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A New Frequency Dependent Approach to

Model Validation for Iterative Identification

and Control Schemes

P. Balaguer and R. Vilanova

Abstract

Classical validation methods “accept” or “reject” a model as a valid representation of a plant for

some intended use. However this binary result has several problems as firstly, models are neither good

nor bad but have a certain valid frequency range and secondlythe procedure gives no insight into

why the model is not useful or how to improve the model. Moreover within the framework of iterative

identification and control design the model validation issue arises the following requirements: i) Is it

possible to improve an existing model?. ii) How can the modelbe improved?. iii) How authoritative can

be the designed controller?. These facts question the suitability of traditional model validation schemes

in general and their suitability for iterative control schemes in particular. We present a new validation

procedure that overtakes these problems by performing the model validation frequency dependent. The

validation procedure is then more informative due to its frequency information content. As a result the

same model can be validated for some frequency band and invalidated for a distinct frequency range.

Index Terms

Model Validation, Frequency Domain, Iterative Control, Control Oriented

I. INTRODUCTION

In order to have confidence in a model, it is necessary to validate it. Different model val-

idation approaches exist. Their difference is based upon the assumptions about the plant and
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models. Classical validation methods, based on classical model identification ([1] and [2])

rely on statistical uncertainty assumptions due to stochastic noise only. On the other hand,

control oriented identification methods [3] (i.e.H∞ identification, stochastic embedding, set

membership identification, etc.) lead to validation assumptions based on bounded noise and

bounded model undermodelling. However in both cases the output of the validation process is

just a “validated/invalidated” result.

Regarding classical validation methods, the problem of assessing the validity of an identified

model has been traditionally linked with the problem of model order selection. The classical

model validation literature ([1] and [2]) has approached the problem in two ways:

• Use of plots and common sense.

• Use of statistical tests on the residuals (i.e. the difference between the real output and the

model output).

The first approach is basically based on the comparison of experimental data with the model

output. If both are similar then the model can be considered agood one. However there are two

unavoidable reasons that prevent the model output to fit dataperfectly: the modelling errors and

perturbations.

The second approach is to apply a hypothesis test over the residual. A hypothesis test is a

statement about a random variable. This statement is expressed by means of two hypothesisH0

andH1. H0 is called the null hypothesis andH1 is the alternative hypothesis. In order to decide

the validity of either the null hypothesisH0 or the alternative hypothesisH1, an estimation of

a population parameter (e.g. mean or variance) is computed from a population sample and it is

compared against the assumed population parameters. Thesepopulation parameters are random

variables too with certain mean and variance. If it is likelythat the computed statistic is inside

the population parameters distribution thenH0 is accepted, otherwiseH0 is rejected in favour

of H1. As a result, two errors are possible: to rejectH0 when it is true, that is a false alarm

(type I error orα error), or to fail to rejectH0 whenH0 is false (type II error orβ error).

The null hypothesis (i.e.H0) taken on the model validation test is the hypothesis on the residual

ξ(t), which follows from the assumptions on the disturbance. Themore common assumptions

over the residual are [2]:

h1: ξ(t) is a zero mean white noise.

h2: ξ(t) has a symmetric distribution.
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h3: ξ(t) is independent of past inputsEξ(t)u(τ) = 0, t > τ .

h4: ξ(t) is independent of all inputsEξ(t)u(τ) = 0, ∀t, τ .

The above assumptions lead to check two main properties, thewhiteness of the residuals (i.e.

h1, h2) and the cross-correlation between residualsξ(t) and control actionsu(t) (i.e. h3, h4).

Hence classical validation tests can be classified as follows

• Whiteness Test.

- Autocorrelation test. (h1)

- Testing changes of sign. (h1 andh2)

• Independence between residuals and inputs.

- Cross-correlation test of past inputs. (h3) or (h3 andh1)

- Cross-correlation test of all inputs. (h4) or (h4 andh1)

The rationale of the tests is to detect causes of variation onthe residual distinct than the ones

assumed. For example if the residual is assumed to be white noise and the test shows that the

whiteness statistical hypothesis is violated then we assume that there is a distinct cause causing

the mismatch (i.e. model error).

