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Abstract. Full configuration interaction calculations of two electrons in narrow

semiconductor nanorods are carried out employing different orbital basis sets. It

is shown that the usual configurations built from single-particle states cannot yield

a correct singlet-triplet energetic order regardless of the basis size, as they miss

correlation energy. Mean-field optimized orbitals partially correct this drawback. A

new approach is introduced, based on a simple variational procedure, which yields

robust results.
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1. Introduction

Quantum dots (QDs) are artificial semiconductor structures with sizes a few of tens

nanometers. Often, they are modeled as local perturbations of the periodic crystal

field of semiconductor surrounding matrix, using envelope function and effective mass

approximations to describe their electronic structure.[1, 2] Within this approach the

details of the unit cell are integrated out, so that only a macroscopic (or envelope)

description of the system remains. Thus, the interaction between conduction electrons

and atomic core electrons and nuclei is averaged as the interaction with a continuous

polarizable medium. Likewise, Coulomb interaction between carriers is assumed to

be screened by the dielectric constant of the QD bulk material.[3] The large value of

the semiconductor dielectric constant coming into the Coulomb term (typically 10-14),

along with the small value of the electron effective mass coming into the kinetic energy

term, often lead to situations in which the separation between discrete single-particle

(SP) levels exceeds by far the characteristic interaction energy between particles. As

a consequence, SP descriptions of the many-body problem may be used, treating the

Coulomb interaction between conduction electrons as a perturbation.[4, 5, 6]

A better accounting for the two-particle interaction can be achieved through diag-

onalization of the many-body Hamiltonian in the basis set of non-interacting configu-

rations. It is the so-called full configuration interaction (FCI) method, which plays a

central role in quantum chemistry.[7] FCI provides benchmark results for the ground

state energy and wave function, as well as for the description of excited states, as it is

inferred from the McDonald theorem.[8] The drawback of the approach is its computa-

tional cost, originated from its often slow convergence. The key for convergence is the

selection of a suitable monoelectronic basis set. As showed by Löwdin and Shull,[9] the

basis of natural orbitals is the one which requires the fewest configurations to achieve

a given accuracy in the energy. Natural orbitals are the orbitals that diagonalize the

one-particle density matrix. Therefore, exact natural orbitals should be extracted from

the FCI wave function. Alternatively, one may use single particle (SP) orbitals, i.e.,

the eigenfunctions of the one-body operator coming into the many-body Hamiltonian.

This approach is quite common in few-electron and excitonic QD calculations, where

convergence problems do not usually arise.[4, 5, 10]

In this paper, however, we identify a QD system where correlation energies are

so strong that the basis choice becomes critical to overcome slow convergence issues.

Namely, we study narrow rod-shaped QDs (nanorods, NRs).[11, 12] As recently shown,

the large aspect ratio of these semiconductor structures is responsible for remarkably

strong Coulomb interactions.[13, 14, 15] Here we demonstrate that, even in the simplest

case of two interacting electrons, the CI method based on SP orbitals (SP-CI) fails

to converge. Indeed, for long rods it predicts a triplet ground state, thus violating

a fundamental theorem for two-body exact functions.[16] To solve this problem, we

follow quantum chemistry CI methods and replace the regular SP orbitals by effective
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orbitals obtained through mean field calculations, either Hartree-Fock (HF-CI)[7] or

Kohn-Sham density functional theory (KS-CI). [17] The suitability of using these mean-

field optimized orbitals is discussed and compared with a new, simpler approach based

on a two-fold variational procedure.

2. Theory

The Hamiltonian of interacting conduction electrons in a QD reads

H =
∑

i

T (i) + vc(i) +
∑

j<i

1

ǫ rij

=
∑

i

h(i) +
∑

j<i

g(i, j), (1)

where T = − 1

2m∗
∇2 is the kinetic energy operator, vc the spatial confining potential,

m∗ the effective mass and ǫ the dielectric constant.

In order to carry out a CI calculation, first one has to select a given one-

electron basis set {φp}
M
p=1 and then build all possible N-body Salter determinants

Φα = det{φ1φ2 . . . φN} out of them. In a second step, the projection of Hamiltonian

(1) onto the basis set of Slater determinants (or onto a subset of spin- and symmetry-

adapted configurations) is carried out yielding matrix elements 〈Φα|H|Φβ〉. The last

step is the diagonalization.

