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Abstract 

We establish necessary conditions in order to design a phase-only wave front modulation system from 

a liquid crystal display. These conditions determine the dependence of the polarization state of the 

light emerging from the display on the addressing gray level. The analysis, which is carried out by 

means of the coherence-matrix formalism, includes the depolarization properties of the device. Two 

different types of polarization distributions at the output of the liquid crystal cells are found. This 

approach is applied to a twisted nematic liquid crystal display. In this case, an optimization algorithm 

must be designed in order to select the input polarization state that leads to the required distributions. 

We show that the Poincaré-sphere representation provides a convenient framework to design the 

optimization algorithm as it allows for a reduced number of degrees of freedom. This feature 

significantly decreases the computation time. Laboratory results are presented for a liquid crystal-on-

silicon display showing a phase modulation depth greater than 2π radians with an intensity variation 

lower than 6%. In addition, a hybrid-ternary modulation (HTM), an operation regime employed in 

holographic data storage, is achieved. 
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1. Introduction 

Off-the-shelf twisted nematic liquid crystal displays (TNLCDs) are subjected to a sustained performance 

improvement in order to attend the needs of the projection industry. TNLCDs based on liquid crystal on 

silicon (LCoS) technology are currently characterized by a high spatial resolution (10-μm pixel-pitch) and 

an excellent fill factor (>90%) [1]. For this reason, the optimization of commercial TNLCDs as spatial 

light modulators (SLMs) in non-display applications has kept a considerable interest in the last two 

decades [2-7]. Since TNLCDs are polarization-sensitive devices, such an optimization consists in their 

integration in a suitable polarimetric arrangement, which includes a polarization state generator (PSG) 

formed by a linear polarizer and a retardation plate, and a polarization state analyzer (PSA) consisting of 

identical elements but in reversed order. 

 The optimization of a TNLCD requires, as a previous step, a complete polarimetric 

characterization of liquid crystal (LC) cells as a function of the applied voltage. This calibration process 

can be performed by measuring the LC Jones matrices [8] or, in the context of the so-called retarder-

rotator approach, the LC characteristic parameters [9]. If the display shows a significant depolarization 

effect, it is convenient to use the Stokes-Mueller matrix formalism instead of the Jones matrix calculus 

[10]. In this case, the TNLCD polarization properties can be extracted from experimental Mueller 

matrices with the aid of the polar decomposition [11]. 

 In many applications, the goal of SLMs is to achieve a spatial control of the phase of an input 

wavefront without intensity variations. It is known that the electrically controlled birefringence of a LC 

cell yields a phase retardation effect. In the case of reflective TNLCDs, as widely used liquid crystal on 

silicon (LCoS) displays, the double pass of light through the medium produces a phase modulation depth 

of at least 2π at visible wavelengths. However, a twisted nematic structure inherently causes a voltage-

dependent change of the state of polarization (SOP) of an input light beam [12]. This SOP modulation not 

only modifies the TNLCD phase response but can also produce intensity variations at the output of the 

PSA. Different methods have been proposed to overcome the SOP modulation due to the twisted nematic 
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alignment, with the use of the elliptically polarized eigenstates of a TNLCD standing out [4,5]. However, 

a significant variation of these eigenstates along the dynamic range of the display constitutes a major 

drawback of such procedure. 

 A frequently adopted approach for optimizing the phase response of a TNLCD is to perform a 

numerical simulation for searching the configurations of the PSG and the PSA that lead to the desired 

operation curve [8]. The amplitude and phase of the output electric field are determined with the aid of 

the Jones matrix calculus, which can also be combined with the Mueller matrix formalism if the display 

exhibits a non negligible depolarization effect [11]. In such an optimization process, the optical system is 

considered a “black box” with certain degrees of freedom, whose number is fixed by the particular 

election of the elements integrating the PSG and the PSA. The final configuration is obtained from an 

algorithm that optimizes a merit function, defined to ensure a flat intensity response with the largest phase 

modulation depth. This merit function usually depends on a considerable number of variables, leading to 

cumbersome and time-consuming calculations.  

