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A New Frequency Dependent Approach to
Model Validation for Iterative Identification

and Control Schemes

P. Balaguer and R. Vilanova

Abstract

Classical validation methods “accept” or “reject” a modslavalid representation of a plant for
some intended use. However this binary result has sevavblemns as firstly, models are neither good
nor bad but have a certain valid frequency range and secdhdlyprocedure gives no insight into
why the model is not useful or how to improve the model. Moerawithin the framework of iterative
identification and control design the model validation essuwises the following requirements: i) Is it
possible to improve an existing model?. ii) How can the mdxeimproved?. iii) How authoritative can
be the designed controller?. These facts question thebdititaf traditional model validation schemes
in general and their suitability for iterative control somes in particular. We present a new validation
procedure that overtakes these problems by performing tidehvalidation frequency dependent. The
validation procedure is then more informative due to itgjfirency information content. As a result the

same model can be validated for some frequency band anddated for a distinct frequency range.

Index Terms

Model Validation, Frequency Domain, Iterative Control,fol Oriented

I. INTRODUCTION

In order to have confidence in a model, it is necessary to aidt. Different model val-

idation approaches exist. Their difference is based upena#sumptions about the plant and
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models. Classical validation methods, based on classiaaemidentification ([1] and [2])
rely on statistical uncertainty assumptions due to stdahamise only. On the other hand,
control oriented identification methods [3] (i.él., identification, stochastic embedding, set
membership identification, etc.) lead to validation asstimmgs based on bounded noise and
bounded model undermodelling. However in both cases theubwif the validation process is
just a “validated/invalidated” result.

Regarding classical validation methods, the problem oésseg the validity of an identified
model has been traditionally linked with the problem of mlodeder selection. The classical
model validation literature ([1] and [2]) has approached ginoblem in two ways:

« Use of plots and common sense.

« Use of statistical tests on the residuals (i.e. the diffeeelbetween the real output and the

model output).

The first approach is basically based on the comparison adrerpntal data with the model
output. If both are similar then the model can be considergdaal one. However there are two
unavoidable reasons that prevent the model output to fit ptectly: the modelling errors and
perturbations.

The second approach is to apply a hypothesis test over tiduatsA hypothesis test is a
statement about a random variable. This statement is esqutds/ means of two hypothesis,
and H,. H, is called the null hypothesis anfd, is the alternative hypothesis. In order to decide
the validity of either the null hypothesid, or the alternative hypothesid;, an estimation of
a population parameter (e.g. mean or variance) is compubed & population sample and it is
compared against the assumed population parameters. pbpakation parameters are random
variables too with certain mean and variance. If it is likéiat the computed statistic is inside
the population parameters distribution th&g is accepted, otherwis#, is rejected in favour
of H,. As a result, two errors are possible: to rejéfg when it is true, that is a false alarm
(type | error ora error), or to fail to rejectH, when H, is false (type Il error o3 error).

The null hypothesis (i.ef1,) taken on the model validation test is the hypothesis ondhkiglual
&(t), which follows from the assumptions on the disturbance. fiftge common assumptions
over the residual are [2]:
hi: £(t) is a zero mean white noise.

h2: £(t) has a symmetric distribution.
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h3: £(t) is independent of past inpufsé(t)u(r) = 0,t > .
h4: £(t) is independent of all input&é(t)u(r) = 0,Vt, 7.
The above assumptions lead to check two main propertiesyliteness of the residuals (i.e.
hi, h2) and the cross-correlation between residydts and control actions:(¢) (i.e. h3, h4).
Hence classical validation tests can be classified as fellow

« Whiteness Test.

- Autocorrelation test.n1)

- Testing changes of signh{ andh2)
« Independence between residuals and inputs.

- Cross-correlation test of past inputa3) or (h3 andhl)
- Cross-correlation test of all inputsh4) or (h4 andh1)

The rationale of the tests is to detect causes of variatiothemesidual distinct than the ones
assumed. For example if the residual is assumed to be white aod the test shows that the
whiteness statistical hypothesis is violated then we assiinait there is a distinct cause causing
the mismatch (i.e. model error).