For practical purposes the one-electron basis set is taken orthogonal, although

many-body approaches based on overlapping orbitals, as e.g. the generalized valence

bond (GVB), have been successfully developed in quantum chemistry.[7, 18] A possible

orbital choice is the SP states, i.e., the eigenfunctions of one-electron Hamiltonian h. We

must select a finite basis set. The natural choice is the M lowest-energy eigenvectors.

This truncation of the basis set implies a projection of Hamiltonian (1) onto the

corresponding FCI space yielding a model Hamiltonian that, in second quantization

language, reads,

HSP =
M
∑

p

εpa
+

p ap +
M
∑

pqrs

gpqrsa
+

p a+

q aras, (2)

where εp = hpp is the p-th eigenvalue of h, gpqrs the two-electron integral and a+
p , aq the

usual fermion creator/annihilator operators.

We may, alternatively, employ another M-dimensional orthogonal basis set {χp}
M
p=1.

In this case, Hamiltonian (1) turns into,

HX =
M
∑

pq

hpqa
+

p aq +
M
∑

pqrs

gpqrsa
+

p a+

q aras, (3)

where off-diagonal hpq terms arise because χp is no longer an eigenfunction of h.
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We may consider {χp} as related to a given vmf (r) potential operator which is

added and subtracted to Hamiltonian (1),

H =
∑

i

h(i) + vmf(i) − vmf (i) +
∑

j<i

g(i, j)

=
∑

i



h(i) + vmf (i) +
∑

j<i

g(i, j) − vmf(i)





=
∑

i

f(i) +
∑

j<i

ḡ(i, j). (4)

Now we determine {χp} from the eigenvalue equation f(r)χp(r) = ε̄pχp(r) and rewrite

eq. (3) as

HX =
M
∑

p

ε̄pa
+

p ap +
M
∑

pqrs

ḡpqrsa
+

p a+

q aras, (5)

HF, density functional theory (DFT) and, in general, any mean-field calculation

are particular cases of this procedure. For example, in HF,

ε̄p = hpp +
M
∑

q

(

〈pq|
1

ǫ r12

|pq〉 − 〈pq|
1

ǫ r12

|qp〉
)

(6)

Note that hpq + vmf
pq = 〈p|h + vmf |q〉 = ε̄p〈p|q〉 = ε̄pδpq.

Within the framework of this procedure, our approach to deal with strongly corre-

lated regimes is the use of a variational potential, i.e., a potential depending on param-

eters that allow optimization of the orbital basis set in the CI process.

The advantadge of adding a mean field potential is that, contrary to the SP orbitals

which disregard electron-electron interaction, HF orbitals include it somehow averaged

in the Coulomb and exchange terms, and KS orbitals further account for some of the

correlation through the corresponding functional. This has proved useful in describing

many-electron QDs.[19, 20] In our approach, all terms in Hamiltonian (1) are treated

on equal footing to optimize the potential and hence the orbital basis set.

It is worth noting that the projected Hamiltonian (3) is not defined by the selected

orbital basis set but rather by the linear space that it generates. Thus for example, in

[19], where HF spinorbitals of a N -electron system are expressed as linear combination

of a set of K SP states, a FCI expansion which employs either K-dimensional basis set

yields identical result. The advantage of the strategy presented in [19] relies on a further

truncation of the HF basis set.
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3. Results and discussion

We carry out calculations of the lowest-lying singlet and triplet states of a two-electron

semiconductor CdSe NR. The rod is composed by a cylinder of radius R = 20Å and vari-

able length L, attached to two hemispherical caps of the same radius R in the extremes.

The material parameters are effective mass m∗ = 0.13, dielectric constant ǫ = 9.2 and

confining potential vc = 4eV . The dominant electronic configuration for the studied

singlet and triplet states are σ2
1 and σ1σ2, respectively, where σ1, σ2 are the lowest-lying

and first excited orbitals with zero z-component of the angular momentum (Mz = 0).

