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ABSTRACT 

In this work the results of experimental and computational study of the title compounds and 

some ancillary compounds are reported. Two bicyclic pyrazol-1,3,4-thiadiazole derivatives  

were synthesized by reaction between 6-dimethylaminomethylene-3-thioxo-[1,2,4]-

triazepin-5-one 1 and several nitrilimines 2a-f to give corresponding spirocycloadducts 3a-f, 

which undergo a rapid rearrangement leading to the new bicyclic compounds, 4a-f and 5a-f. 

These obtained bicyclic products were characterized by 1H and 13C NMR spectroscopy and 

finally by X-ray crystallography. Theoretical calculations have been carried out using DFT 

methods to rationalize the formation of the two new bicyclic compounds. Two reaction types 

are involved in the formation of the compounds 4a-f and 5a-f. The first one is a 1,3-dipolar 

cycloaddition reaction between 1 acting as dipolarophile and 2a-f as dipoles. The results 

indicate that the cycloaddition between 1 and 2g, as model of 2a-c, takes place via a high 

asynchronous bond-formation process. The regioselectivity obtained from the calculations is 

in complete agreement with the formation of the unique spirocycloadducts 3a-f. The second 

reaction leading to the formation of the final products is a domino process that is initiated by 

the quick and irreversible cleavage in a catalytic acid environment of triazepenic ring. 
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INTRODUCTION 

Triazepine derivatives have attracted a great deal of attention because of their ability to 

act as anti-convulsant and anti-anxiety. Their oxo and thioxo derivatives have acquired both 

pharmaceutical and economical relevance.1 Triazepines and diazepines have attracted a great 

attention as starting materiel in the synthesis of fused heterocyclic systems of potential 

pharmacological activities.2-9 Different triazepine derivatives have exhibited significant 

biological activities.10-13 The area of biological interest of this family of compounds have 

been extended to various diseases such as cancer,7 viral infections (HIV)8 and cardiovascular 

disorders.9,10 It is known that the pharmacological activity appears to be enhanced when a 

further heterocyclic ring is linked to the heptatomic nucleus.14,15 They are reported as 

excellent ligands with transition metals inducing a large application in organometallic 

chemistry.16,17  

In the context of our current interest in the synthesis of novel heterocyclic 

compounds,18-22 susceptible to have biological activity, we have now studied the 1,3-dipolar 

cycloaddition (13DC) reaction between 6-dimethylaminomethylene-3-thioxo-[1,2,4]-

triazepin-5-one 1 and C,N-disubstituted nitrilimines 2a-f (Scheme 1), which were generated 

in situ from the appropriate precursors and triethylamine. However, we have found that 

along the purification of reaction mixture by column chromatography, the corresponding 

spirocycloadducts 3a-f were transformed into the bicyclic compounds 4a-f and 5a-f. Herein, 

we present the experimental results of the title reaction together with a theoretical study 

providing an explanation for the formation of the two new bicyclic compounds. Firstly, we 

describe the synthesis of the novel triazepine 1 and the 13DC reaction with the nitrilimines 

2a-f. Then, a theoretical study of the molecular mechanism of the chemical reactions 

experimentally observed is performed. 
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RESULTS AND DISCUSSION 

1. Experimental results.  

1.1. Synthesis of 3-thioxo-[1,2,4]-triazepin-5-one 1 

The 3-thioxo-[1,2,4]-triazepin-5-one 1 was obtained in good yield (70%) by stirring a 

mixture of [1,2,4]-triazepine 6 and dimethylformamide-dimethylacetal (DMF-DMA) during 

one hour at 5°C (see Scheme 2). 
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Scheme 2 

NMR spectra of the obtained product showed the presence of a mixture of two 

stereoisomers 1Z and 1E. The percentage of these stereoisomers was deduced by 1H NMR 

spectrum: 34% and 66% respectively. The structures of the two stereoisomers were assigned 

easily by NMR spectra and mass spectrum. In 1H NMR spectrum, the presence of the 

exocyclic double bond C=C is pointed out by two singlets at 7.05 and 7.55 ppm attributables 

respectively to ethylenic proton -C=CH of structures 1Z and 1E. This attribution of these 

values is supported by a simulation of 1H RMN chemical shifts related to ethylenic protons. 

The higher chemical shift of the ethylenic proton of 1E is due to the proton proximity to the 

carbonyl group. The 13C NMR spectrum of these stereoisomers is characterized mainly by 

the absence of resonance signal of methylene group in position 6 and by the presence of 

signal of carbon C6 at 96.5 for 1Z and 96.1 ppm for 1E. The chemical shifts at 154.5 for 1E 

and 154.1 ppm for 1Z attributed to the carbon of exocyclic double bond (-C=CH), permitted 

to confirm again the presence of this exocyclic double bond. The carbons of thioxo and oxo 

groups are also clearly identified in this spectrum (177.5 and 168.2 ppm for 1E and 177.2 

and 164.9 ppm for 1Z respectively). 

1.2. 1,3-Dipolar cycloaddition of 3-thioxo-[1,2,4]-triazepin-5-one 1 with N-aryl-C-

ethoxycarbonyl-nitrilimines and diarylnitrilimines 2a-f. 

Nitrilimines 2a-f were generated in situ by treating appropriate ethylhydrazono-α-

bromoglyoxylate for 2a-c and α-chloroarylidenephenylhydrazones for 2d-f with 

triethylamine. After treatment of the 3-thioxo-[1,2,4]triazepin-5-one 1 with nitrilimines 2a-c 

at room temperature over 72 hours, the spirocycloadducts 3a-c were isolated as a mixture of 

two stereoisomers 3E and 3Z in a ratio 7:3 (see Scheme 1 and Table 2). However, during the 
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separation of the reaction mixture on column chromatography, the cycloaducts were 

transformed to the bicyclo compounds 4a-c and 5a-c. In the case of the addition of 

nitrilimines 2d-f, the cycloadducts 3d-f were not isolated in spite of using all the necessary 

precautions. The unique isolated products are 4d-f and 5d-f. When thin-layer 

chromatography was performed and visualized under UV light, the 3d-f spot appears as the 

same time as 4d-f and 5d-f, but disappears very quickly during the purification. Probably, the 

attractor effect of CO2Et group presents in 2a-c make the cycloadducts 3a-c relatively more 

stable than 3d-f. On the other hand, it is known that this type of compounds is described as 

unstable products.23  

Table 1. Reaction of 3-thioxo-[1,2,4]-triazepin-5-one 1 with nitrilimines 2a-f. 
2 R1 R2  3  (E/Z)Percentage  Yield (%) Ratio (4:5)  

2a p-CH3C6H4 CO2Et 3a 68-32  67  55 : 45 

2b p-ClC6H4 CO2Et 3b 67-33  70 54 : 46 

2c p-NO2C6H4 CO2Et 3c 72-28  66 53 : 47 

2d C6H5 p-CH3C6H4 3d not isolated  48 54 : 46 

2e C6H5 p-ClC6H4 3e not isolated  48 56 : 44 

2f C6H5 p-NO2C6H4 3f not isolated   42 56 : 44 

 