The result of the statistical tests above reviewed is a pioae. In fact the test either validates
or invalidates the model. No further information is provdd®y the test. As a result, two important
drawbacks are:

1) There is no information on important model aspects sucldas

« The reasons why the model is invalidate.
« How to improve the model.
« The model usefulness degree.

2) In iterative identification and control schemes underetioty is normally present [5]. In
fact as stated in [6]: “For such a model (a model simpler that dne that minimizes
the total error) typically the bias error is the dominatimgntribution to the total error.
Consequentlysuch models would normally be falsified during model vaila@atThese are
then reduced complexity models”.

Thus, as a conclusion, although the theory of classicatl@abn methods is well developed

and plenty of successful applications, it has limitationisew a more informative validation

procedure is required, as for example in iterative idemtift;n and control approaches.
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Iterative identification and control design schemes imprperformance by designing new
controllers on the basis of new identified models [7]. Thecpdure is as follows: an experiment
is performed in closed loop with the current designed cdliettoA new model is identified with
the experimental data and a new controller is designed ubmgew model. The procedure is
repeated until satisfactory performance is achieved.

The rationale behind iterative control is that if iterativébetter” models are identified, hence
“better” performing controllers can be designed. Howewer meaning of “better” model needs
some clarification. The idea of modelling the “true” plansh@oven to be bogus [8]. Instead a
good model for control is one that captures accurately ttexesting frequency range for control
purposes. In fact the model has no other use than to desigmteolber, thus the use of the
model is instrumental [9]. Hence, once a model is obtaingd iecessary to validate it. On
the iterative identification and control schemes this stidad done each time a new model is
identified (i.e. at each iteration).

The main problem of the validation methods reviewed is that answer is a binary result
(i.e. validated/invalidated). However models are neitheod nor bad but have a certain valid
frequency range (e.g. normally models are good at captuowgfrequency behavior but their
accuracy degrades at higher frequencies). Moreover thetiite identification and control pro-
cedures have their own particular requirements:

« Is it possible to improve an existing model?. Is the datarmfative enough to attempt a

new identification?.

« How can the model be improved?. Is the model order/struciaheenough to capture the

interesting features of the plant?.

« How authoritative can be the controller designed on thesbaisthe new model?. Which is

the validity frequency range of my model?.

The above requirements for iterative control can not be ideml by the classical model
validation approaches above introduced because:

« No indication on the possibility to improve an existing mbdeéhis problem is solved in [9]

by the use of classical validation methods (i.e. crosstairom test) together with the visual
comparison of two power spectrum.

« In iterative identification and control approaches a loweordhodel is fitted to capture
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the frequency range of interest for control. Hence undeetiiog is always present. This
fact makes it difficult to apply traditional model validatiGcchemes as the output of the
validation procedure is a binary answer (i.e. validated/alidated) [6].

« No indication on how to improve the model on the next itemraifioe. model order selection
and/or input experiment design).

« No indication on the model validity range for control desi@re. controller bandwidth
selection).

Summing up, these arguments question the suitability afsatal validation approaches in

general and its application to iterative identification amahtrol schemes in particular.

In this article we propose a new model validation algorithmorder to solve the above
mentioned problems. The validation result is no longeitiakd/invalidated” but frequency
dependent. Thus the validation result is more informatisettee model can be validated for
some frequency range and the same model can be invalidateddistinct frequency band.