 In this paper we point out the necessary condition for the SOP modulation provided by a LC 

display that works as a continuous phase-only SLM. With the aid of the coherence-matrix formalism [13], 

we recognize that the SOP of the light impinging onto the PSA must show, as the voltage addressed to the 

display is changed, a well-defined distribution in the Stokes-parameter space. Discarding depolarization 

effects, there are merely two possibilities: 1) the SOP is distributed along any circumference on the 

Poincaré sphere normal to the transmission axis of the analyzer, or 2) the SOP remains unaltered, i.e., it is 

represented by a single representative point in the Stokes-parameter space for all the voltages. Previously 

reported phase-only modulation schemes for a TNLCD are classified into one of these two categories. 

That is the case of the two configurations analyzed in Ref. [14], each corresponding to one of the above 

SOP distributions, which are compared by means of a phasor analysis of polarization eigenvectors 

generated in a transmissive TNLCD. 

 The restrictions on the Stokes parameters for obtaining the desired distributions at the output of 

a LC-SLM dramatically reduce the number of possible angular configurations of the PSG. Once the 
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configuration of the PSG is fixed, the PSA only admits certain orientations for which the intensity 

modulation is negligible. In this way a set of feasible angular configurations for the polarimetric system is 

selected. The optimization is completed through the choice of the configuration that produces the 

maximum phase modulation depth. This step is performed with the aid of the Jones matrix calculus. The 

above analysis of the SOP modulation is also extended to the case of a display showing a non-negligible 

depolarization effect.  

 [The experimental work is conducted with an LCoS display. The light impinging onto the LC 

cells is elliptically polarized and the beam emerging from the display is analyzed with a single linear 

polarizer, which constitutes a simpler election for the PSA than that usually employed. As stated 

previously, two kinds of SOP distributions must be imposed at the output of the TNLCD. Both 

possibilities are considered for the sample display. For the former type, we have found an optimal 

configuration that produces a phase modulation depth higher than 2π rad. (at 633 nm) with intensity 

variations lower than 6 %. In the latter configuration, where the SOP is restrained to undergo a minimal 

variation, the phase-mostly modulation response is achieved in a limited part of display dynamic range, 

but with a higher intensity transmission level. In this case, a straightforward reorientation of the output 

polarizer leads to the so-called hybrid ternary modulation (HTM) regime. In the HTM regime, which has 

been used for holographic data storage [15,16], the TNLCD works only with three levels: a dark level 

with null transmission and two white levels of equal intensity and with a phase difference of 180º. In all 

preceding configurations, experimental operation curves for the sample TNLCD are presented and 

discussed]. 

 As was mentioned above, the optical system consisting of a TNLCD and several polarization 

components was usually considered a sort of black box, and the algorithm to find the suitable polarization 

distributions was a blind process, as is reported in Ref. [8,11,20]. In these works, a numerical solution 

was reached from a merit function that depends on several variables, without deeper comprehension of 

the physics behind that solution. The presented approach offers meaningful understanding about the 

changes of polarization in a TNLCD-based system thanks to a Poincaré-sphere representation. The 
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corresponding optimization algorithm provides a reduced computation time, as will be shown in the 

discussion of the experimental results. On the other hand, a comprehensive exploration of the phase-only 

modulation capabilities of a TNLCD is achieved for any choice of the elements integrating the PSG and 

the PSA. To prove this point, a simplified architecture for the PSA, which just includes a single linear 

polarizer, is selected. With this polarization arrangement, it is not only possible to achieve a phase 

response similar to that previously reported in Ref. [11], but also to find other interesting operation 

regimes, as the so-called hybrid ternary modulation (HTM) regime. This operation regime has been used 

for holographic data storage [15,16]. In this way, the potential of our scheme is broadened to a more 

diversified scope, including LC systems that can potentially be subjected to depolarization effects. 