Formation of the spirocycloadducts 3a-c was detected by NMR and mass spectra of 

their crude reaction. The orientation in the structures 3a-c and the active site of 1 were 

unequivocally determined on the basis of diagnostic 1H and 13C NMR data. This result was 

confirmed also by X-ray diffraction analysis of 4d and 5e compounds (Figure 1). In the 

proton NMR spectrum of 3E and 3Z cycloadducts, the presence of the exocyclic double bond 

was justified clearly by two singlets at (7.72-7.75) (3E) and (7.01-7.07) ppm (3Z) 

characteristics of olefinic protons. The observed shielding of methyl group linked to N2 at 

(2.58-2.60) (3E) and (2.50-2.58) ppm (3Z) (instead of 3.50 ppm initially) permits to confirm 

the preferential attack site (C=S) of the addition of 1. On the other hand, in 13C NMR 

spectrum of the two stereoisomers, the chemical shifts of the carbon atoms at  (144.2-145.8) 

and (118.2-118.9) ppm for 3E and (144.5-146.0) and (117.6-118.4) ppm for 3Z assigned 

respectively to =CH and C6 exclude categorically the addition on the exocyclic double bond 

dipolarophile site. The reactive C=S site of the addition was confirmed again in this 

spectrum by the absence of thioxo group signal. The carbon chemical shifts at (97.2-98.5) 

and (98.2-98.6) ppm assigned respectively to spiranic carbons of 3E and 3Z are consistent 

with these structures. The proposed regiochemistry of the addition is in good agreement with 

that observed for other related systems.24 The nitrogen atom of the dipole is linked to the 
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carbon atom of dipolarophile site C=S. No condensation products of the dipole on the 

dipolarophile sites (C=C, C=N and C=O) has been observed. It is to note that while the 

extraction was made using a more polar solvent, as dichloromethane, the cycloadduct 3 was 

not isolated evolving directly the conversion to the compounds 4 and 5. 

For the isolated 1,2-pyrazol-1,3,4-thiadiazole 4d and 5e, the X-ray diffraction and 

spectral data are in accordance with the proposed structures (Scheme 1). Thus, the 

examination of NMR spectra and mass spectrum shows that these products are formed by 

monocycloaddition of nitrilimine on the double bond C=S. Then the corresponding 

cycloadducts are transformed into 4a-f and 5a-f compounds. In 1H NMR spectra of 4a-f 

compounds, we noted in particular the chemical shift of aldehyde proton at about (9.74-9.83) 

ppm. The =C-CH3 and N-CH3 protons resonate as singlet at (2.38-2.56) and (3.50-3.61) ppm 

respectively. Methyl and methylene of CO2Et group show triplet and quartet at about (1.32-

1.43) and (4.37-4.49) ppm respectively. In 13C NMR spectra of 4a-f the aldehyde carbonyl is 

confirmed again by the presence of the pick at (182.4-183.3) ppm. The signals of the carbon 

atoms C5 (151.4-153.0) ppm, C4’ (108.4-109.1) ppm, C5’ (149.8-151.3) ppm and C2 (160.5-

162.0) ppm confirm also the proposed structures. For compounds 5a-f, the presence of the 

olefinic protons is pointed out by a singlet at about (7.82-7.89) ppm. On the other hand, the 
13C NMR spectra reveal mainly the signals at (118.3-119.1), (135.1-136.7), (147.9-151.8), 

(151.9-156.3) and (163.4-164.9) ppm, attributed respectively to carbons C4’, C5’, C3’, C5, C2. 

To sum up, the 13DC reactions of 3-thioxo-[1,2,4]-triazepin-5-one 1 with the 

nitrilimines 2a-f are completely chemo and regioselective. In all cases the carbon atom of 

dipoles is linked to the sulphur atom of dipolarophile C=S site of 1. No addition of dipoles 

were observed on the C=N and C=O double bonds, and the exocyclic C=C double bond. 

However, along the purification of reaction mixture, the corresponding spirocycloadducts 

3a-f were quickly transformed into the bicycle compounds 4a-f and 5a-f. 

1.3. X-ray crystallography analysis. 

The molecular structures of 4d and 5e (C21H18N5OS, triclinic and C21H16ClN5OS, 

monoclinic) determined X-ray crystallography in this work are shown in Fig.1. The 

structures of 4d and 5e were obtained by slowly evaporating a benzene solution. Analysis of 

these X-ray structures allows to obtain some interesting features for the conversion of the 

spirocycloadducts 3a-f in the compounds 4a-f and 5a-f: i) the [1,2,4]triazepine ring is not 

present in these compounds, ii) the five-membered ring formed along the 13DC reaction 

remains in these structures, iii) the enamine substituent present in triazepine 1 is hydrolysed 

along these processes; iv) two new five-membered heterocycle compounds are formed along 
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the reaction; and v) these heterocycle compounds contain an α,β-unsaturated carbonyl 

group: one aldehyde on 4d and one ketone on 5e. 

 
4d 

 
5e 

Figure 1. The molecular structure of compound 4d and 5e (ORTEP: XTAL 3.6) with the 

numbering scheme. Displacement ellipsoids are drawn at 30% probability. 
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2. Theoretical results 

2.1. Study of the 1,3-dipolar cycloaddition reaction between 3-thioxo-[1,2,4]-triazepin-5-one 

1 and C-methoxycarbonyl-nitrilimine 2g. 

Firstly, the 13DC reaction between 3-thioxo-[1,2,4]-triazepin-5-one 1 and the C-

methoxycarbonyl-nitrilimine 2g, as a model of the nitrilimines a-c, was studied (see Scheme 

3). As it has been indicated in the experimental part, in spite of the presence of four 

dipolarophile sites in 1, these reactions take place with a total chemoselectivity; only the 

C=S double bond participates as dipolarophile in these 13DC reactions.22 According to the 

experimental result, we decided to perform the computational study of the addition of the 

nitrilimine 2g to the C=S double bond of 1. For this 13DC reaction, the two regioisomeric 

channels associated to the addition of 2g to the unsymmetric C=S double bond of 1 were 

studied. In addition, the E/Z configurational dispositions of the exocyclic C=C double bond 

present on 1 were also considered. An analysis of the stationary points found along the four 

reaction paths points out that these 13DC reactions have one-step mechanism. Thus, four 

TSs, TS1-E, TS1-Z, TS2-E, TS2-Z, and four [3+2] spirocycloadducts 3g-E, 3g-Z, 7g-E and 

7g-Z were located and characterized (see Scheme 3). The B3LYP/6-31G* total and relative 

energies are collected in Table 2. 
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Scheme 3 

The activation energies associated to the formation of the spirocycloadducts 3g-E and 

3g-Z, via TS1-E and TS1-Z, present very low values: 3.5 and 3.7 kcal/mol, respectively. The 

E/Z configuration of the exocyclic C=C double bond has not any appreciable incidence on 

the activation energies. These cycloadditions are strongly exothermic: –23.6 (3g-E) and –

23.2 (3g-Z) kcal/mol. On the other hand, formation of the regiosiomeric cycloadducts 7g-E 

and 7g-Z present very large activation energies: 21.0 (TS2-E) and 21.7 (TS2-Z) kcal/mol. 