The article contributions are organized as follows:

« A new procedure for model validation in the frequency domiaipresented (Section II-
B). This procedure permits to validate or invalidate modeier certain frequency ranges.
The procedure is the translation of a time domain residuatembss test to a frequency
dependent residual whiteness test. The counterpart onrdégeidncy domain of a time
domain whiteness test is established (Section II-A). Tesdé to stating the statistical
properties of each spectrum frequency component if the tloreain transformed signal
is a white noise. It is shown that the normalized spectrum raralom variable with a
x? distribution of 2 degrees of freedom (Theorem 2). The véilitdinvalidation step is
based on a hypothesis test applied to each frequency comipdrres determines if certain
frequency components have an unusual content that distlaedsodel validity for this
frequency value. The acceptance/rejection decision offrdsguency component validity
comes with a probability measure (Section 11-C).

« The intended use of the model (e.g. open loop or closed lmpaken into account by
considering the structure from which the residuals are igeed. In Section Il a study of
the residuals information content and its statistical praps for different structures (e.g.
open loop Vs closed loop) is conducted. As the validatiorc@dore is based on a whiteness

test, the residual should be white noise whenever the madehdcurately the plant. This
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however is not the general case when residuals coming frosedlloop comparisons are
used. In order to overcome this difficulty, a novel structiggroposed in Section I1I-B
which is able to provide white residuals when two closed fape compared.

« The benefits of the presented validation procedure on ieradentification and control
schemes is discussed in Section IV. It is shown that the atdid procedure shifts from
a classical static test (i.e. validation/invalidation)aaynamic one which gives frequency
domain information useful for improvement of identificatiand control design on iterative
schemes.

« The usefulness of the presented procedure is presented dysnoé three examples (Sec-
tion V). The first example presents the application to an dpep model validation. It is
shown how the reliable model bandwidth is calculated withagorithm. The second and
third example deal with iterative control approaches, aad lour algorithm is helpful to
decide the appropriate bandwidth of the controller to begihesl and the input design for

future identification experiments.

Il. FREQUENCY DEPENDENTMODEL VALIDATION

The main objective of the paper we present is to validate aginmathe frequency domain. To
this end a time domain validation procedure based on testtiegesidual whiteness is modified
to achieve the pursued objectives. The idea is as follows #ssumed that if the residual is
white noise the model is validated because the residuabownno further useful information
that could be used to improve the model accuracy. This tegsuslly performed in the time
domain by studying the residual autocorrelation, the nunabesign changes, etc [1].

We translate the time domain residual to the frequency dorbyiits discrete Fourier trans-
form. Moreover, the statistical properties of the spectafra white noise signal are calculated.
The objective is to test if the spectrum calculated from thsidual has properties of a white
noise. As a result, one unique test in the time domain has traaslated toN different tests
in the frequency domain. We check if thg¢" frequency component of the spectrum has the
properties of a typical frequency component of a white ndisecase of an affirmative answer,
we have no reason to believe that the model is invalidatedhanftequency component. On the
other hand, if there are certain frequency components wtliedrly do not behave accordingly

to the statistical properties of white noise then it is ljkéhat at this frequency range there is
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an important mismatch between the model and the plant. Aswtrthe model is invalidated

for that frequency range.

A. Whiteness Test on the Frequency Domain

In this section the statistical time domain properties offatevnoise are translated to the fre-
guency domain. This is accomplished by means of two thearéhesfirst one is an intermediate
result that is used by the second theorem which describesateency domain distribution of
the spectrum of a white noise.

Theorem 1:Let £(n) be a sequence of independent identically distributed (EBxnples of
normal distribution N (ui¢, 0F). If we express the discrete Fourier transform by its real and
imaginary part, that is &, = Ry + jI, = & S0 ¢(n)e 9%+, then the real parfy, is a
random variable normally distributed?®{ € N(ug,,0%,)) with mean iz, and variances?,

given by

N-1

1
pre = pe S cos(Qokn)
n=0

1 N-1

oh = a?m Z cos?(Qokn) (1)
n=0

Similarly the Imaginary partl;, is a random variable normally distributed € N(,,07,)

with meany;, and variancefi given by

N-1

1 .
i, = MgNZSIH(QOk‘n)
n=0

O‘%k = 0?% NZISiHQ(QOk:n) (2)
Proof: See Appendix VII-A " [ |
Remark 1:pup, is equal to zero fok € {1,2,...,N — 1} andug, equals the mean value of
the residual (i.epr, = pe). 1, is always equal to zero fat € {0,1,2,..., N — 1}
Theorem 2:The normalized squared gaivi? defined as

e — (M)Q N (M)z 3)

OR;, o,
has ay? distribution of 2 degrees of freedom R, and I;, are independent.