Moreover, the reported approach is a general method, valid for any kind of LC-based display working in a 

transmission or in a reflection mode. The procedures reported in Ref. [6,7] are particular cases of the 

general procedure demonstrated here.  

2. Analysis of the SOP modulation provided by a phase-only LC-SLM 

Let us consider a LC-SLM sandwiched between a PSG and a PSA, and illuminated with a laser light 

beam. We assume that the PSG and the PSA are nondepolarizing devices and any light depolarization 

effect is only due to the modulator. For such a polarimetric system, the SOP generated by the PSG is 

transformed, under the action of the LC-SLM, into a voltage-dependent SOP, which is projected by the 

PSA onto a single final polarization state. We deal with partially polarized light in the context of the 

coherence matrix formalism. Here, a SOP is described by the 2×2 complex hermitian matrix Φ [13] 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ΦΦ
ΦΦ

=
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
=⊗≡ +

yyyx

xyxx

yyxy

yxxx

tEtEtEtE

tEtEtEtE
tt

)()()()(

)()()()(
)()( **

**

EEΦ , (1) 

where ⊗ denotes the direct product of the instantaneous Jones vector E(t) and its transposed conjugated 

E+(t); Ej (j = x, y) are the Cartesian components of the electric field; *
jE stands for the complex conjugate 

of Ej, and the brackets indicate time averaging over the measurement time. Therefore, the LC-SLM 
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performs the transformation Φ1 → Φ2, where Φ1 and Φ2 are, respectively, the coherence matrices 

corresponding to the light before and after the modulator. The input matrix Φ1 is a single state that 

depends on the configuration of the PSG. The output matrix Φ2 is a function of the parameter g that 

controls the voltage applied to the LC cells. Hence, the LC-SLM actually behaves as a SOP modulator.  

 In order to analyze the effect of the PSA over each SOP generated by the LC-SLM, it is 

convenient to express Φ2 (for any value of g) as a linear expansion of the Pauli matrices σj, [13] 
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where the matrices σj are given by 
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i is the imaginary unit and Sj (j = 0, 1, 2, 3) are the Stokes parameters of the light after the LC-SLM. 

These parameters can be obtained from the trace of the coherence matrix Φ2 as 

 [ ]3,0)( 2 ∈= jtrS jj σΦ . (4) 

From this equation, )( 20 ΦtrS =  is the total intensity of the light beam impinging onto the PSA. The 

normalized version of the coherence matrix Φ2 is the density matrix D2,  
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where 0/ SSs jj ≡ . Note that the density matrix remains entirely determined by the normalized 

parameters sj, which can be arranged in a 3×1 Stokes vector P, Tsss ),,( 321=P , with T indicating the 

transposed vector. The fraction of the intensity emerging from the LC-SLM that is detected after the PSA, 

I, is given by [17] 

 )( 2DD ATrI =  , (6) 
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where DA is the density matrix constructed using the 3×1 Stokes vector Q corresponding to the fully 

transmitted eigenstate of the PSA. In general, this eigenstate is elliptically polarized. From Eqs (5) and 

(6), we have 

 )1(
2
1 QP ⋅+=I . (7) 

This expression admits a geometrical interpretation if we map the vectors P and Q in the Poincaré-sphere 

representation, as is shown in figure 1. By taking into account that the vector Q corresponding to 

transmission axis of the PSA has a unit modulus, we achieve 

 )cos1(
2
1 θρ+=I , (8) 

 

Figure 1: a) Action of an elliptical polarizer over an arbitrary SOP in the Poincaré sphere representation. 

The radius vectors OQ and OP represent, respectively, the orientation of the polarizer transmission axis 

and the input SOP. The red circle corresponds to a distribution of type I that leads to a flat intensity 

response at the output of the polarizer.  