We have checked that, as expected, already in the case of a short NR, many σ (Mz = 0)

SP states lie energetically below the first π (Mz = ±1) energy level, and that higher

angular momentum states are much more excited. Then, we employ a basis set 1-n-1 in

the CI calculations, i.e., a basis set including the n lowest-lying σ and the lowest-lying

degenerate pair of π orbitals, the last orbital pair having, in all studied cases, a very

small contribution to the singlet and triplet CI wave functions.

Figure 1 shows a series of SP-CI calculations (basis set 1-6-1) of the singlet and

triplet states of a R = 20Å two-electron semiconductor CdSe NR vs. L. At first glance,

the results seem reasonable. At L = 0 (sphere) the singlet state lies energetically far be-

low the triplet state, and the contributions to the CI expansion of configurations others

than the dominant one are extremely small. As L increases, the energetic singlet-triplet

gap ∆TS decreases, the contribution of excited configurations to the CI wave function

increases and, in the large L limit a singlet-triplet degeneration occurs. However, a

closer view reveals that beyond L = 170Å the triplet state becomes the ground state

(see inset in Fig.1). This fact is a violation of a known theorem, attributed to Wigner,

stating that any general two-particle Hamiltonian including a symmetric and real poten-

tial energy operator has a singlet ground state.[16] Therefore, the result is qualitatively

wrong. One may relate the failure to the truncation of the orbital basis set. In order to

check it, we run a series of SP-CI calculations of the singlet-triplet energy gap ∆TS in

an L = 200Å NR vs. the size n of the (1-n-1) basis set. The results, shown in Figure

2, do not allow to foresee any finite n yielding the theoretically expected singlet ground

state.

We turn then our attention to the wave function. The inset in Figure 2 shows a

profile of the FCI singlet (solid line) and triplet (dashed line) charge densities along the

NR vertical axis. We can observe that the triplet and, to a lesser extent, the singlet state

develop a valley in the electronic density profile around the rod center. The presence of

this valley allows the interacting electrons to reduce the repulsion energy, hence stabi-

lizing the states. This groove is already present in the independent-particle description

of the triplet state (through the σ2 orbital), but not in the singlet ground state, where it

is a pure correlation effect.[15] In the case of a poor correlation description, the singlet

valley is not deep enough and the triplet is more stable, leading to the triplet ground
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state predicted above.

Since the singlet state has gerade symmetry and only double excitations to unger-

ade orbitals may contribute to the formation of the central valley in the density profile

of the singlet, we explore the possibility of carrying out a CI expansion using gerade

orbitals with an in-built valley. A first attempt is to follow a recent approach proposed

by Abolfath and Hawrylak of using HF orbitals.[19] However, the approach is useless

in our case, because in this scheme HF orbitals are expanded in terms of a (large) SP

basis set and, as shown in Fig. 2, even an extremely large (finite) SP basis set cannot

prevent the singlet-triplet reversal. Note that gerade/ungerade HF orbitals would be

linear combinations of gerade/ungerade SP orbitals. Therefore, no gerade HF orbital

developing a valley can be obtained as linear combination of SP orbitals. We then take

a different approach and carry out numerical HF calculations, build a many-electron

Hamiltonian (5) out of the M lowest-lying HF eigenvectors and repeat the calculations

shown in Figure 1 with this new orbital basis set. In particular, the results collected

in Figure 3 corresponds to a 1-6-1 HF basis set. One can see that HF-CI outperforms

SP-CI. Indeed, at L = 170Å, HF-CI clearly predicts a singlet ground state. All the

same, a singlet-triplet crossing is observed shortly after L = 200Å, indicating that the

basis set is still insufficient.

We investigate with some more detail the pathological region of large L. To this

end, we consider an L = 200Å NR, and carry out calculations employing a large basis

set (1-10-1). In a first instance we run mean-field HF and KS (in the local density

approximation) calculations. The corresponding mean field potentials are represented

in Figure 4 left and center, respectively. We see that both have similar shape, i.e. a

profile vs. z resembling a symmetric hill with the top at the rod center. In Figure 4