Proof: See Appendix VII-B [ |
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B. Procedure

The frequency domain model invalidation procedure is al®vid

1) Calculate the residual as the difference of the real duapd the model estimated output
(€(n) = y(n) —4(n)).

2) Calculate the discrete Fourier transform of the residggl

3) Decompose each frequency component on its real part aaginary part§, = R+ 71).

4) Calculate the distribution parameters of the Real andyin@ay part of the residual spec-
trum (i.e. ug,, fr,, Or,s 01,)-

5) Calculate the normalized magnitude spectrum as follows

Mlzz Rk_,uRk 2_|_ Ik_,ulk ? (4)
ORy, ar,

6) Perform an hypothesis test over the normalized magnispeetrum calculated.

[)1t
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Fig. 1. White noise example

The above steps are materialized in the following exampleredlization of a normally
distributed random variable of zero mean and unity variascperformed with 500 samples.
The discrete Fourier transform of the realization is caltad and decomposed into its real and
imaginary parts (i.eRy, I;). The values ofR;, and I, are shown in figure 1. They follow a

normal variable distribution with parameters given by amue (1)-(2) (i.e.Rx € N(ug, =
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0,0%, = 0.001) and [, € N(uz, = 0,07 = 0.001)). On figure 1 the realizations dt; and I
are plotted together with the 3 sigma limits of their diattibn (i.e. the 99.73% of the samples
fall between the plotted limits). It can be seen that all thes fall inside this range.

Finally the normalized magnitude spectrum is calculatdtbviong equation (4). The mag-
nitude spectrum can be seen in figure 1 together with the 9%&:668fidence limit of they3
distribution (i.e. the 99.5% of the samples fall between @ 40.6). All the magnitude frequency
components remain below of the confidence limit so there aneasons to invalidate the model.
The whiteness test has passed. In the sequent section ththbgis test features are described

more thoroughly.

C. Hypothesis Test

The hypothesis test is the last step of the presented prosedinere the decision of vali-
dation/invalidation of certain frequency component isetakAn hypothesis test is a statement
expressed by means of two hypothesig and H,. H, is called the null hypothesis anll; is
the alternative hypothesis. The hypothesis test to be egjhi our procedure is:

Hy: M? € X3
H13M13¢X§ (5)

The hypothesigi, states that the normalized moduli§? of the £ frequency component is
x5 distributed. On the other hand the hypotheFisstates that the normalized modulli§’ of
the k' frequency component is nat distributed.

Remark 2: The hypothesis test stated in (5) is applied to each frequeamponent, from 0
rad/sec up to the Nyquist frequency (ie.T's, whereT's is the sample time).

In order to decide the validity of either the null hypothesig or the alternative hypothesis
Hy, M? is computed. If it is “likely” that the value of\/? lies inside thex3 distribution then
H, is accepted, otherwis#, is rejected in favour of{;. As a result, two errors are possible:
to reject Hy when it is true, that is a false alarm (type | errorcoerror), or to fail to rejectH,
when H,, is false (type Il error o3 error).

The term “likely” introduced above is defined by the user bypaging the confidence limit.
For example, if the confidence limit is chosen to be 10.6 then39.5% of the samples fall

inside the limits. This confidence limit sets the type | erféollowing the example presented
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in section 1I-B the type | error was of 0.5%, that is the 0.5%tlé samples of a3 must be
greater than 10.6. The type Il error is more difficult to becakdted as it depends on knowledge
of of the actual distribution followed by/2.