 8

These energy results are in agreement with the complete regioselectivity experimentally 

observed. Formation of the regioisomeric cycloadducts are also less exothermic; –12.9 (7g-

E) and –15.1(7g-Z) kcal/mol. 

 

Table 2. Total (E, au) and relative (ΔE, kcal/mol) energies, in gas-phase and benzene, 

and total (G, au) and relative (ΔG, kcal/mol) free energies in benzene for stationary 

points involved in the 13DC reactions of 1-E and 1-Z with 2g.  

 
 gas-phase benzene 

 E  ΔE E  ΔE G  ΔG 

1-E –1043.772302  –1043.781561  –1043.598519 

1-Z –1043.772618  –1043.781063  –1043.597913 

2g –607.634412  –607.638885  –607.528673 

TS1-E –1651.401206 3.5 –1651.413185 4.6 –1651.100245 16.9

TS1-Z –1651.401206 3.7 –1651.412283 4.8 –1651.100349 16.8

3g-E –1651.444258 –23.6 –1651.454657 –21.5 –1651.134958 –4.9

3g-Z –1651.443973 –23.2 –1651.453334 –20.9 –1651.130806 –2.3

TS2-E –1651.373260  1.0 –1651.383731 23.0 –1651.068242 37.0

TS2-Z –1651.372481 21.7 –1651.382129 23.7 –1651.066401 37.8

7g-E –1651.427249 –12.9 –1651.435868 –9.7 -1651.118121 5.3

7g-Z –1651.431159 –15.1 –1651.438630 –11.7 –1651.119144 4.7

 

 

The geometries of the TSs involved in these 13DC reactions are depicted in Figure 2. 

At the more favourable regioisomeric TSs, TS1-E and TS1-Z, the length of the S1-C5 

forming bond is 2.408 and 2.407 Ǻ, while the distance between the C2 and the N3 atoms is 

3.288 and 3.321 Ǻ respectively. These values point out to very asynchronous bond-

formation processes in which the S1-C5 bond-formation is anticipated to the C2-N3 one. At 

the more unfavourable regioisomeric TSs, TS2-E and TS2-Z, the length of the C2-C5 

forming bond is 2.096 and 2.092 Ǻ, while the length of the S1-N3 bond is 2.482 and 2.482 

Ǻ, respectively. These TSs are more advanced and more synchronous. 
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Figure 2. Transition structures for the 13DC reactions of 3-thioxo-[1,2,4]-triazepin-5-one 1-

E and 1-Z with 2g. The values of the bond lengths are given in Ǻ. 

 

Analysis of the bond orders (BO) and the charge transfer (CT) at the TSs allows to 

establish the electronic nature of these 13DC reactions. At the more favourable 

regioisomeric TSs, TS1-E and TS1-Z, the BO values of the S1-C5 forming bond are 0.33 

and 0.34, while the BO values between the C2 and the N3 atoms are 0.03. These BO values 

indicate that only the S1-C5 bond is being formed at these asynchronous TSs. On the other 

hand, at the more unfavourable regioisomeric TSs, TS2-E and TS2-Z, the BO values of the 

C2-C5 and S1-N3 forming bonds are 0.43 and 0.30, respectively. These values point to 

concerted bond formation process where the C2-C5 bond formation is more advanced than 

the S1-N3 one.  

The CT at these cycloadditions was analyzed sharing the natural charges between the 

dipole and the dipolarophile fragments. At the more favourable regioisomeric TSs, the CT 

that fluxes from the 3-thioxo-[1,2,4]-triazepin-5-one 1 to the nitrilimine 2g is 0.26 e at both 

E/Z TSs. This large value indicates that these TSs have some zwitterionic character. On the 

other hand, at the more unfavourable regioisomeric TSs the CT is negligible, 0.05e, and it 

takes place in the opposite direction. This analysis indicates that the two regioisomeric 

cycloadditions are associated to unlike chemical processes. While the TSs associated to the 
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most favourable regioisomeric channels can be associated to two-center interactions between 

the most nucleophilic site of the 3-thioxo-[1,2,4]-triazepin-5-one 1, the sulphur S1 atom, and 

the most electrophilic site of nitrilimine 2g, the carbon C5 atom, the TSs associated to the 

more unfavourable regioisomeric channels can be related to four-center interactions 

characteristic of concerted cycloaddition processes. The flux of the CT found at the more 

favourable TSs is in agreement with the large electrophilic character of the nitrilimine 2g, ω 

= 1.75 eV, than that of 3-thioxo-[1,2,4]-triazepin-5-one 1-E, ω =1.30 eV.25  

As these cycloadditions have some polar character, and solvent can modify the 

energies, effect of benzene was considered. In benzene, all species are stabilized between 3 

and 8 kcal/mol. The more stabilized species are TS1-E and TS1-Z due to their polar 

character, 7.5 and 7.0 kcal/mol, respectively. However, the separated reagents become 

slightly more solvated. As a consequence, the activation energies increase in 1.1 kcal/mol. 

Solvent effects have not any incidence on the regioselectivity of the studied reaction. 

Finally, the inclusion of the thermal corrections and entropies to the total energies in 

benzene raises the free energies between 12 and 19 kcal/mol due to the bimolecular nature of 

these cycloadditions (see Table 2). The free activation energies associated TS1-E and TS1-Z 

are 16.9 and 16.8 kcal/mol. The regioisomeric TSs remains ca. 20 kcal/mol above the more 

favourable TSs. Finally, formation of the spirocycloadducts 3g-E and 3g-Z are slightly 

exergonic, –4.9 and –2.3 kcal/mol, respectively. 

 

2.2. Study of conversion of spirocycloadducts 3a-f into bicycloderivatives 4a-f and 5a-f. 

The spirocycloadducts 3a-f are very unstable, and they are converted quickly into the 

two bicyclo compounds 4a-f and 5a-f (see Scheme 1). Therefore, we have considered to 

study these conversions. Based on these observations obtained from the X-ray 

crystallography analysis of the compounds of 4d and 5e (see section 1-3) we have proposed 

a mechanism for the conversions that considers all structural changes (see Scheme 4). In a 

first step, the triazepine ring is opened by a N1-C2 breaking bond process to give the 

intermediate 8. Then, the enamine substituent present in 8 is hydrolysed to the corresponding 

aldehyde, yielding the dicarbonylic intermediate 9. Note that the ring cleavage and the 

enamine hydrolysis are independent. However, due to the large instability of these 

spirocompounds in an acid medium (see later) we assume that the ring cleavage takes place 

firstly. After the enamine hydrolysis, the two carbonyl groups on 9 can experiment an 

intramolecular condensation reaction with the terminal amine N1 atom. Formation of the 

new N-C bond via the intramolecular nucleophilic attack of the amine to each carbonyl 
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group present on 9 allows the formation of the two new five-membered heterocycles. 

Finally, a water elimination process on the bicyclic intermediates 10 and 11 allows the 

formation of 4g and 5g. 
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Scheme 4 

 

Due to the complexity of this mechanism, we decided to study the two more significant 

elementary steps (see A and B in Scheme 4). They include the ring cleavage of the triazepine 

ring, step A, and the ring closure of the dicarbonylic intermediate 9 with formation of the 

new bicyclic intermediates 10 and 11, step B. Note that hydrolysis of enamines and 

condensation reactions of carbonyl compounds with amines are common reactions in the 

chemistry of the carbonyl group. In addition, due to that the thiazole ring does not participate 

in the domino reaction, the methoxycarbonyl and phenyl groups present in the thiazole ring 

have been replaced by two hydrogen atoms in order to work with a more reduced model. 