The result of the statistical tests above reviewed is a binary one. In fact the test either validates

or invalidates the model. No further information is provided by the test. As a result, two important

drawbacks are:

1) There is no information on important model aspects such as[4]:

• The reasons why the model is invalidate.

• How to improve the model.

• The model usefulness degree.

2) In iterative identification and control schemes undermodelling is normally present [5]. In

fact as stated in [6]: “For such a model (a model simpler that the one that minimizes

the total error) typically the bias error is the dominating contribution to the total error.

Consequently,such models would normally be falsified during model validation. These are

then reduced complexity models”.

Thus, as a conclusion, although the theory of classical validation methods is well developed

and plenty of successful applications, it has limitations when a more informative validation

procedure is required, as for example in iterative identification and control approaches.
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Iterative identification and control design schemes improve performance by designing new

controllers on the basis of new identified models [7]. The procedure is as follows: an experiment

is performed in closed loop with the current designed controller. A new model is identified with

the experimental data and a new controller is designed usingthe new model. The procedure is

repeated until satisfactory performance is achieved.

The rationale behind iterative control is that if iteratively “better” models are identified, hence

“better” performing controllers can be designed. However the meaning of “better” model needs

some clarification. The idea of modelling the “true” plant has proven to be bogus [8]. Instead a

good model for control is one that captures accurately the interesting frequency range for control

purposes. In fact the model has no other use than to design a controller, thus the use of the

model is instrumental [9]. Hence, once a model is obtained itis necessary to validate it. On

the iterative identification and control schemes this should be done each time a new model is

identified (i.e. at each iteration).

The main problem of the validation methods reviewed is that the answer is a binary result

(i.e. validated/invalidated). However models are neithergood nor bad but have a certain valid

frequency range (e.g. normally models are good at capturinglow frequency behavior but their

accuracy degrades at higher frequencies). Moreover the iterative identification and control pro-

cedures have their own particular requirements:

• Is it possible to improve an existing model?. Is the data informative enough to attempt a

new identification?.

• How can the model be improved?. Is the model order/structurerich enough to capture the

interesting features of the plant?.

• How authoritative can be the controller designed on the basis of the new model?. Which is

the validity frequency range of my model?.

The above requirements for iterative control can not be provided by the classical model

validation approaches above introduced because:

• No indication on the possibility to improve an existing model. This problem is solved in [9]

by the use of classical validation methods (i.e. crosscorrelation test) together with the visual

comparison of two power spectrum.

• In iterative identification and control approaches a low order model is fitted to capture
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the frequency range of interest for control. Hence undermodelling is always present. This

fact makes it difficult to apply traditional model validation schemes as the output of the

validation procedure is a binary answer (i.e. validated/novalidated) [6].

• No indication on how to improve the model on the next iteration (i.e. model order selection

and/or input experiment design).

• No indication on the model validity range for control design(i.e. controller bandwidth

selection).

Summing up, these arguments question the suitability of classical validation approaches in

general and its application to iterative identification andcontrol schemes in particular.

In this article we propose a new model validation algorithm in order to solve the above

mentioned problems. The validation result is no longer“validated/invalidated” but frequency

dependent. Thus the validation result is more informative as the model can be validated for

some frequency range and the same model can be invalidated for a distinct frequency band.

The article contributions are organized as follows:

• A new procedure for model validation in the frequency domainis presented (Section II-

B). This procedure permits to validate or invalidate modelsover certain frequency ranges.

The procedure is the translation of a time domain residual whiteness test to a frequency

dependent residual whiteness test. The counterpart on the frequency domain of a time

domain whiteness test is established (Section II-A). This leads to stating the statistical

properties of each spectrum frequency component if the timedomain transformed signal

is a white noise. It is shown that the normalized spectrum is arandom variable with a

χ2 distribution of 2 degrees of freedom (Theorem 2). The validation/invalidation step is

based on a hypothesis test applied to each frequency component. This determines if certain

frequency components have an unusual content that discardsthe model validity for this

frequency value. The acceptance/rejection decision of thefrequency component validity

comes with a probability measure (Section II-C).