The hypothesis test is then simply a check that any magnitdidee normalized spectrum
is less than the test limit. If the value is greater then itesyvunlikely and the model results

invalidate for this frequency.

[Il. CONTROL ORIENTED VALIDATION

Model validation theory is aimed towards checking the magdsdfulness for some intended
use. Thus the model validation procedure should take intowrd the model use, for example
control design or prediction purposes. In fact, it is redegd in [10] that arbitrary small model
errors in open loop can lead to bad closed loop performaneeh®other hand large open loop
modelling errors do not necessarily lead to bad closed l@fopnance. As a result the model
accuracy should be checked in such a way that the intendeélmed is taken into account in
the model validation procedure.

An important aspect in the validation procedure to take adoount the intended model use
are the validation conditions. In fact validation from oplop data can provide a different
result than validation with closed loop data. Furthermaris icompletely different to validate
an open loop model than to compare two closed loops, the otietinéd model and the real one
(See for example [11]). This result points out the impor&an€ the information that is being
validated. This is accomplished by means of setting the raxje@tal conditions from which
data are generated.

In order to consider the model intended use in the validagtimecedure the conditions for data
generation must be considered. In the following subsestdfierent structures are proposed in
order to compute the residuals and it is shown that they hawsiderable importance on the
actual information that is validated. Its statistical pedpes are reviewed as the residuals must
be statistically white under perfect model matching in orateeapply the proposed algorithm.
It is shown that the new model validation procedure intr@dli; this article can be endowed

with the control oriented property.
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A. Open Loop Validation (Stable Plants)

The structure used to validate the model is shown in figure 6.

- Y
P
r d - Sor
P ﬂoiy
Fig. 2. Open Loop Model Validation
The residual is given by the following expression
for =d+ (P — P)r (6)

The residuaky;, given by equation 11 is just the noigdaf the model and the plant are equal
(i.e. P = P). Hence the residual has the same stochastic propertiegtteanoise. On the other
hand if there exists a discrepancy between the model andl|#m, @ new term (P — P)r)
appears in the residual. It should be remarked however lieamibdel-plant error which will be

detected is deeply dependent on the reference signal.

B. Closed Loop Validation (Stable Plants)

The proposed structure to validate stable models in closep is shown in figure 9.

d A& &cLs
K Ul ‘ P }_liy

r‘_

Fig. 3. Closed Loop Model Validation for Stable Plants

The residual is

fors = =d+ KS(P — P)r 7)
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If the model and the plant are equal (i.B. = P) then the two sensitivity functionsS(=
(1+ GK)'andS = (1 + GK)™!) are equal so the first term of equation 12 yields the noise
d. Moreover the second term, under the same perfect moded+platching assumption, is zero.
Hence in this case the residuals are again the nbise

If there exist a discrepancy between the model and the plhart the division betweel
and S is no longer unity but a transfer function resulting from tr@ised filtered byS/Q (i.e.
autocorrelated). Additionally the second term of equati@ngives a signal proportional to the

model-plant error weighted by the control sensitivity ftioo.

C. Closed Loop Validation (Unstable Plants)

When the model is from an unstable plant, the above schemesemted in figure 6 and
figure 9 fail to provide a proper residual because slight madent differences will lead to
unbounded residual. Suitable structures to validate blestaodels operating in closed loop are

presented in figure 4.

X e

1- §Cru - &oru

d

K ey

Fig. 4. Closed Loop Model Validation for Unstable Plants

The residual at the outp@t., (at the inputés, ) of figure 4 are

foru = Sd+ KSS(P — P)r (8)
¢, =—KSd— KKSS(P — P)r (9)

Now, the residuatc ., (£4.,) given by equation 8 (9) is always autocorrelated as it isrbid
by the sensitivity functions' (KS) independently of the model-plant mismatch. The behaviour
of the second term of equation 8 is similar to the ones expthabove. Thus residuals generated

under this structures are not suited to our approach.
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IV. M ODEL VALIDATION ON ITERATIVE IDENTIFICATION AND CONTROL SCHEMES

The benefits of the frequency dependent model validatiorirferiterative identification and
control schemes hinge on the frequency domain informatimayced by the algorithm. It is
possible to asses for what frequency range a new model shedufttbntified (perhaps increasing
the model order) and what frequency content should contaénimput of the experiment.
Moreover we have information over the frequency range foictwithe model is validated,
thus it is possible to choose a proper controller bandwidth.