 

All steps of the proposed mechanism need an acid catalysis in order to facilitate the 

breaking- and forming-bond processes associated to each elementary process (see Scheme 

5). After the protonation of the N1 nitrogen atom of the triazepinone ring of the 

spirocycloadduct 3, the activation energy associated to the N1-C2 breaking-bond of the 

intermediate IN1 via TS3, is only of 2.6 kcal/mol. This ring cleavage process is very 

exothermic, –23.9 kcal/mol. These energy results indicate that in acid environment the 

spirocycloadducts 3a-f are kinetically and thermodynamically very unstable, yielding 
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irreversibly the open intermediates as 8 (see Scheme 4). Note that the N1 nitrogen atom of 

these spirocycloadducts corresponds to the most basic center of these molecules. 
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Scheme 5 

 

For the ring-closure step with formation of the five-membered heterocycles present in 

4g and 5g, we found a unique TS4 followed by a downhill intrinsic reaction coordinate until 

the path bifurcates into two equivalent downhill pathways allowing the formation of the 

intermediate IN4, result of the nucleophilic attack of the amine N1 nitrogen atom to the 

ketone C3 carbon atom, and the intermediate IN5, result of the attack of this nitrogen atom 

to the aldehyde C7 carbon atom. This TS is located only 1.1 kcal/mol above the intermediate 

IN3. Formation of the intermediates IN4 and IN5 is exothermic in –1.8 and –24.7 kcal/mol, 

respectively. The low exothermic character of IN4 can be related to the loss of the 

conjugation associated to the nucleophilic attack to the ketone group. Spite of the low 

exothermic character of formation of the intermediate IN4, the quick exchange of the N1 

proton by an acid/base process can turn irreversible this step after water elimination. Full 

optimisation of the stationary points associated to the paths A and B at the B3LYP/6-31+G* 

does not produce appreciable changes (see Table 3). Only the relative energy of TS4 

increases to 10.5 kcal/mol. 
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Table 3. Total (E, au) and relative (ΔE, kcal/mol) energies, in gas-phase and 

dichloromethane, and total (G, au) and relative (ΔG, kcal/mol) free energies in 

dichloromethane, for the more relevant stationary points corresponding to the reaction model 

for transformation of spirocycloadduct 3g to 4g and 5g products. 

 
 B3LYP/6-31G* B3LYP/6-31+G* B3LYP/6-31G* 

 gas-phase dichloromethane 

 E ΔE E ΔE E ΔE G ΔG 

IN1 –1192.905939  –1192.928240 –1192.977586  –1192.75108

TS3 –1192.901739 2.6 –1192.924370 2.4 –1192.974637 1.9 –1192.74961 0.9

IN2 –1192.944099 –23.9 –1192.965038 –23.1 –1193.011543 –21.3 –1192.78486 –21.2

IN3 –1134.158984  –1134.180397 –1134.236299  –1134.07706

TS4 –1134.157262 1.1 –1134.163718 10.5 –1134.234001 1.4 –1134.07179 3.3

IN4 –1134.161908 –1.8 –1134.183691 -2.1 –1134.238627 –1.5 –1134.07442 1.7

IN5 –1134.198415 –24.7 –1134.220647 –25.3 –1134.274285 –23.8 –1134.10736 –19.0

 

The geometries of TS3 and TS4 are given in Figure 3. At TS3, the length of the N1-C2 

breaking bond is 2.138 Å, while the BO value is 0.31. At TS4, the distance between the 

amine N1 nitrogen atom and the aldehyde carbonyl C7 carbon atom and the ketone carbonyl 

C3 carbon atom is 2.909 and 2.787 Å, respectively. These large distances point out the early 

character of this TS. 

TS3

TS4

2.138

2.909 2.787
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Figure 3. Transition structures involved in the reaction model for the transformation of 

spirocycloadduct 3g to 4g and 5g products. 

 

At the intermediate IN3 the protonation takes place at the most basic ketone O7 

oxygen atom, but the proton forms also a strong hydrogen bond with the aldehyde O9 

oxygen atom, with a bond length of 1.615 Å. This behaviour remains also at TS4. The IRC 

from TS4 to IN4 shows that along the nucleophilic attack of the amine N1 nitrogen atom to 

the aldehyde C7 carbon atom, the proton moves from the ketone O7 oxygen atom to the 

aldehyde O9 oxygen atom, thus stabilising the negative charge that develops at the aldehyde 

O9 oxygen atom along the nucleophilic attack to the C8 carbon atom. The same mechanism, 

related to the synthesis of pyrazoles reaction of hydrazines with beta-dicarbonyl compounds, 

has been studied by Elguero and coworkers.26  

Dichloromethane stabilises all structures between 42 – 49 kcal/mol, as a consequence 

of the cationic character of this species. However, the inclusion of solvent effect does not 

modify the gas-phase relative energies. Finally, the inclusion of the thermal corrections and 

entropies to the total energies in dichloromethane causes minor changes on the relative free 

energies associated to this domino process due to the intramolecular nature of the two 

elementary steps. The activation free energies for the two elementary steps present very low 

values, 0.9 kcal/mol (TS3) and 3.3  kcal/mol (TS4) (see Table 3). These values support the 

feasibility of these steps. On the other hand, formation of the intermediate IN2 is a strongly 

exergonic process, –21.2 kcal/mol. Therefore, in an acid medium, the spirocycloadducts as 

3g are kinetically and thermodynamically very unstable in clear agreement with the 

experimental outcome.  

In conclusion, both energy results and geometries associated to the A and B elementary 

steps studied in Scheme 5 support the mechanism proposed in Scheme 4 for the 

transformation of the spirocycloadduct 3g into the bicyclo compounds 4g and 5g. Note that 

for the other non-studied elementary steps of Scheme 4, it is assumed that they take place 

easily.  
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CONCLUSION  

New bicyclic pyrazol-1,3,4-thiadiazole derivatives 4a-f and 5a-f have been synthesized by 

reaction between  the 3-thioxo-[1,2,4]-triazepin-5-one 1 and several nitrilimines 2a-f. The 

studied reactions take place through two reaction types: a 13DC reaction between 1 and 2a-f, 

and a domino reaction allowing the conversion of the corresponding spirocycloadducts 3a-f 

into the final bicyclic compounds 4a-f and 5a-f, which were characterized by NMR and X-

ray analyses. The mechanism of the two reaction types have been theoretically studied using 