• The intended use of the model (e.g. open loop or closed loop) is taken into account by

considering the structure from which the residuals are generated. In Section III a study of

the residuals information content and its statistical properties for different structures (e.g.

open loop Vs closed loop) is conducted. As the validation procedure is based on a whiteness

test, the residual should be white noise whenever the model fits accurately the plant. This
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however is not the general case when residuals coming from closed loop comparisons are

used. In order to overcome this difficulty, a novel structureis proposed in Section III-B

which is able to provide white residuals when two closed loops are compared.

• The benefits of the presented validation procedure on iterative identification and control

schemes is discussed in Section IV. It is shown that the validation procedure shifts from

a classical static test (i.e. validation/invalidation) toa dynamic one which gives frequency

domain information useful for improvement of identification and control design on iterative

schemes.

• The usefulness of the presented procedure is presented by means of three examples (Sec-

tion V). The first example presents the application to an openloop model validation. It is

shown how the reliable model bandwidth is calculated with our algorithm. The second and

third example deal with iterative control approaches, and how our algorithm is helpful to

decide the appropriate bandwidth of the controller to be designed and the input design for

future identification experiments.

II. FREQUENCY DEPENDENTMODEL VALIDATION

The main objective of the paper we present is to validate a model on the frequency domain. To

this end a time domain validation procedure based on testingthe residual whiteness is modified

to achieve the pursued objectives. The idea is as follows. Itis assumed that if the residual is

white noise the model is validated because the residual contains no further useful information

that could be used to improve the model accuracy. This test isusually performed in the time

domain by studying the residual autocorrelation, the number of sign changes, etc [1].

We translate the time domain residual to the frequency domain by its discrete Fourier trans-

form. Moreover, the statistical properties of the spectrumof a white noise signal are calculated.

The objective is to test if the spectrum calculated from the residual has properties of a white

noise. As a result, one unique test in the time domain has beentranslated toN different tests

in the frequency domain. We check if thekth frequency component of the spectrum has the

properties of a typical frequency component of a white noise. In case of an affirmative answer,

we have no reason to believe that the model is invalidated on that frequency component. On the

other hand, if there are certain frequency components whichclearly do not behave accordingly

to the statistical properties of white noise then it is likely that at this frequency range there is
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an important mismatch between the model and the plant. As a result the model is invalidated

for that frequency range.

A. Whiteness Test on the Frequency Domain

In this section the statistical time domain properties of a white noise are translated to the fre-

quency domain. This is accomplished by means of two theorems. The first one is an intermediate

result that is used by the second theorem which describes thefrequency domain distribution of

the spectrum of a white noise.

Theorem 1:Let ξ(n) be a sequence of independent identically distributed (IID)samples of

normal distributionN(µξ, σ
2
ξ ). If we express the discrete Fourier transform by its real and

imaginary part, that is ξk = Rk + jIk = 1
N

∑N−1
n=0 ξ(n)e−jΩ0kn, then the real partRk is a

random variable normally distributed (Rk ∈ N(µRk
, σ2

Rk
)) with meanµRk

and varianceσ2
Rk

given by

µRk
= µξ

1

N

N−1
∑

n=0

cos(Ω0kn)

σ2
Rk

= σ2
ξ

1

N2

N−1
∑

n=0

cos2(Ω0kn) (1)

Similarly the Imaginary partIk is a random variable normally distributedIk ∈ N(µIk
, σ2

Ik
)

with meanµIk
and varianceσ2

Ik
given by

µIk
= µξ

1

N

N−1
∑

n=0

sin(Ω0kn)

σ2
Ik

= σ2
ξ

1

N2

N−1
∑

n=0

sin2(Ω0kn) (2)

Proof: See Appendix VII-A

Remark 1:µRk
is equal to zero fork ∈ {1, 2, ..., N − 1} andµR0

equals the mean value of

the residual (i.e.µR0
= µξ). µIk

is always equal to zero fork ∈ {0, 1, 2, ..., N − 1}

Theorem 2:The normalized squared gainM2
k defined as

M2
k =

(

Rk − µRk

σRk

)2

+

(

Ik − µIk

σIk

)2

(3)

has aχ2 distribution of 2 degrees of freedom ifRk andIk are independent.