The benefits of the frequency dependent model validatiomoagp over iterative control (see
figure 5) are:

« Designing the input experiment for the next identificatideps It is well known that
the identified model quality hinges on the experiment desigto obtain the data. The
experiment should contain high energy components on tlggiérecy range where the model
is being invalidated if informative data is pursued for a ndentification in the following
step.

« Detecting model undermodelling and/or choosing modelo@éigher order model can be
fitted over the frequency range where the current model isgoivalidated. It can be done
even inside the current iteration step without the need dbpming a new experiment. In
[12] a methodology to add poles and zeroes to an existing huaatebe found.

« Selecting controller bandwidth on the controller desigepstOnce a frequency range of
the model has been validated, if no further improvement efrttodel is sought, the final

controller designed should respect the allowable bandhsidf the model.

V. EXAMPLES
A. Example 1

The proposed validation procedure in the frequency dommiapplied to a stable plant in
open loop (see figure 6).
The real plant? and the modelZ chosen to approximate it are:
1 A 1
G = , G= 10
(s+1)(s+ 10) (s+1) (10)

The Bode diagram comparing the real plant with the model @svshin figure 7.
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1 = — P |Experiment 4
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Fig. 5. Benefits of the frequency model validation approactiterative identification and control schemes
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Fig. 6. Open Loop Model Validation

_Bode Diagram
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Fig. 7. Comparison of Bode diagrams

The experimental setup is as follows. The residuals gesday the open loop structure of
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figure 6 are given by
for, =d+ (G — G)r (11)

Hence the residuay;, given by equation 11 is just the noiseif the model and the plant are
equal (i.e.G = G). Hence the residual has the same stochastic propertieshbanoise.

The residuals corresponding to two different experimerith #ihe same input are processed
as described in section II-B. The perturbatidris assumed to be white noise witl=1. The
reference inputis a train of sinusoids up to frequency 3 rad/sec.

The validation procedure results can be seen in figure 8. Towehd’ shows no invalidation
signs up to 1.4 rad/sec. However for higher frequencies tpothesis test fails to validate
the model. As a conclusion we can state that, for the inputieghpthe model is correct for
frequencies below to 1.4 rad/sec. It is worth to mention #dititough between 1.7 rad/sec and
2.3 rad/sec there are no spikes out of the confidence limieeper examination reveals that
several consecutive spikes are abnormally high to belong distribution. In order to detect
this situations further probabilities should be checked.(éhe probability that two consecutive

points of ax3 distribution be higher than some given value.)

Normalized Magnitude Spectrum

il

@
T

0

25 3 35

1 15 2
Frequency(rad/sec)

Fig. 8. Normalized Magnitude Spectrum and Confidence Limits

As a conclusion, the modé} can be accepted as a good approximation of the ghanp to
frequency 1.4 rad/sec. For higher frequencies the misntatlhieen model and plant is present
up to the input bandwidth (i.e. 3 rad/sec). It should be noentihat this result is input dependent.
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However the results obtained up to now can serve as a guedelidesign new input signals with
suitable frequency contents for new identification stepg. (eigh energy around the frequencies

were a significant error exists, that is between 1.4 rad/sdc3arad/sec).