DFT calculations at the B3LYP/6-31G(d) level. The spirocycloaduct 3g is obtained through 

a 13DC reaction via a high asynchronous mechanism with a very low activation energy. The 

computational results support the total regioselectivity experimentally observed. For the 

conversion of the spirocycloadducts 3a-f into the two biciclyc compounds 4a-f and 5a-f, a 

domino reaction that comprises the cleavage of the triazepin ring, hydrolysis of the enamine 

substituent, and two intramolecular condensation reactions to form the two new five-

membered heterocycles has been proposed. The elementary steps responsible for the N2-C3 

cleavage of the triazepin ring and the intramolecular nucleophilic addition reaction to the 

carbonyl groups to yield the thiazolo and diazolo rings have been studied. The energy results 

obtained for these elementary steps support the suitability of the proposed mechanism, 

allowing to explain formation of the two bicyclic pyrazol-1,3,4-thiadiazole derivatives. 
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COMPUTATIONAL METHODS 

Quantum chemical calculations were performed with the use of the Gaussian 03 set of 

programs.27 All structures were fully optimized with the density functional theory (DFT) 

using Becke’s three parameter hybrid method 28 and correlation functional of Lee-Yang-Parr 

(B3LYP) 29 in conjunction with the 6-31G* and 6-31+G*30 basis sets. The stationary points 

were characterized by harmonic vibrational frequency analysis in order to verify that minima 

and transition structures have zero and one imaginary frequency, respectively. Starting from a 

transition structures, the intrinsic reaction coordinate (IRC)31 pathway has also been 

constructed in order to verify further its identity and also map out a minimum energy reaction 

pathway. Net atomic charges of the stationary points were obtained by using the natural bond 

orbital (NBO) approach.32 The solvent effects have been considered by B3LYP/6-31G* 

single point calculations over the gas phase optimized structures using a self-consistent 

reaction field 33 (SCRF) based on the PCM method of the Tomasi’s group.34 Since these 

reactions are carried out in benzene and dichloromethane, we have selected its dielectric 

constants at 298.0 K.  The values of the free energies in benzene and dichloromethane were 

calculated with the standard statistical thermodynamics at 298.15 K and 1 atm.30 

Thermodynamic calculations were scaled by a factor of 0.96. 

 

EXPERIMENTAL SECTION 
 

Melting points were taken on a Buchi 510 apparatus and were uncorrected. The 1H NMR 

spectra were recorded with the following instruments: Bruker WP 400 CW and AC 250. 

TMS was used as an internal reference. The 13C NMR spectra were measured on a Varian 

FT 80 (20.0 MHz). Mass spectra were recorded with a JEOL JMS DX 300. Column 

chromatography was carried out using E-Merck silica gel 60F254. Reagents and solvents 

were purified in the usual Way. The data collections of X-ray structures were performed at 

293º K on a Nonius Kappa-CCD single crystal diffractometer, using Mo Kαradiation 

( λ=0.7173 Å). Crystal-detector distance was fixed at 35 mm, and a total of 220/ 325 images 

were collected using the oscillation method, with scan angle per frame 2º oscillation and 20s. 

exposure time per image. Data collection strategy was calculated with the program Collect.35 

Data reduction and cell refinements were performed with the programs HKL Denzo and 

Scalepack.36 The crystal structure was solved by direct Methods, using the program SIR-97.37 

Anisotropic least-squares refinement was carried out with SHELXL-97.38 All non hydrogen 
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atoms were anisotropically refined. Some Hydrogen atoms were located in a difference 

Fourier maps and the remaining ones located geometrically. Geometrical calculations were 

made with PARST.39 The crystallographic plots were made with Mercury.40 
Synthesis of [1,2,4]triazepine 1 

A solution of 3-thioxo[1,2,4]triazepin-5-one 6 (5.8mmol.) and dimethyl 

formamidedimethyl acetal (DMF-DMA) (20 ml) was stirred for 1h at 5°C. The precipitated 

solid was filtered off under reduced pressure and the crude solid subjected to silica-gel using 

80/20 % ethyl acetate/hexane mixture as eluent gave a 66:34 mixture of two isomers 1E and 

1Z in good yield 65%.  

 

(E)-6-(dimethylaminomethylene)-2,7-dimethyl-3-thioxo-3,4,5,6-tetrahydro-2H-[1,2,4] 

triazepin-5-one 1E.  

Percentage: 66, 1H NMR (CDCl3): δppm: 2.08 (s, 3H, C7-CH3), 3.07 (s, 6H, N(CH3)2), 3.57 

(s, 3H, N2-CH3), 7.55 (s,1H, H-C=), 7.84 (s,1H, NH). 13C NMR (CDCl3): δppm: (C7-CH3), 

44.95 (N-(CH3)2), 45.3 (N2-CH3), 154.5 (H-C=), 96.1 (C6), 164.2 (C7), 168.2 (C5), 177.4 

(C3), Mass spectrum (FAB) m/z : 475 [M+H]+ 

 

(Z)-6-(dimethylaminomethylene)-2,7-dimethyl-3-thioxo-3,4,5,6-tetrahydro-2H-[1,2,4] 

triazepin-5-one 1Z.  

Percentage: 34, 1H NMR (CDCl3): δppm: 2.18 (s, 3H, C7-CH3), 3.07 (s, 6H, N(CH3)2), 

3.50(s, 3H, N2-CH3), 7.05 (s, 1H, H-C=), 7.90 (s, 1H, NH). 13C NMR (CDCl3): δppm: 22.0 

(C7-CH3), 44.9 (N-(CH3)2), 44.7 (N2-CH3), 154.1 (H-C=), 96.5 (C6), 163.6 (C7), 164.9 (C5), 

177.2 (C3), Mass spectrum (FAB) m/z: 475 [M+H]+ 

 

General procedure for preparation of products 3a-c, 4a-c and 5a-c 

To a solution of 1,2,4-triazepine 1 (5mmol) and ethylhydrazono-α-bromoglyoxylate 

(5.5mmol) in dry benzene (30ml), triethylamine (7.2mmol) dissolved in dry benzene (10ml) 

was added dropwise. After stirring for 72 hours at room temperature, the solvent was then 

removed under vacuum and the mixture was diluted with water (25ml) and extracted with 

dichloromethane (3X50ml). The organic layers were dried over  anhydrous sodium sulphate, 

concentrated under reduced pressure and the yellow crystalline product thus obtained 3a-c 

was further transformed to pure 4a-c and 5a-c compounds by chromatography on a silica gel 

column (eluent:hexane/ethylacetate,75/25). 
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Ethyl (6E)-(2,7-dimethyl-5-oxo-6-((dimethylamino)methylene)-3,4,5,6-tetrahydro-2H-

[1,2,4]triazepine-3-spiro-2’-(3’-(p-tolyl)-2’,3’-dihydro[1,3,4]thiadiazole-5’-carboxylate 

3a.  

1H NMR (CDCl3): δ ppm: 1.26-1.30 (m, 3H, COOCH2CH3), 2.04 (s, 3H, C7-CH3), 2.60 (s, 

3H, N2-CH3), 3.10 (s, 6H, N(CH3)2), 4.22-4.33 (m, 2H, -CH2-O), 7.75 (s, 1H, C6=CH), 6.40 

(s, 1H, NH), 6.92 (d, 2H, J=9.31Hz, H-Ar), 7.36 (d, 2H, J=9.31Hz, H-Ar). 13C NMR 

(CDCl3): δ ppm: 14.4 (COOCH2CH3), 14.7 (C7-CH3), 24.7 (N2-CH3), 40.7 (N(CH3)2), 62.8 

(-CH2-O), 98.5 (C2’), 118.2 (C6), 117.4, 129.7 (CHAr), 134.4, 135.6 (CAr), 144.9 (C6=CH), 

154.5 (C7), 160.4 (C5’), 165.6 (C=OC2H5), 169.2 (C5). 