Proof: See Appendix VII-B
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B. Procedure

The frequency domain model invalidation procedure is as follows

1) Calculate the residual as the difference of the real output and the model estimated output

(ξ(n) = y(n) − ŷ(n)).

2) Calculate the discrete Fourier transform of the residual(ξk)

3) Decompose each frequency component on its real part and imaginary part (ξk = Rk +jIk).

4) Calculate the distribution parameters of the Real and Imaginary part of the residual spec-

trum (i.e.µRk
, µIk

, σRk
, σIk

).

5) Calculate the normalized magnitude spectrum as follows

M2
k =

(

Rk − µRk

σRk

)2

+

(

Ik − µIk

σIk

)2

(4)

6) Perform an hypothesis test over the normalized magnitudespectrum calculated.
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Fig. 1. White noise example

The above steps are materialized in the following example. Arealization of a normally

distributed random variable of zero mean and unity varianceis performed with 500 samples.

The discrete Fourier transform of the realization is calculated and decomposed into its real and

imaginary parts (i.e.Rk, Ik). The values ofRk and Ik are shown in figure 1. They follow a

normal variable distribution with parameters given by equations (1)-(2) (i.e.Rk ∈ N(µRk
=
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0, σ2
Rk

= 0.001) and Ik ∈ N(µIk
= 0, σ2

Ik
= 0.001)). On figure 1 the realizations ofRk and Ik

are plotted together with the 3 sigma limits of their distribution (i.e. the 99.73% of the samples

fall between the plotted limits). It can be seen that all the points fall inside this range.

Finally the normalized magnitude spectrum is calculated following equation (4). The mag-

nitude spectrum can be seen in figure 1 together with the 99.5%confidence limit of theχ2
2

distribution (i.e. the 99.5% of the samples fall between 0 and 10.6). All the magnitude frequency

components remain below of the confidence limit so there are no reasons to invalidate the model.

The whiteness test has passed. In the sequent section the hypothesis test features are described

more thoroughly.

C. Hypothesis Test

The hypothesis test is the last step of the presented procedure, where the decision of vali-

dation/invalidation of certain frequency component is taken. An hypothesis test is a statement

expressed by means of two hypothesisH0 andH1. H0 is called the null hypothesis andH1 is

the alternative hypothesis. The hypothesis test to be applied in our procedure is:

H0 : M2
k ∈ χ2

2

H1 : M2
k /∈ χ2

2 (5)

The hypothesisH0 states that the normalized modulusM2
k of the kth frequency component is

χ2
2 distributed. On the other hand the hypothesisH1 states that the normalized modulusM2

k of

the kth frequency component is notχ2
2 distributed.

Remark 2:The hypothesis test stated in (5) is applied to each frequency component, from 0

rad/sec up to the Nyquist frequency (i.e.π/Ts, whereTs is the sample time).

In order to decide the validity of either the null hypothesisH0 or the alternative hypothesis

H1, M2
k is computed. If it is “likely” that the value ofM2

k lies inside theχ2
2 distribution then

H0 is accepted, otherwiseH0 is rejected in favour ofH1. As a result, two errors are possible:

to rejectH0 when it is true, that is a false alarm (type I error orα error), or to fail to rejectH0

whenH0 is false (type II error orβ error).

The term “likely” introduced above is defined by the user by choosing the confidence limit.

For example, if the confidence limit is chosen to be 10.6 then the 99.5% of the samples fall

inside the limits. This confidence limit sets the type I error. Following the example presented
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in section II-B the type I error was of 0.5%, that is the 0.5% ofthe samples of aχ2
2 must be

greater than 10.6. The type II error is more difficult to be calculated as it depends on knowledge

of of the actual distribution followed byM2
k .

