L. Afanasiev, I. Manolescu, and P. Michiels. MemBeR XML Generator.

http://ilps.science.uva.nl/Resources/MemBeR/member-generator.html.
4. Denilson Barbosa and Alberto O. Mendelzon. Declarative generation of synthetic

XML data. Software: Practice and Experience, 36:1051–1079, May 2006.
5. Stéphane Bressan, Mong Li Lee, Ying Guang Li, Zoé Lacroix, and Ullas Nam-

biar. The XOO7 Benchmark. In Efficiency and Effectiveness of XML Tools, and
Techniques (EEXTT2002), pages 146–147, London, UK, 2002. Springer-Verlag.

6. Sara Cohen. Generating XML Structure Using Examples and Constraints. In
VLDB, 2008.

7. Ke Geng and Gillian Dobbie. An XML Document Generator for Semantic Query
Optimization Experimentation. In iiWAS 2006, pages 367–376, 2006.

8. Jan Hidders, Stefania Marrara, Jan Paredaens, and Roel Vercammen. On the
expressibility of functions in XQuery fragments. Information Systems, 33:435–455,
2008.

9. Jan Hidders, Philippe Michiels, Jan Paredaens, and Roel Vercammen. LiXQuery:
A formal foundation for XQuery research. SIGMOD Record, 34(4):21–26, 2005.

10. Hoe Jing Jeong and Sang Ho Lee. A Versatile XML Data Generator. International
Journal of Software Effectiveness and Efficiency, 1:21–24, 2006.

11. Marco Mesiti, Ernesto Jiménez-Ruiz, Ismael Sanz, Rafael Berlanga, Giorgio Valen-
tini, Paolo Perlasca, and David Manset. Data integration issues and opportunities
in biological XML data management. In Open and Novel Issues in XML Database
Applications: Future Directions and Advanced Technologies. IGI Global, 2009.

12. I. Mlynkova, K. Toman, and J. Pokorny. Statistical Analysis of Real XML Data
Collections. In COMAD’06, 2006.

13. Makoto Murata, Dongwon Lee, Murali Mani, and Kohsuke Kawaguchi. Taxonomy
of XML schema languages using formal language theory. ACM Trans. Internet
Techn., 5(4):660–704, 2005.

14. Matthias Nicola, Irina Kogan, and Berni Schiefer. An XML Transaction Processing
Benchmark. In SIGMOD’07, 2007.

15. Sven Puhlmann, Felix Naumann, and Melanie Weis. The Dirty XML Generator.
16. Albrecht Schmidt, Florian Waas, Martin Kersten, Michael J. Carey, Ioana

Manolesc, and Ralph Busse. XMark: A Benchmark for XML Data Management.
In VLDB, pages 974–985, 2002.

17. Benjamin Bin Yao, M. Tamer zsu, and John Keenleyside. XBench - A Family of
Benchmarks for XML DBMSs. 2003.