 

Ethyl (6Z)-(2,7-dimethyl-5-oxo-6-((dimethylamino)methylene)-3,4,5,6-tetrahydro-2H 

[1,2,4]triazepine-3-spiro-2’-(3’-(p-tolyl)-2’,3’-dihydro[1,3,4]thiadiazole-5’-carboxylate 

3a.  

1H NMR (CDCl3): δ ppm: 1.26-1.30 (m, 3H, COOCH2CH3), 1.99 (s, 3H, C7-CH3), 2.50 (s, 

3H, N2-CH3), 3.10 (s, 6H, N(CH3)2), 4.22-4.33 (m, 2H, -CH2-O), 7.02 (s, 1H, C6=CH), 6.87 

(s,1H, NH), 6.87 (d, 2H, J=9.31Hz, H-Ar), 7.30 (d, 2H, J=9.31Hz, H-Ar). 13C NMR 

(CDCl3): δ ppm: 14.3 (COOCH2CH3), 14.4 (C7-CH3), 21.4 (N2-CH3), 41.1 (N(CH3)2), 63.5 

(-CH2-O), 98.2 (C2’), 117.6 (C6); 117.2, 129.3 (CHAr); 134.5, 135.1 (CAr), 145.1 (C6=CH), 

155.3 (C7), 162.0 (C5’), 165.7 (C=OC2H5), 169.3 (C5). 

 

Ethyl (6E)-(2,7-dimethyl-5-oxo-6-((dimethylamino)methylene)-3,4,5,6-tetrahydro-2H 

[1,2,4]triazepine-3-spiro-2’-(3’-(p-chlorophenyl)-2’,3’-dihydro[1,3,4]thiadiazole-5’-

carboxylate 3b.  

1H NMR (CDCl3): δ ppm: 1.35-1.37 (m, 3H, COOCH2CH3), 2.07 (s, 3H, C7-CH3), 2.58 (s, 

3H, N2-CH3), 3.14 (s, 6H, N(CH3)2), 4.28-4.37 (m, 2H, -CH2-O), 7.72 (s, 1H, C6=CH), 6.40 

(s,1H, NH), 7.10 (d, 2H, J=9.31Hz, H-Ar), 7.93 (d, 2H, J=9.31Hz, H-Ar). 13C NMR 

(CDCl3): δ ppm: 14.4 (COOCH2CH3), 14.6 (C7-CH3), 24.6, (N2-CH3), 40.3 (N(CH3)2), 62.8 

(-CH2-O), 97.2 (C2’), 118.9 (C6), 121.3, 125.5 (CHAr), 130.4, 136.6 (CAr), 144.2 (C6=CH), 

152.8 (C7), 159.3 (C5’), 165.8 (C=OC2H5), 169.8 (C5). 

 

Ethyl (6Z)-(2,7-dimethyl-5-oxo-6-((dimethylamino)methylene)-3,4,5,6-tetrahydro-2H 

[1,2,4]triazepine-3-spiro-2’-(3’-(p-chlorophenyl)-2’,3’-dihydro[1,3,4]thiadiazole-5’-

carboxylate 3b.  
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1H NMR (CDCl3): δ ppm: 1.35-1.37 (m, 3H, COOCH2CH3), 2.00 (s, 3H, C7-CH3), 2.56 (s, 

3H, N2-CH3), 3.14 (s, 6H, N(CH3)2), 4.28-4.37 (m, 2H, -CH2-O), 7.01 (s, 1H, C6=CH), 6.73 

(s,1H, NH), 7.13 (d, 2H, J=9.31Hz, H-Ar), 7.87 (d, 2H, J=9.31Hz, H-Ar). 13C NMR 

(CDCl3): δ ppm: 14.2 (COOCH2CH3), 14.3 (C7-CH3); 21.8, (N2-CH3), 40.8 (N(CH3)2), 63.6 

(-CH2-O), 98.3 (C2’); 118.4 (C6), 121.1, 125.0 (CHAr), 130.5, 137.2 (CAr), 144.5 (C6=CH), 

153.7 (C7); 160.0 (C5’), 165.6 (C=OC2H5), 169.9 (C5). 

 

Ethyl (6E)-(2,7-dimethyl-5-oxo-6-((dimethylamino)methylene)-3,4,5,6-tetrahydro-2H 

[1,2,4]triazepine-3-spiro-2’-(3’-(p-nitrophenyl)-2’,3’-dihydro[1,3,4]thiadiazole-5’-

carboxylate 3c.  

1H NMR (CDCl3): δ ppm: 1.36-1.39 (m, 3H, COOCH2CH3), 2.08 (s, 3H, C7-CH3), 2.60 (s, 

3H, N2-CH3), 3.15 (s, 6H, N(CH3)2), 4.31-4.41 (m, 2H, -CH2-O), 7.75 (s, 1H, C6=CH), 6.45 

(s, 1H, NH), 7.79 (d, 2H, J=9.35Hz, H-Ar), 8.11 (d, 2H, J=9.35Hz, H-Ar). 13C NMR 

(CDCl3): δ ppm: 14.5 (COOCH2CH3), 14.6 (C7-CH3), 24.6, (N2’-CH3), 40.4 (N(CH3)2), 63.0 

(-CH2-O), 97.9 (C2’), 118.6 (C6), 118.3, 125.3 (CHAr), 138.4, 143.4 (CAr), 145.8 (C6=CH), 

153.9 (C7), 160.1 (C5’), 165.7 (C=OC2H5), 169.7 (C5). 

 

Ethyl (6Z)-(2,7-dimethyl-5-oxo-6-((dimethylamino)methylene)-3,4,5,6-tetrahydro-2H 

[1,2,4]triazepine-3-spiro-2’-(3’-(p-nitrophenyl)-2’,3’-dihydro[1,3,4]thiadiazole-5’-

carboxylate 3c.  

1H NMR (CDCl3): δ ppm: 1.36-1.39 (m, 3H, COOCH2CH3), 2.00 (s, 3H, C7-CH3), 2.58 (s, 

3H, N2-CH3), 3.15 (s, 6H, N(CH3)2), 4.31-4.41 (m, 2H, -CH2-O), 7.07 (s, 1H, C6=CH), 6.76 

(s,1H, NH), 7.81 (d, 2H, J=9.33Hz, H-Ar), 8.05 (d, 2H, J=9.331Hz, H-Ar). 13C NMR 

(CDCl3): δ ppm: 14.3 (COOCH2CH3) 14.4 (C7-CH3), 21.3 (N2-CH3), 40.9 (N(CH3)2), 63.9 (-

CH2-O), 98.6 (C2’), 118.1 (C6), 118.2, 124.8 (CHAr), 138.5, 144.0 (CAr), 146.0 (C6=CH), 

154.7 (C7), 161.8 (C5’), 165.8 (C=OC2H5), 169.8 (C5). 