The hypothesis test is then simply a check that any magnitudeof the normalized spectrum

is less than the test limit. If the value is greater then it is very unlikely and the model results

invalidate for this frequency.

III. CONTROL ORIENTED VALIDATION

Model validation theory is aimed towards checking the modelusefulness for some intended

use. Thus the model validation procedure should take into account the model use, for example

control design or prediction purposes. In fact, it is recognized in [10] that arbitrary small model

errors in open loop can lead to bad closed loop performance. On the other hand large open loop

modelling errors do not necessarily lead to bad closed loop performance. As a result the model

accuracy should be checked in such a way that the intended model use is taken into account in

the model validation procedure.

An important aspect in the validation procedure to take intoaccount the intended model use

are the validation conditions. In fact validation from openloop data can provide a different

result than validation with closed loop data. Furthermore it is completely different to validate

an open loop model than to compare two closed loops, the one with the model and the real one

(See for example [11]). This result points out the importance of the information that is being

validated. This is accomplished by means of setting the experimental conditions from which

data are generated.

In order to consider the model intended use in the validationprocedure the conditions for data

generation must be considered. In the following subsections different structures are proposed in

order to compute the residuals and it is shown that they have considerable importance on the

actual information that is validated. Its statistical properties are reviewed as the residuals must

be statistically white under perfect model matching in order to apply the proposed algorithm.

It is shown that the new model validation procedure introduced in this article can be endowed

with the control oriented property.
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A. Open Loop Validation (Stable Plants)

The structure used to validate the model is shown in figure 6.

r -

P

P̂

y

ŷ

ξOLd

Fig. 2. Open Loop Model Validation

The residual is given by the following expression

ξOL = d + (P − P̂ )r (6)

The residualξOL given by equation 11 is just the noised if the model and the plant are equal

(i.e. P̂ = P ). Hence the residual has the same stochastic properties than the noise. On the other

hand if there exists a discrepancy between the model and the plant, a new term ((P − P̂ )r)

appears in the residual. It should be remarked however that the model-plant error which will be

detected is deeply dependent on the reference signal.

B. Closed Loop Validation (Stable Plants)

The proposed structure to validate stable models in closed loop is shown in figure 9.

r

-

-
K P

P̂

yu

ŷ

ξCLsd

Fig. 3. Closed Loop Model Validation for Stable Plants

The residual is

ξCLs =
S

Ŝ
d + KS(P − P̂ )r (7)
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If the model and the plant are equal (i.e.P̂ = P ) then the two sensitivity functions (S =

(1 + GK)−1 and Ŝ = (1 + ĜK)−1) are equal so the first term of equation 12 yields the noise

d. Moreover the second term, under the same perfect model-plant matching assumption, is zero.

Hence in this case the residuals are again the noised.

If there exist a discrepancy between the model and the plant then the division betweenS

and Ŝ is no longer unity but a transfer function resulting from thenoised filtered byS/Ŝ (i.e.

autocorrelated). Additionally the second term of equation12 gives a signal proportional to the

model-plant error weighted by the control sensitivity function.

C. Closed Loop Validation (Unstable Plants)

When the model is from an unstable plant, the above schemes presented in figure 6 and

figure 9 fail to provide a proper residual because slight model plant differences will lead to

unbounded residual. Suitable structures to validate unstable models operating in closed loop are

presented in figure 4.

r

--

-

-

K

K

P

P̂

yu

ŷû

ξu

CLu ξCLu

d

Fig. 4. Closed Loop Model Validation for Unstable Plants

The residual at the outputξCLu (at the inputξu
CLu) of figure 4 are

ξCLu = Sd + KSŜ(P − P̂ )r (8)

ξu
CLu = −KSd − KKSŜ(P − P̂ )r (9)

Now, the residualξCLu (ξu
CLu) given by equation 8 (9) is always autocorrelated as it is filtered

by the sensitivity functionS (KS) independently of the model-plant mismatch. The behaviour

of the second term of equation 8 is similar to the ones explained above. Thus residuals generated

under this structures are not suited to our approach.
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IV. M ODEL VALIDATION ON ITERATIVE IDENTIFICATION AND CONTROL SCHEMES

The benefits of the frequency dependent model validation forthe iterative identification and

control schemes hinge on the frequency domain information produced by the algorithm. It is

possible to asses for what frequency range a new model shouldbe identified (perhaps increasing

the model order) and what frequency content should contain the input of the experiment.