B. Example 2

The present example is the application of the proposed @émgyudomain model validation to
an lterative Control Design. As baseline we take the Iteeafiontrol Design example presented
in [7], page 126, where a stable plant with high-frequencsonant modes is controlled by
successive plant identification (e.g. step response) aadsuibvsequent controller design (e.g.
model matching and cancellation controller). We apply t® shiccessive models and controllers
given in the example our frequency domain model validatioocedure. Moreover we propose
a customized structure in order to generate adequate adsittu claim for a control oriented
model validation.

The proposed structure to generate the residuals is inctlosg, as shown in figure 9.

Fig. 9. Closed Loop Model Validation for Stable Plants

The residual is given by

Sors = %d + KS(G—G)r (12)

The residuaks ;. is the noisel filtered by the fraction of the real Sensitivity functichand
the Sensitivity function of the modél plus a term that is the discrepancy of the plants weighted
by the control sensitivity function. If the model and the qilare equal (i.eG = G) then the
two sensitivity functions § and S) are equal so the first term of equation 12 yields the noise
d. Moreover the second term, under the same perfect moded-platching assumption, is zero.

Hence the residual has the same properties of the mbisl®wever if there exist a discrepancy
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between the model and the plant then the division betwgeand S is no longer the unity
but a transfer function resulting in the noigdiltered byS/S’. These facts makes the residual
generated by this structure suitable for a whiteness test.

The experimental setup is as follows. First a model of thepla is obtained by a step
response identification. For this model successive cdatsk” are designed by imposing more
stringent reference modeld. When the closed loop step response is unsatisfactory, anale!
is identified and the controller design steps repeated. Teéasarement noisé is white noise

with o = 1072, The reference input is a train of sinusoids up to frequency 200 rad/sec.

Bode Diagram

Ghat —

Magnitude (dB)

Phase (deg)
T
|
|
|
|
|

10° 10° 10 10° 10" 10° 10° 10 10°
Frequency (radisec)

Fig. 10. Bode Plot

1) First Iteration: The first identified model and the model reference used taalbert design

are:
A 20 0.5

Go=airme M= Groae (13)

The bode plot of the real plari and the first models, is shown in figure 10. The frequency

domain validation is applied, given a positive validati@sult, as can be seen in the first plot

June 9, 2011 DRAFT



19

Iteration 1

Iteration 2

Iteration 3
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Fig. 11. Normalized Magnitude Spectrum and Confidence Isimit

of figure 11.
2) Second lIteration:Following the positive validation result of the first ite@at the same
model is kept as a valid one and the performance is pushedfdriby a new, more stringent,

reference model:
. 20 32

Go=— My = —>—
T (1+7.4s)% 27 (s+3)2

The validation test invalidate the model for frequenciesuad 50 rad/sec (see plot 2 of

(14)

figure 11). This is due to the non modelled resonance peakrabeaeen in the bode diagram
of figure 10.

3) Third Iteration: In [7], the new identification step is taken after pushingref@ward the
desired reference model:

. 20 52
Go=— Mz = ———
T (1+7.45)% 7 (s+5)2

The invalidation of the model for frequencies around 50 gad/for this controller is evident
(plot 3 of figure 11).

(15)

4) Fourth Iteration: In [7] a new model plant is identified due to the unacceptakised

loop behaviour for the controller designed with the refeeemodel My;. The new identified
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plant captures the first resonance peak of the plant.
. . 0.01% + 502

G = G 16
! (s +0.01 4 504)(s + 0.01 — 504) (16)
54
My = ———
1 (s+5)4

The model validation result shows that now, the model isdeéd for all the frequency range
covered by the input (plot 4 of figure 11).

Summarizing the example results, we have shown how the drexyudependent model vali-
dation scheme can be helpful to guide the identification biepiming towards the interesting
frequencies content that an identification experiment khexcite. The procedure is helpful too
to choose the appropriate controller bandwidth suitabigife actual model accuracy. Moreover
it has been proven that the proposed methodology can beedpipliiterative control design

schemes and the validation can be control oriented.