 

where P=ρ  is the degree of polarization (DOP) of the light emerging from the LC-SLM. If the 

modulator does not produce any depolarization effect, 1=ρ , the endpoints of P and Q are on the surface 

of the Poincaré sphere of unit radius and Eq. (8) is reduced to )2/(cos2 θ=I . In this way, we retrieve the 
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well-established rule stating that the fraction of the input intensity transmitted by an arbitrary polarizer is 

equal to the square cosine of half the angle θ between the unit vectors that represent, respectively, the 

input SOP and the polarizer transmission axis [18]. 

 In light of the above geometrical approach, let us analyze the SOP modulation provided by a 

phase-only LC-SLM. In the absence of depolarization, the states described by the matrices Φ2(g) trace out 

a trajectory on the surface of the Poincaré sphere as the value of g is changed. As the intensity transmitted 

by the PSA must remain constant, there are only two possibilities, leading to two types of distributions: 

Type I. The trajectory on the sphere corresponds to an arbitrary circumference and the transmission 

axis of the PSA is oriented normal to the plane containing the set of SOPs, as is shown in figure 1. 

Such a polarization distribution ensures a constant value of I, since the angle θ remains unaltered 

along the dynamic range of the modulator. The generation of equi-azimuth polarization states, 

described in Ref. [6], is a particular case of this type of SOP modulation.  

Type II. The SOP distribution at the output of the LC-SLM is reduced to the trivial case of a single 

point for all values of g, which means that there is not a SOP modulation. The orientation of the PSA 

is, in principle, arbitrary. However, it is convenient to choose an angle for the analyzer axis that leads 

to a maximum level of transmitted intensity. 

If the light impinging onto the PSA is partially polarized by the action of the LC-SLM, an extra condition 

must be added. Now, the intensity contribution also depends on the DOP of the impinging light. Hence, a 

phase-only modulation response requires a constant DOP along the modulator dynamic range in order to 

avoid residual intensity variations. In the Stokes parameter space, this means that the points of the SOP 

distribution generated by the LC-SLM must remain on the same spherical surface with a radius equal to 

the DOP of the light. Although a constant DOP is the main requisite for a phase-only operation, it is also 

desirable to reduce the unpolarized component in order to avoid non-controllable background light at the 

output of the system. 
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 The above SOP distributions are only approximately achieved by TNLCDs. Hence, we can 

obtain, in the best-case scenario, a phase-mostly modulation response with this kind of modulators. SOP 

distributions close to the two types of a phase-only LC-SLM will be also denoted as distributions of Type 

I or Type II.  

We note that it is also possible to remove the PSA to preserve a constant light intensity at the 

output of the system. Without any output polarizer, the polarization modulation provided by the LC-SLM 

cannot be traduced in an intensity modulation. This configuration has been recently used for the design of 

advanced algorithms for the reconstruction of digital or computer-generated holograms [19]. However, if 

that situation is desired, the scalar diffraction theory could not longer be used. The apparent simplicity of 

the system would, in contrast, involve a more complex analysis, and the use of Jones Calculus would be 

required in the beam propagation algorithm. 

 

3. Calibration of the TNLCD 

For the sake of completeness, we review the polarimetric characterization of a TNLCD. A detailed 

analysis can be found in Ref. [11]. The calibration is performed through the measurement of the Mueller 

matrices, MTNLCD(g), of the display for each value of the parameter g. Neglecting diattenuation effects, the 

matrix elements of MTNLCD(g) are measured by the generation of four different SOPs, represented by the 

Stokes vectors Si (i = 1,...,4), corresponding to horizontal, vertical and 45º linearly polarized light, and 

right-handed circularly polarized light, respectively. In this way, we construct a 4×4 matrix N1, whose 

columns are the input vectors Si. Afterwards, the corresponding Stokes parameters for the light emerging 

from the display Si’(g) are measured. For each value of the gray level, these vectors, arranged in columns, 

determine a second 4×4 matrix N2 (g). Taking into account that N2(g) = MTNLCD(g) N1, the Mueller 

matrices MTNLCD(g) are obtained as MTNLCD(g) = N2 (g) N1
−1.  