Moreover we have information over the frequency range for which the model is validated,

thus it is possible to choose a proper controller bandwidth.

The benefits of the frequency dependent model validation approach over iterative control (see

figure 5) are:

• Designing the input experiment for the next identification step. It is well known that

the identified model quality hinges on the experiment designed to obtain the data. The

experiment should contain high energy components on the frequency range where the model

is being invalidated if informative data is pursued for a newidentification in the following

step.

• Detecting model undermodelling and/or choosing model order. A higher order model can be

fitted over the frequency range where the current model is being invalidated. It can be done

even inside the current iteration step without the need of performing a new experiment. In

[12] a methodology to add poles and zeroes to an existing model can be found.

• Selecting controller bandwidth on the controller design step. Once a frequency range of

the model has been validated, if no further improvement of the model is sought, the final

controller designed should respect the allowable bandwidths of the model.

V. EXAMPLES

A. Example 1

The proposed validation procedure in the frequency domain is applied to a stable plant in

open loop (see figure 6).

The real plantG and the model̂G chosen to approximate it are:

G =
1

(s + 1)(s + 10)
, Ĝ =

1

(s + 1)
(10)

The Bode diagram comparing the real plant with the model is shown in figure 7.
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Experiment i

Identification

Frequency
Validation

Control Design

i = i + 1

Input
Design

Model Order Selection

Bandwidth Selection

Fig. 5. Benefits of the frequency model validation approach on iterative identification and control schemes
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Fig. 6. Open Loop Model Validation
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Fig. 7. Comparison of Bode diagrams

The experimental setup is as follows. The residuals generated by the open loop structure of
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figure 6 are given by

ξOL = d + (G − Ĝ)r (11)

Hence the residualξOL given by equation 11 is just the noised if the model and the plant are

equal (i.e.Ĝ = G). Hence the residual has the same stochastic properties than the noise.

The residuals corresponding to two different experiments with the same input are processed

as described in section II-B. The perturbationd is assumed to be white noise withσ=1. The

reference inputr is a train of sinusoids up to frequency 3 rad/sec.

The validation procedure results can be seen in figure 8. The model Ĝ shows no invalidation

signs up to 1.4 rad/sec. However for higher frequencies the hypothesis test fails to validate

the model. As a conclusion we can state that, for the input applied, the model is correct for

frequencies below to 1.4 rad/sec. It is worth to mention thatalthough between 1.7 rad/sec and

2.3 rad/sec there are no spikes out of the confidence limit, a deeper examination reveals that

several consecutive spikes are abnormally high to belong aχ2
2 distribution. In order to detect

this situations further probabilities should be checked (e.g. the probability that two consecutive

points of aχ2
2 distribution be higher than some given value.)

0 0.5 1 1.5 2 2.5 3 3.5
0

5

10

15

20

25

Frequency(rad/sec)

M
2 k

Normalized Magnitude Spectrum

Fig. 8. Normalized Magnitude Spectrum and Confidence Limits

As a conclusion, the model̂G can be accepted as a good approximation of the plantG up to

frequency 1.4 rad/sec. For higher frequencies the mismatchbetween model and plant is present

up to the input bandwidth (i.e. 3 rad/sec). It should be mention that this result is input dependent.
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However the results obtained up to now can serve as a guideline to design new input signals with

suitable frequency contents for new identification steps (e.g. high energy around the frequencies

were a significant error exists, that is between 1.4 rad/sec and 3 rad/sec).

B. Example 2

The present example is the application of the proposed frequency domain model validation to

an Iterative Control Design. As baseline we take the Iterative Control Design example presented

in [7], page 126, where a stable plant with high-frequency resonant modes is controlled by

successive plant identification (e.g. step response) and the subsequent controller design (e.g.

model matching and cancellation controller). We apply to the successive models and controllers

given in the example our frequency domain model validation procedure. Moreover we propose

a customized structure in order to generate adequate residuals to claim for a control oriented

model validation.