 

Ethyl (E)-2-(4’-formyl-1’,3’-dimethyl-1H-[1,2]pyrazol-5’-ylimino)-3-p-tolyl-2,3-dihydro 

[1,3,4]thiadiazole-5-carboxylate 4a.  

mp: 151-152°C (EtOH). 1H NMR (CDCl3): δppm: 1.32 (t, 3H, J=7.19 Hz,-CH2-CH3), 2.33 

(s, 3H, Ar-CH3), 2.38 (s, 3H, C3’-CH3), 3.50 (s, 3H, N1’-CH3), 4.37 (q, 2H, J=7.19Hz, -O-

CH2-), 7.21, 7.67 (2d, J=9.25Hz, 4H, HAr), 9.74 (s, 1H, CHO). 13C NMR (CDCl3): δppm: 

13.4 (COOCH2CH3), 14.5 (C3’-CH3), 21.5 (Ar-CH3), 34.8 (N1’-CH3), 63.6 (O-CH2), 108.8 



 20

(C4’), 124.5, 129.9, 135.8, 138.9 (CAr), 141.5 (C3’), 151.3, 151.4 (C5’, C5), 158.1 (CO2Et), 

162.0 (C2), 183.0 (CHO). Mass spectrum (FAB): m/z 386 [M+H]+ 100%. 

  

Ethyl (E)-2-(1’,3’-dimethyl-1H-[1,2]pyrazol-4’-ylcarbonylimino)-3-p-tolyl-2,3-dihydro 

[1,3,4]thiadiazole-5-carboxylate 5a.  

mp: 183-184°C (EtOH). 1H NMR (CDCl3): δppm: 1.44 (t, 3H, J=7.14 Hz,-CH2-CH3), 2.45, 

2.50 (2s, 6H, Ar-CH3, C3’-CH3), 3.83 (s, 3H, N1’-CH3), 4.49 (q, 2H, J=7.14Hz, -O-CH2-), 

7.33, 7.75 (2d, J= 9.19Hz, 4H, HAr), 7.84 (s, 1H, C5’-H). 13C NMR (CDCll3): δppm: 14.3, 

14.5 (COOCH2CH3 and C3’-CH3), 21.6 (Ar-CH3), 39.3 (N1’-CH3), 63.5 (O-CH2-), 118.9 

(C4’), 125.4, 129.8, 135.7, 139.2 (CAr), 136.7 (C5’), 147.9, 151.9 (C3’, C5), 159.0, 164.9 

(CO2Et, C2), 171.8 (CO). Mass spectrum (FAB): m/z 386 [M+H]+ 100%. 

 

Ethyl (E)-2-(4’-formyl-1’,3’-dimethyl-1H-[1,2]pyrazol-5’-ylimino)-3-p-chlorophenyl-

2,3-dihydro[1,3,4]thiadiazole-5-carboxylate 4b.  

mp: 158-159°C (EtOH). 1H NMR (CDCl3): δppm: 1.42 (t, 3H, J=7.18 Hz, -CH2-CH3), 2.48 

(s, 3H, C3’-CH3), 3.60 (s, 3H, N1’-CH3), 4.45 (q, 2H, J=7.18 Hz, -O-CH2-), 7.49- 7.87 (2d, 

J=9.24Hz, 4H, HAr), 9.80 (s, 1H, CHO). 13C NMR (CDCl3): δppm: 13.3 (COOC2H5), 14.5 

(C3’-CH3), 34.9 (N1’-CH3), 63.9 (O-CH2), 109.1 (C4’), 125.6, 126.5, 134.3, 136.8 (CAr), 

142.3 (C3’), 150.7, 151.4 (C5’,C5), 158.0 (CO2Et), 161.7 (C2), 183.2 (CHO). Mass spectrum 

(FAB): m/z 406 [M+H]+ 100%. 

 

Ethyl (E)-2-(1’,3’-dimethyl-1H-[1,2]pyrazol-4’-ylcarbonylimino)-4-p-chlorophenyl-2,3-

dihydro[1,3,4]thiadiazole-5-carboxylate 5b.  

mp: 199-200°C (EtOH). 1H NMR (CDCl3): δppm: 1.47 (t, 3H, J=7.13Hz, -CH2-CH3), 2.54 

(s, 3H, C3’-CH3), 3.88 (s, 3H, N1’-CH3), 4.52 (q, 2H, J=7.13Hz, -O-CH2-), 7.55-7.90 (2d, 

J=9.18Hz, 4H, HAr), 7.86 (s, 1H, C5’-H). 13C NMR (CDCl3): δppm: 14.3, 14.6 

(COOCH2CH3 and C3’-CH3), 39.4 (N1’-CH3), 63.7 (O-CH2-), 118.7 (C4’), 126.5, 129.4, 

134.8, 137.6 (CAr), 135.7 (C5’), 148.4, 151.9 (C3’, C5), 158.8, 164.8 (CO2Et, C2), 171.7 

(CO). Mass spectrum (FAB): m/z 406 [M+H]+ 100%. 

 

Ethyl (E)-2-(4’-formyl-1’,3’-dimethyl-1H-[1,2]pyrazol-5’-ylimino)- 3-p-nitrophenyl-2,3-

dihydro[1,3,4]thiadiazole-5-carboxylate 4c.  

mp: 167-169°C (EtOH). 1H NMR (CDCl3): δppm: 1.43 (t, 3H, J=7.21Hz, -CH2-CH3), 2.48 

(s, 3H, C3’-CH3), 3.61 (s, 3H, N1’-CH3), 4.49 (q, 2H, J=7.21Hz, -O-CH2-), 8.28-8.36 (2m, 
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4H, HAr), 9.83 (s, 1H, CHO). 13C NMR (CDCl3): δppm: 13.2 (COOCH2CH3), 14.5 (C3’-

CH3), 35.0 (N1’-CH3), 64.1 (-O-CH2), 109.3 (C4’), 123.8, 124.9, 143.4, 146.6 (CAr), 143.6 

(C3’), 149.8, 151.9 (C5’, C5), 157.7 (CO2Et), 161.3 (C2), 183.3 (CHO). Mass spectrum 

(FAB): m/z 417 [M+H]+ 100%.  

 

Ethyl (E)-2-(1’,3’-dimethyl-1H-[1,2]pyrazole-4’-carbonylimino)-3-p-nitro-phenyl-2,3-

dihydro[1,3,4]thiadiazole-5-carboxylate  5c.  

mp: 213-214°C (EtOH). 1H NMR (CDCl3): δppm: 1.47 (t, 3H, J=7.17Hz, -CH2-CH3), 2.54 

(s, 3H, C3’-CH3), 3.88 (s, 3H, N1’-CH3), 4.53 (q, 2H, J=7.17Hz, -O-CH2-), 8.36-8.44 (2m, 

4H, HAr), 7.89 (s, 1H, C5’-H). 13C NMR (CDCl3): δppm: 14.3, 14.5 (COOCH2CH3) and 

C3’-CH3), 39.4 (N1’-CH3), 63.9 (O-CH2-), 118.3 (C4’), 124.8, 125.2, 143.9, 147.0 (CAr), 

135.7 (C5’), 149.3, 152.2 (C3’, C5), 158.6, 164.7 (CO2Et, C2), 171.5 (CO). Mass spectrum 

(FAB): m/z 417 [M+H]+ 100%. 