 It is also convenient to recall that the action of a TNLCD can be mimicked through a pure 

depolarizer and a pure retarder [11]. In mathematical terms,  
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 RMMM Δ=TNLCD , (9) 

where ΔM  and RM  are, respectively, the Mueller matrices corresponding to the depolarizer and the 

retarder. Note that once the experimental Mueller matrices )(TNLCD gM  are measured, the non-

depolarizing response of the display as a function of g can be assessed by use of the Lu-Chipman 

decomposition technique. This approach allows for a simple evaluation of the phase modulation due to 

the display cells [11,20]. 

 

4. Optimization of the TNLCD phase response 

4.1. Flat intensity response 

Let us consider a TNLCD sandwiched between a PSG, formed by a linear polarizer and a quarter-wave 

plate, and a PSA, constituted by a single linear polarizer. The transmission axis of the first polarizer and 

the fast axis of the quarter wave plate are oriented, respectively, at angles ζ1 and ξ1 from the horizontal 

direction of the laboratory framework. The analogous angle for the polarizer of the PSA is denoted by ζ2. 

In order to ensure a flat intensity response after the PSA, we search the configuration of the PSG that 

approximately produce the SOP distributions described in Sec. 2 at the output of the TNLCD. In practice, 

there is not a single solution for the SOP impinging onto the display, but the number of possible values of 

the angles (ζ1, ξ1) is limited.  

 The 4×1 Stokes vector of the totally polarized light impinging onto the TNLCD, S, is 

 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
−
−

=

)(2sin
)(2cos2sin
)(2cos2cos

1

),(

11

111

111
11

ζξ
ζξξ
ζξξ

ξζS . (10) 

In the Stokes-Mueller formalism, the SOP corresponding to the light emerging from the display, 'S , is 

given by  

 ),()(),,(' 11TNLCD11 ξζξζ SMS gg = . (11) 
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The output vector has the form Tsssg )',',',1(),,(' 32111 =ξζS , where ),,(' 11 gsi ξζ  are the normalized 

Stokes parameters ''' 0SSs ii =  (i=1, 2, 3). The Stokes vector ),,,( 211 gf ζξζS after the analyzer is 

 ),,(')(),,,( 112211 gg Pf ξζζζξζ SMS = , (12) 

where PM  is the conventional Mueller matrix for a linear polarizer [11]. The vector ),,,( 211 gf ζξζS , 

written in the analyzer framework, has the form )0,,,( 21 ff ssI  and corresponds to a linear SOP with an 

intensity ),,,( 211 gI ζξζ . Note that, in general, the optimization procedure to achieve a flat intensity 

response deals with three angular parameters that must be varied within the angular range for the 

polarizing devices. 

A simplified search algorithm is derived with the aid of the calculations presented in Section 2. 

To this end, let us search the values of the parameters (ζ1, ξ1) that lead to a polarization distribution of 

Type I. Note that only two parameters for the search algorithm remain. Here, the SOPs at the output of the 

TNLCD are approximately located in a circumference on the Poincaré sphere and the transmission axis of 

the PSA is normal to the plane containing this circumference. We assume a linear polarizer for the PSA. 

In this case, the transmission axis is represented by a radius vector whose endpoint is in the Equator of the 

Poincaré sphere. Consequently, the set of SOPs at the output of the TNLCD must be located in a circle 

orthogonal to the equator, as is shown in figure 2, so they trace out a straight line in the 21 SS −  plane. In 

other words, a linear correlation between the parameters '1s  and '2s  must exist. This means that the 

Pearson correlation coefficient r(ζ1, ξ1), conventionally used in linear regressions and defined as [21] 
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must be close to the unity. In Eq. (13), N is the number of values taken by the parameter g along the pixel 

dynamic range and, for the sake of clarity, the angular dependence of the magnitudes has been removed. 

We use this parameter as the merit function for the search algorithm.  