The proposed structure to generate the residuals is in closed loop, as shown in figure 9.

r

-

-
K G

Ĝ

yu

ŷ

ξCLsd

Fig. 9. Closed Loop Model Validation for Stable Plants

The residual is given by

ξCLs =
S

Ŝ
d + KS(G − Ĝ)r (12)

The residualξCLs is the noised filtered by the fraction of the real Sensitivity functionS and

the Sensitivity function of the model̂S plus a term that is the discrepancy of the plants weighted

by the control sensitivity function. If the model and the plant are equal (i.e.̂G = G) then the

two sensitivity functions (S and Ŝ) are equal so the first term of equation 12 yields the noise

d. Moreover the second term, under the same perfect model-plant matching assumption, is zero.

Hence the residual has the same properties of the noised. However if there exist a discrepancy
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between the model and the plant then the division betweenS and Ŝ is no longer the unity

but a transfer function resulting in the noised filtered byS/Ŝ. These facts makes the residual

generated by this structure suitable for a whiteness test.

The experimental setup is as follows. First a model of the plant Ĝ is obtained by a step

response identification. For this model successive controllers K are designed by imposing more

stringent reference modelsM . When the closed loop step response is unsatisfactory, a newmodel

is identified and the controller design steps repeated. The measurement noised is white noise

with σ = 10−2. The reference inputr is a train of sinusoids up to frequency 200 rad/sec.
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Fig. 10. Bode Plot

1) First Iteration: The first identified model and the model reference used to controller design

are:

Ĝ0 =
20

(1 + 7.4s)2
, M01 =

0.52

(s + 0.5)2
(13)

The bode plot of the real plantG and the first modelĜ0 is shown in figure 10. The frequency

domain validation is applied, given a positive validation result, as can be seen in the first plot
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of figure 11.

2) Second Iteration:Following the positive validation result of the first iteration the same

model is kept as a valid one and the performance is pushed forward by a new, more stringent,

reference model:

Ĝ0 =
20

(1 + 7.4s)2
, M02 =

32

(s + 3)2
(14)

The validation test invalidate the model for frequencies around 50 rad/sec (see plot 2 of

figure 11). This is due to the non modelled resonance peak as can be seen in the bode diagram

of figure 10.

3) Third Iteration: In [7], the new identification step is taken after pushing even forward the

desired reference model:

Ĝ0 =
20

(1 + 7.4s)2
, M03 =

52

(s + 5)2
(15)

The invalidation of the model for frequencies around 50 rad/sec for this controller is evident

(plot 3 of figure 11).

4) Fourth Iteration: In [7] a new model plant is identified due to the unacceptable closed

loop behaviour for the controller designed with the reference modelM03. The new identified
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plant captures the first resonance peak of the plant.

Ĝ1 = Ĝ0
0.012 + 502

(s + 0.01 + 50i)(s + 0.01 − 50i)
, (16)

M11 =
54

(s + 5)4

The model validation result shows that now, the model is validated for all the frequency range

covered by the input (plot 4 of figure 11).

Summarizing the example results, we have shown how the frequency dependent model vali-

dation scheme can be helpful to guide the identification stepby aiming towards the interesting

frequencies content that an identification experiment should excite. The procedure is helpful too

to choose the appropriate controller bandwidth suitable for the actual model accuracy. Moreover

it has been proven that the proposed methodology can be applied in iterative control design

schemes and the validation can be control oriented.

C. Example 3

The objective of the present example is to compare our algorithm with the model validation

proposed in the Windsurfer Approach [7]. In [9] the residualis calculated as shown in figure 4

and two complementary different validation methods are applied, a time domain method and

a frequency domain method. The time domain is a classical cross-correlation test between

the residual and the filtered input. In fact no whiteness testcould be applied to the residual

generated by the structure of figure 4. The frequency domain method for model validation is

based on comparing two power spectrum, the noise spectrum and the residual spectrum. By

visual comparison of both spectrum it is possible to ascertain if the model is validated.