(right) we show a simplified potential vtri, composed by a triangle of height H along

the NR z-axis. All three potentials have a common feature: they unstabilize the central

region of the NR. In the case of HF and KS, the mean-field potentials are optimized in

a self-consistent procedure. As far as the third potential is concerned, we optimized the

height H of vtri variationally, i.e., we perform FCI calculations with states obtained as

eigenvectors of a modified SP Hamiltonian, which adds vtri(H) to the confining poten-

tial, and then select variationally the best H . This optimization is shown in Figure 5

for a n = 10 basis set. We represent singlet and triplet FCI energies vs. the triangle

height H . For comparison, horizontal lines representing HF-FCI and KS-FCI are en-

closed. Several relevant conclusions that may be drawn from this figure are: (i) all three

potentials recover the correct singlet/triplet energetic ordering; (ii) orbital optimization

affects the singlet state far more than the triplet; (iii) from the variational principle

and Mcdonald’s theorem, we conclude that vKS outperforms vHF and the variational

potential vtri outperforms both, vHF and vKS. The good performance of vKS is re-

markable in view of its typical failures in very-few electron systems[21]. Also, we note

that in this system HF-CI gives better results than the SP-CI scheme, contrary to the
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expectations of [19] for a low number of electrons. The singlet-triplet ∆TS gap yielded

by vHF , vKS and vtri through the FCI calculations are 0.2, 1.4 and 3.5 meV, respectively.

In a next step, we consider again the 1-6-1 basis set employed in Figures 1 and

3, run calculations optimizing vtri in the region 100Å ≤ L ≤ 250Å, and compare the

results yielded by vtri with the SP-CI, and HF-CI methods. The combined results are

summarized in Figure 6, where the FCI singlet-triplet gap ∆TS obtained from SP, vHF

and vtri vs. L, is represented. One can see that only in the case of vtri the correct

null asymptotic limit of the singlet-triplet gap is obtained. In the inset, the difference

between the calculated SP or HF gaps and the benchmark one (vtri) is displayed. The

inset shows that, within this region, the gap error is approximately constant for both

approaches. It mainly comes from a deficient description of the singlet state (see Figure

5). An analysis of the orbitals employed in the different calculations reveals that an

optimal description of the singlet state with a moderate-size basis set requires a well

developed valley around the rod center in the ground σg orbital, but the valley should

be smaller o even be absent in excited σg orbitals.

To close this section we would like to note that the poor correlation description of

SP-CI is exclusive of NRs with large aspect ratio. As a matter of fact, SP-CI calculations

for a R = 50Å, L = 200Å (total length 300Å) CdSe NR employing a 1-6-1 basis set,

yields the correct singlet-triplet order, contrary to the R = 20Å NR we have analyzed

in detail.

4. Conclusion

We have shown that the FCI correlation energy of two electrons in quasi-one-dimensional

NRs calculated with a usual orbital basis set of numerical eigenfunctions of the one-

electron operator h arising in the many-body Hamiltonian (SP-FCI scheme) leads to a

wrong singlet-triplet energetic order. Irrespective of basis size, the correlation energy

of the NR is very sensitive to the choice of orbitals. Thus, mean-field-CI approaches,

that take into account somehow averaged the electron-electron interaction in the orbital

optimization can partially correct this drawback. A new CI scheme is proposed in

which the mean field potential is replaced by a simple triangular potential, with the

triangle height as a variational parameter. The latter approach outperforms mean-field-

CI schemes, yielding robuts results.
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Figure 1. FCI calculations, employing a 1-6-1 SP basis set, of the singlet (solid line)

and triplet (dashed line) states of a R = 20Å two-electron semiconductor CdSe NR vs.

the length L. Inset: close-up of the large length region.
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Figure 2. FCI singlet-triplet energy gap ∆TS , corresponding to a CdSe R = 20Å,

L = 200Å NR, calculated with a SP 1-n-1 basis set vs. n. Inset: R = 0 profile of the

FCI singlet (solid line) and triplet (dashed line) charge densities along the NR z axis.
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and triplet (dashed line) states of a R = 20Å two-electron semiconductor CdSe NR vs.

the length L. Inset: close-up of the large length region.

Figure 4. Mean field HF (left), KS (center) and, variationally optimized v
tri (right)

potentials of a R = 20Å, L = 200Å two-electron CdSe NR.
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R = 20Å two-electron semiconductor CdSe NR. In the inset, differences between the

calculated SP and v
HF and the v

tri singlet-triplet gaps.