 

Figure 2. Distribution of type I when the PSA is constituted by a linear polarizer. The two possible 

orientations for the polarizer, corresponding to mutually orthogonal directions, are represented by the 

same line, which intersects the sphere equator in the antipodal points Q and Q’. 

 

Once an angular configuration for the PSG is selected, the transmission axis of the analyzer only admits 

two orientations corresponding to mutually orthogonal directions, which are represented in the Poincaré 

sphere by the same straight line, as depicted in Fig1b. Note that the above reasoning can be easily 

extended to the case of a PSA formed by a linear retarder and a linear polarizer. In such a situation, the 

PSA is an elliptical analyzer and its transmission can be arbitrarily oriented in the Stokes space. This 

means that the set of SOPs after the TNLCD are in general located in a circumference that is no longer 

normal to the Equator (this general situation is shown in Fig1a). However, there must be a linear relation 

between '1s , '2s  and '3s , as the SOPs are contained in the same plane. Now, we can use the correlation 

coefficient of the corresponding multiple regression to determine the optimal values for ζ1 and ξ1.  

If the display produces a significant depolarization effect, we must include in the search algorithm an 

additional step concerning the degree of polarization, DOP(ζ1, ξ1, g), 
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2
2

2
1 )'()'()'(DOP sss ++= , (14) 

and demand a constant (and maximum) value for this parameter. 

 In the case of the polarization distributions of type II, each of the normalized Stokes parameters 

),,(' 11 gsi ξζ  must undergo a minimal variation along the pixel dynamic range. We can find the optimal 

PSG configuration by minimizing the function ),( 11 ξζF ,  

 ∑
=

=
3

1i
iF σ , (15) 

where σi (i=1, 2, 3) are, respectively, the standard deviations of the corresponding Stokes parameters 

),,(' 11 gsi ξζ  for the N values taken by the parameter g. Note that the minimization of the function F also 

ensures a constant degree of polarization. Concerning the PSA, its angular configuration is chosen with 

the aim of achieving a maximum transmitted intensity level. 

 

 

 

4.2. Phase response maximization 

The optimization algorithm provides a limited number of angular configurations for the PSG and the PSA 

that ensure a flat intensity response. Now, we must select from the above set the configuration that yields 

a maximum phase modulation depth. To this end, we evaluate the phase of the light field through the 

Jones vector fE  corresponding to the light emerging from the PSA. In this way, 

 ),()()(),,,( 11PSGTNLCD2PSA211 ξζζζξζ EJJE ggf = , (16) 

where PSGE  is the Jones vector of the SOP determined by Eq. (10), )(TNLCD gJ  is the Jones matrix 

describing the nondepolarizing effect of the display and PSAJ  is the Jones matrix of the linear polarizer 

that constitutes the PSA of the system. The electric field of Eq. (16), written in the final polarizer 

framework, has the form T
f Agi )01()],,,(exp[ 211 ζξζφ−=E , i.e., corresponds to linearly polarized 
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light with a real amplitude A and a global phase factor )exp( φi− , which depends on the value taken by 

the parameter g as well as on the angular configuration of the system [6,11]. The optimization algorithm 

is completed by selecting the combination (ζ1, ξ1, ζ2) that produce the maximum variation of φ along the 

pixel dynamic range.  

 

5. Experimental results 

The laboratory set-up used for optimizing the phase response of a TNLCD is shown in figure 3. The 

illumination system consists of a He-Ne laser (LS) emitting at 633 nm, a spatial filter SF and a 

collimating lens L1. The polarization state generator (PSG) comprises a linear polarizer P1 followed by a 

zero-order quarter-wave plate QWP designed for 633 nm. The TNLCD is a reflective LCoS display, an 

Aurora panel, model ASI 2000, with XGA resolution (1024×768 pixels), designed for red light and 

commercialized by Holoeye. The TNLC cells have a twist angle of 45º and the pixel array has a period of 

19 μm with an inactive gap of 1μm. The application of a voltage to the pixels is performed by displaying  

 

a gray-level image, so the parameter g is here the addressed gray-level. Note that the direction of 

incidence of the light beam impinging onto the LCoS display is not normal in order to avoid the use of 

nonpolarizing beam-splitters, which present some non negligible retardance and diattenuation effects 

[10]. The angular separation of the input and output beams is very small ( º4=α ) so the validity of 

Mueller matrix formalism is preserved. 
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Figure 3. Optical set-up for optimizing the phase response of an LCoS display (angle not to scale). 