C. Example 3

The objective of the present example is to compare our dlgorivith the model validation
proposed in the Windsurfer Approach [7]. In [9] the residisatalculated as shown in figure 4
and two complementary different validation methods areliappa time domain method and
a frequency domain method. The time domain is a classicasetorrelation test between
the residual and the filtered input. In fact no whiteness testid be applied to the residual
generated by the structure of figure 4. The frequency domathod for model validation is
based on comparing two power spectrum, the noise spectrahthenresidual spectrum. By
visual comparison of both spectrum it is possible to asteifahe model is validated.

On the other hand our proposed algorithm calculates theluals following structure in
figure 9 and the validation procedure is the translation afree tdomain whiteness test into a
frequency domain one.

In [9] the following simulation example is proposed. Thermlés a flexible link robot arm
whose transfer functiotr has poles at = —0.0996+ 73.0017, —0.3339+12.131 and—1.845+
j31.481, zeros ats = —13.162, —10.646 £+ j12.27 and 7.169 + j11.54 and G(0) = 0.5196.
The first model of the plan€, captures the first resonant frequency s has poles at =
—0.0903 + 53.0027, a zero ats = —13.31, andG, = 0.5188. The bode diagram of the plant and

the model is shown in figure 12.

June 9, 2011 DRAFT



21

Magnitude (d8)

Phase (deg)

10
Frequency (rad/sec)

Fig. 12. Bode Plot

The controller is designed by the internal model control @Mmethod. The performance
requirement is set by means of the closed loop bandwidivhen the paramete is set equal
to 1.5 rad/sec the validation method proposed in [9] givesftiowing results:

« The time domain cross-correlation method shows @hais not a good model of-.

« The method of comparing the power spectra validates the Inode

When the proposed algorithm is applied the validation tesah be seen in figure 13. The
model results invalidated around the frequency of 12 radjfise. the second resonant frequency).
The proposed approach has the following advantages:

« No time domain test is necessary. Classical time domais t#st not informative at all for

iterative identification and control schemes.
« The frequency ranges for which the model results validatealidated are given in a precise

form with a probability measure (i.e. hypothesis test).

VI. CONCLUSIONS

A new approach for model validation on iterative identificatand control schemes has been
presented. The originality of the approach is that it vaBdahe model in the frequency domain
rather than in the time domain. The procedure of validatingael in the frequency domain
has proven to be more informative for iterative control gasschemes as it can serve as a guide

for input experiment design (i.e. high energy content adotrequencies where the model is
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Fig. 13. Normalized Magnitude Spectrum and 99.5% Confidésmcets

invalidated) and for controller design (i.e. limiting thentroller bandwidth to those frequencies

where an accurate model exists).

VII. APPENDIX
A. Proof of theorem 1

The discrete Fourier transform of a discrete time signak given by

N-1

f= x> Elmye i a7

n=0
where)y = %r is the fundamental frequency. Decomposing the equationiid its real part

and its imaginary part gives

& =

£(n)(cos(Qpkn) — jsin(Qokn))

=2

= & 3 ) cos(Qukn) — - S €(m) sin(Qphn)

n=0 n

Il
o
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where the second equality comes from Euler’s identity. ldethe real and imaginary parts are

linear combinations of normally distributed random valesb

1 N-1

Re = ;g(n) cos(Qokn) (18)
1 N-1

I = + ;g(n) sin(Qkn) (19)

As a result, it follows thaf?, and/;, are also normally distributed random variables. The distri
bution parameters for the stochastic variaBjeare calculated as follows (see, for example, [13],

page 87)
N-1

1
pr, = pex S cos(Qohkn)

n=0
N-1

Z cos?(Qokn) (20)

n=0

The same reasoning is applicable to the imaginary part

1
N2

2 o 2
Or, = O¢,

B. Proof of theorem 2

By definition the sum of "r" independent squared random ndwasablesN (0, 1) has ay?
distribution of r degrees of freedom. Due to the normalization)f and I, it follows that
Btme ¢ N (0,1) and 2222 € N(0, 1). O

TRy, II,
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