On the other hand our proposed algorithm calculates the residuals following structure in

figure 9 and the validation procedure is the translation of a time domain whiteness test into a

frequency domain one.

In [9] the following simulation example is proposed. The plant is a flexible link robot arm

whose transfer functionG has poles ats = −0.0996±j3.0017,−0.3339±j12.131 and−1.845±

j31.481, zeros ats = −13.162,−10.646 ± j12.27 and 7.169 ± j11.54 and G(0) = 0.5196.

The first model of the plantG0 captures the first resonant frequency soG0 has poles ats =

−0.0903± j3.0027, a zero ats = −13.31, andG0 = 0.5188. The bode diagram of the plant and

the model is shown in figure 12.
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The controller is designed by the internal model control (IMC) method. The performance

requirement is set by means of the closed loop bandwidthλ. When the parameterλ is set equal

to 1.5 rad/sec the validation method proposed in [9] gives the following results:

• The time domain cross-correlation method shows thatG0 is not a good model ofG.

• The method of comparing the power spectra validates the model.

When the proposed algorithm is applied the validation result can be seen in figure 13. The

model results invalidated around the frequency of 12 rad/sec (i.e. the second resonant frequency).

The proposed approach has the following advantages:

• No time domain test is necessary. Classical time domain tests are not informative at all for

iterative identification and control schemes.

• The frequency ranges for which the model results validated/invalidated are given in a precise

form with a probability measure (i.e. hypothesis test).

VI. CONCLUSIONS

A new approach for model validation on iterative identification and control schemes has been

presented. The originality of the approach is that it validates the model in the frequency domain

rather than in the time domain. The procedure of validating amodel in the frequency domain

has proven to be more informative for iterative control design schemes as it can serve as a guide

for input experiment design (i.e. high energy content around frequencies where the model is

June 9, 2011 DRAFT



22

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140

160

180

Frequency (rad/s)

M
2 n
k

Fig. 13. Normalized Magnitude Spectrum and 99.5% ConfidenceLimits

invalidated) and for controller design (i.e. limiting the controller bandwidth to those frequencies

where an accurate model exists).

VII. A PPENDIX

A. Proof of theorem 1

The discrete Fourier transform of a discrete time signalξk is given by

ξk =
1

N

N−1
∑

n=0

ξ(n)e−jΩ0kn (17)

whereΩ0 = 2π
N

is the fundamental frequency. Decomposing the equation (17) into its real part

and its imaginary part gives

ξk =
1

N

N−1
∑

n=0

ξ(n)e−jΩ0kn

=
1

N

N−1
∑

n=0

ξ(n)(cos(Ω0kn) − j sin(Ω0kn))

=
1

N

N−1
∑

n=0

ξ(n) cos(Ω0kn) − j
1

N

N−1
∑

n=0

ξ(n) sin(Ω0kn)

= Rk − jIk
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where the second equality comes from Euler’s identity. Hence the real and imaginary parts are

linear combinations of normally distributed random variables

Rk =
1

N

N−1
∑

n=0

ξ(n) cos(Ω0kn) (18)

Ik =
1

N

N−1
∑

n=0

ξ(n) sin(Ω0kn) (19)

As a result, it follows thatRk andIk are also normally distributed random variables. The distri-

bution parameters for the stochastic variableRk are calculated as follows (see, for example, [13],

page 87)

µRk
= µξ

1

N

N−1
∑

n=0

cos(Ω0kn)

σ2
Rk

= σ2
ξn

1

N2

N−1
∑

n=0

cos2(Ω0kn) (20)

The same reasoning is applicable to the imaginary partIk.

�

B. Proof of theorem 2

By definition the sum of ”r” independent squared random normal variablesN(0, 1) has aχ2

distribution of r degrees of freedom. Due to the normalization ofRk and Ik, it follows that
Rk−µRk

σR
k

∈ N(0, 1) and
Ik−µIk

σI
k

∈ N(0, 1). �
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