 

 We have applied the optimization procedure described in the preceding sections to the sample 

display. First, the matrix MTNLCD(g) for the TNLCD was experimentally determined using the calibration 

method outlined in Section 3. The Stokes parameters ),,(' 11 gsi ξζ  after the LC cells were calculated 

varying the angles (ζ1, ξ1) of the polarization elements in the PSG in steps of 1º. The Pearson correlation 

coefficient r(ζ1, ξ1) and the standard deviations ),( 11 ξζσ i  corresponding to Eq. (13) and (15) were 

valuated by means of conventional calculus software. The above merit functions provide a reduced set of 

angular configurations that satisfy the search criterion. The orientation of the polarizer in the PSA, ζ2, is 

then fully determined from the values of (ζ1, ξ1). For the SOP of type II, the polarizer in the PSA is 

oriented to achieve a maximum intensity transmittance. After the angular configuration for the elements 

in the PSG and the PSA is determined, we evaluate the phase function ),,,( 211 gζξζφ to select the 

configuration providing a maximum modulation depth. 

After obtaining the optimal configurations, we have experimentally verified them. To this end, the 

transmitted intensity ),,,( 211 gI ζξζ  at the output of the PSA and the phase function ),,,( 211 gζξζφ  

were experimentally measured. In order to measure the LCoS phase modulation for the optimal 

configurations we use the fractional-Talbot effect [6,22]. With the LCoS display, we implement different 
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binary gratings where one gray level is fixed and the other is variable. We choose the gray level g = 255 

as a reference, which for the sample display corresponds to a maximum applied voltage. The relative 

phase shift is determined by measuring the contrast of the Fresnel images at a quarter of the Talbot 

distance. Concerning the transmitted intensity ),,,( 211 gI ζξζ , it was measured with the aid of a 

photometer by displaying uniform images for each gray level on the LCoS display. 

For the polarization distribution of type I, the optimal phase response is achieved when ζ1 = 74º, 

ξ1 = 93º, and ζ2 = 63º. The SOP distribution at the output of LC cells, obtained from Eq. (11), has been 

depicted on the Poincaré sphere in figure 4(a). By means of a least-squares procedure, the linear relation 

between S1 and S2 is found to be 12 70.006.0 SS +−= , with a correlation coefficient of 95.0=r . The 

circumference on the Poincaré sphere for which this relation holds is also shown in figure 4(a). The DOP 

has a mean value of 0.98 along the entire pixel dynamic range and a standard deviation of 2%. The mean 

value of the intensity transmitted by the analyzer, which can be calculated through Eq. (11), is of 46%, 

with a maximum variation of 11%. The measured intensity and phase curves for the optimal configuration 

are shown in figure 5. The phase modulation depth is greater than 2π radians and the output intensity 

level is around 43%, with a residual variation lower than 11%. These results show a well agreement with 

those obtained from theoretical calculations. If the points corresponding to g < 23 are removed, the 

maximum intensity variation is reduced to 6% preserving a maximum phase shift of 2π. 
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(a) 

 

(b) 

Figure 4: Poincaré-sphere representation of the SOPs at the output of the LCoS display for the optimal 

configuration corresponding to a) the SOP distribution of type I and b) the SOP distribution of type II. 
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 Concerning the polarization distributions of type II, the optimal phase response is achieved for   