General procedure for preparation of products 3d-f, 4d-f and 5d-f 

To a solution of 5mmol. of dimethylaminomethylene-3-thioxo-1,2,4-triazepin-5-one 

1 and 5mmol. of α-chloroarylidenephenylhydrazone in 20ml of dry benzene, was added 

1.6ml of dry triethylamine dissolved in dry benzene. After stirring for 72 hours at room 

temperature, the reaction mixture was extracted with benzene (3x50ml) and the organic 

layers were dried over anhydrous sodium sulphate and evaporated under reduced pressure. 

The yellow crude solid thus obtained 3d-f were further transformed to pure 4d-f and 5d-f 

compounds by chromatography on a silica gel column using ethyl acetate/ hexane as eluent.  

 

 (E)-2-(4’-formyl-1’,3’-dimethyl-1H-[1,2]pyrazol-5’-ylimino)-5-p-tolyl-3-phenyl-2,3-

dihydro[1,3,4]thiadiazole 4d 

mp: 141-142°C (EtOH). 1H NMR (CDCl3): δ (ppm): 2.39 (1s, 3H, Ar-CH3), 2.46 (s, 3H, C3’-

CH3), 3.60 (s, 3H, N1’-CH3), 7.23-8.01 (m, 9H, HAr), 9.80 (s, 1H, CHO). 13C NMR 

(CDCl3): δ (ppm): 13.5 (C3’-CH3), 21.5 (Ar-CH3), 34.4 (N1’-CH3), 108.4 (C4’), 123.4, 126.2, 

127.4, 128.9, 129.8 (5 CH-Ar), 126.8, 138.8, 141.7 (3 CAr), 149.6, 150.7, 153.0 (C3’, C5’, 

C5), 161.2 (C2), 183.0 (CHO). 

Mass spectrum, (m/z): 389 [M] + (100%), 208, 91. 

 

 (E)-2-(1’,3’-dimethyl-1H-[1,2]pyrazol-4’-ylcarbonylimino)-3-p-tolyl-5-phenyl-2,3-

dihydro-[1,3,4]thiadiazole 5d.  
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mp: 175-176°C (EtOH). 1H NMR (CDCl3): δ (ppm): 2.16 (1s, 3H, Ar-CH3), 2.41 (s, 3H, C3’-

CH3), 3.83 (s, 3H, N1’-CH3), 7.86 (s, 1H, C5’-H), 7.26-8.00 (m, 9H, HAr).  13C NMR 

(CDCl3): δ (ppm): 13.9 (C3’-CH3), 21.5 (Ar-CH3), 38.9 (N1’-CH3), 118.9 (C4’), 124.7, 126.5, 

127.9, 128.7, 129.9 (5 CH-Ar), 127.2, 139.3, 141.6 (3 CAr), 135.1 (C5’), 151.3, 156.3 (C3’, 

C5), 163.5 (C2), 171.3 (CO). 

Mass spectrum, (m/z): 389 [M]+ 123(100%), 280, 208, 91. 

 

(E)-2-(4’-formyl-1’,3’-dimethyl-1H-[1,2]pyrazol-5’-ylimino)-3-p-chlorophenyl-5-phenyl-

2,3-dihydro[1,3,4]thiadiazole 4e 

mp: 165-166°C (EtOH). 1H NMR (CDCl3): δ(ppm): 2.55 (1s, 3H, C3’-CH3), 3.60 (1s, 3H, 

N1’-CH3), 7.35-8.00 (m, 9H, HAr),  9.82 (s, 1H, CHO). RMN 13C NMR (CDCl3): 13.8 (C3’-

CH3), 34.8 (N1’-CH3), 108.9 (C4’), 123.9, 127.9, 128.0, 129.4, 129.8 (5CH-Ar), 128.5, 137.7, 

139.0 (3 CAr), 148.7, 151.3, 152.8, 161.2 (C3’, C5’, C5, C2 ),  183.3 (CHO). 

Mass spectrum, (m/z): 409 [M]+, 389, 91(100%). 

 

(E)-2-(1’,3’-dimethyl-1H-[1,2]pyrazol-4’-ylcarbonylimino)-5-p-chlorophenyl-3-phenyl-

2,3-dihydro[1,3,4]thiadiazole 5e.  

mp: 195-196°C (ETOH). 1H NMR (CDCl3): δ (ppm):  2.52 (s, 3H, C3’-CH3), 3.84 (s, 3H, 

N1’- CH3), 7.82 (s, 1H, C5’-H), 7.26-7.99 (m, 9H, HAr).  13C NMR (CDCl3): δ (ppm): 14.3 

(C3’-CH3), 39.3 (N1’-CH3), 119.1 (C4’), 125.0, 128.2, 128.5, 129.2, 129.9 (5 CH-Ar), 128.9, 

137.7, 139.6 (3 CAr), 135.6 (C5’), 151.8, 155.1 (C3’, C5), 163.7 (C2), 171.7 (CO). 

Mass spectrum, (m/z): 409 [M]+, 300, 123(100%), 91. 
 

(E)-2-(4’-formyl-1’,3’-dimethyl-1H-[1,2]pyrazol-5’-ylimino)-2,3-dihydro-5-p-nitro- 

phenyl-3-phenyl[1,3,4]thiadiazole 4f 

mp : 144-146°C (EtOH). 1H NMR (CDCl3): δ (ppm): 2.48 (s, 3H, C3’-CH3), 3.61 (s, 3H, N1’-

CH3), 7.26-8.33 (m, 9H, HAr), 9.83 (s, 1H, CHO). 13C NMR (CDCl3): δ (ppm): 13.2 (C3’-

CH3), 34.5 (N1’-CH3), 108.6 (C4’) 123.7, 124.4, 127.0, 128.0, 129.1 (5 CH-Ar), 135.2, 138.3, 

147.0 (3 CAr); 149.0 (C3’), 151.1, 151.4 (C5’, C5), 160.5 (C2), 182.4 (CHO). 

Mass spectrum, (m/z): 420 [M] +, 123 (100%), 91. 

 

 (E)-2-(1’,3’-dimethyl-1H-[1,2]pyrazol-4’-ylcarbonylimino)-3-p-nitrophenyl-5-phenyl-

2,3-dihydro[1,3,4]thiadiazole 5f.  
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mp: 210-211°C (EtOH). 1H NMR (CDCl3): δ (ppm): 2.53 (s, 3H, C3’-CH3), 3.85 (s, 3H, N1’-

CH3), 7.88 (s, 1H, C5’-H), 7.26-8.38 (m, 9H, HAr). 13C NMR (CDCl3): δ (ppm): 13.9 (C3’-

CH3), 39.0 (N1’-CH3), 118.5 (C4’), 124.5, 124.7, 127.3, 128.4, 128.9 (5 CH-Ar), 135.8, 139.0, 

149.0 (3 CAr), 135.3 (C5’), 151.5, 153.4 (C3’, C5), 163.4 (C2), 171.4 (C=O). 

Mass spectrum, (m/z): 420 [M] + (100%), 91. 
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