ζ1 = 128º, ξ1 = 21º, and ζ2 = 100º. The corresponding SOP distribution at the output of the LC cells is 

depicted in figure 4(b). The DOP remains again approximately constant with a mean value of 0.95 and a 

standard deviation of 2%. Note that the SOPs clearly trace out a loop-shaped trajectory on the Poincaré 

sphere. Hence, for the present LCoS display it is not possible to concentrate all representative points in a 

small region of the Stokes parameter space. However, a proper orientation of the output linear polarizer, 

ζ2 = 100º, yields an almost flat intensity response for a considerable part of the pixel dynamic range. In 

this range, a highly efficient transmission close to 90% is obtained (a 100% transmission corresponds to 

the ideal situation where there is no polarization-dependent absorption by the action of the analyzer). 

Theoretical calculations from Eq. (12) show a mean intensity value of 88% for g <203, with a maximum 

variation of 8%. The measured intensity and phase response curves are represented in figure 6. For the 

aforementioned range, the mean intensity value is of 91 % with a maximum variation of 10%, which 

reasonably agree with the expected intensity response. The phase modulation depth is of about 1.3π 

radians.  

 The loop-shaped trajectory shown in figure 4(b) corresponding to ζ1 = 128º and ξ1 = 21º can be 

used to obtain a hybrid ternary modulation. By setting the output linear polarizer at ζ2 = 25º, the 

transmitted intensity for the points that intersect the equator of the sphere is very close to zero. In this 

way, we obtain the dark level of the HTM regime. The central part of the loop, on its turn, corresponds to 

SOPs that produce a smoothly intensity fluctuation after the PSA, as is shown in figure 7. This intensity 

curve is accompanied by a continuous phase modulation. This fact allows us to select two gray-level of 

equal transmission with a phase difference of π rad. For example, this situation is achieved for g = 83 and      

g = 223 with an intensity level of 18%. Despite the lack of efficiency, this configuration leads to similar 

results that those found in Ref. [16]. 
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Figure 5: Intensity and phase modulation for the optimal configuration obtained from the SOP 

distribution of type I. 

 

 

Figure 6: Intensity and phase modulation for the optimal configuration obtained from the SOP 

distribution of type II. 
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Figure 7: Intensity and phase modulation for the configuration that produces an HTM regime. 

 

5. Discussion and conclusions 

We have shown that a TNLCD acting as a phase-mostly SLM must provide a SOP modulation that is 

necessarily subjected to specific restrictions, which can be classified into two categories (types I and II). 

Such restrictions become a useful tool in the design of an efficient optimization algorithm, which leads to 

the election of suitable configurations for the polarimetric system where the SLM is integrated. A possible 

depolarization effect due to the TNLCD is also included in our analysis. 

 The presented approach enables a comprehensive exploration of the modulation capabilities of a 

sample display. Furthermore, it benefits from a noticeable reduction of the computation time. This point 

can be checked by comparing the search algorithm described in Sec.2 with that used in Ref. [11], where 

the sample display is sandwiched between two polarizers and two quarter-wave plates. By searching for a 

polarization distribution of type I and considering an elliptical analyzer, the computational time required 

to retrieve the optimal configuration of Ref. [11] is reduced in one order of magnitude (about 15 times) 

[Introduction of times].  

 In the present work, we have achieved a flat intensity response (with residual variations lower 

than 6%) and a phase modulation depth of 360º (at 633 nm) with a commercial LCoS display. We have 

used a simplified architecture for the PSA, which only includes a single linear polarizer. The use of this 
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PSA implies a reduction of computational complexity. Hence, it contributes to increase the algorithmic 

efficiency. We have found that the depolarization due to the sample display is a minor effect. However, 

for this kind of LCoS modulators the amount of depolarized light may be considerably larger at certain 

wavelengths and for certain input SOPs [23]. In such a case, the general approach presented in Sec. 2, 

which minimizes the effect of LCoS depolarization, results noticeably useful. In addition, our technique 

can be applied to other types of operation regimes, as for example the hybrid ternary modulation. 
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