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Abstract 

Inflammation orchestrates a finely balanced process crucial for microorganism elimination and tissue injury protec-
tion. A multitude of immune and non-immune cells, alongside various proinflammatory cytokines and chemokines, 
collectively regulate this response. Central to this regulation is post-transcriptional control, governing gene expres-
sion at the mRNA level. RNA-binding proteins such as tristetraprolin, Roquin, and the Regnase family, along with RNA 
modifications, intricately dictate the mRNA decay of pivotal mediators and regulators in the inflammatory response. 
Dysregulated activity of these factors has been implicated in numerous human inflammatory diseases, underscor-
ing the significance of post-transcriptional regulation. The increasing focus on targeting these mechanisms presents 
a promising therapeutic strategy for inflammatory and autoimmune diseases. This review offers an extensive overview 
of post-transcriptional regulation mechanisms during inflammatory responses, delving into recent advancements, 
their implications in human diseases, and the strides made in therapeutic exploitation.
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Background
The immune system employs a complex biological 
response known as inflammation to protect the body 
against harmful stimuli, infections, and tissue inju-
ries [1, 2]. This intricate process involves various cel-
lular and molecular components and their interplay. 
At the forefront, the innate immune system serves 
as the mechanism to rapidly respond to the stimula-
tion including microorganisms. Comprising multi-
ple types of cells such as macrophages, neutrophils, 
and dendritic cells  (DCs), the innate immune system 
acts immediately to recognize foreign pathogens uti-
lizing their innate immune receptors such as Toll-like 

receptors (TLRs), RIG-I-like receptors (RLRs), NOD-
like receptors (NLRs), and cyclic GMP-AMP synthase 
(cGAS) [3–5]. Upon the engagement of these receptors 
and their cognate ligands, innate immune cells acti-
vate the downstream signaling pathways to induce the 
nuclear translocation of the key transcription factors 
such as nuclear factor-kappa B (NF-κB) and interferon 
response factors (IRFs). These transcription factors 
promote the production of type I interferons (IFNs) 
and proinflammatory cytokines including interleukin 
(IL)-6 and tumor necrosis factor (TNF) and trigger a 
series of events essential for the containment and res-
olution of threats [6]. Moreover, innate immune cells 
present the antigens from pathogens on the cell surface 
in a complex with the major histocompatibility com-
plex (MHC). This complex is recognized by the CD4+ 
and CD8+ T cells via their T cell receptor (TCR), initi-
ating the adaptive immune response coordinated by T 
and B lymphocytes [7, 8]. CD4+ helper T cells promote 
the activation of naïve B cells, promoting affinity matu-
ration and the production of antibodies highly specific 
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to the pathogens. Also, activated CD8+ cytotoxic T 
lymphocytes eliminate the infected cells by microor-
ganisms. Through the production of molecules such as 
antibodies and cytokines, innate and adaptive immune 
cells orchestrate an organismal response to neutralize 
pathogens.

In addition to the canonical immune cells, non-
immune cells have emerged as indispensable contributors 
to the inflammatory milieu [9]. Endothelial cells, fibro-
blasts, and epithelial cells are now recognized as active 
participants in shaping and regulating inflammation 
[10–12]. Together with immune cells, non-immune cells 
in various organs including the skin, brain, and intestine 
govern a diverse range of tissue-specific inflammatory 
responses. The orchestration maintains tissue homeosta-
sis and defend against exogenous insults.

While the orchestrated collaboration between immune 
and non-immune cells is vital for mounting an effective 
inflammatory response in the human body, disruptions 
in the delicate equilibrium between pro-inflammatory 
and anti-inflammatory signals can lead to excessive, 
prolonged, or misdirected immune reactions. These 
imbalances often result in tissue damage and various 
pathological conditions, including autoimmune disor-
ders like rheumatoid arthritis and severe inflammatory 
diseases such as COVID-19-induced acute respiratory 
distress syndrome (ARDS) [13, 14]. These instances 
underscore how dysregulated inflammation contributes 
to both chronic inflammatory conditions and severe 
infections, highlighting the critical need to comprehend 
the molecular underpinnings of these diseases for tar-
geted therapeutic interventions.

Post-transcriptional regulation stands as a critical 
checkpoint in controlling the amplitude and duration of 
inflammatory responses [14–17]. It plays a pivotal role 
in mitigating unwarranted or excessive inflammation by 
regulating the response of immune and non-immune 
cells. Post-transcriptional mechanisms, including RNA 
stability, alternative splicing, microRNA-mediated regu-
lation, and RNA modifications, intricately modulate the 
expression and activity of key inflammatory mediators 
[18–20]. By exerting precise control over mRNA stabil-
ity and translation, these mechanisms enable the immune 
system to dynamically adjust its response to stimulation. 
Dysregulation in these post-transcriptional processes 
can tip the balance, leading to sustained or hyperactive 
inflammatory states characteristic of chronic inflamma-
tory diseases. Moreover, the dysregulation of the post-
transcriptional mechanisms has been implicated in the 
failure and/or alteration in immune cell differentiation. 
Harnessing the complex regulatory networks that govern 
post-transcriptional control represents a promising ave-
nue for therapeutic interventions aimed at recalibrating 

aberrant inflammatory responses, potentially offering 
more precise and targeted approaches to the manage-
ment of inflammatory diseases.

In this review, we explore the important role of post-
transcriptional regulation in refining inflammatory 
responses. We discuss the emerging roles of RNA-bind-
ing proteins in orchestrating post-transcriptional events 
and highlight their potential as therapeutic targets for 
addressing inflammatory disorders. We mainly focused 
on the recent findings about the roles of RNA-binding 
proteins and RNA methylations that control mRNA 
decay in the regulation of inflammation. For the review of 
other post-transcriptional processes such as microRNA-
mediated regulation and alternative splicing, readers are 
directed to other works in the field [21, 22].

Overview of mRNA decay machinery regulating 
immune responses
The orchestration of inflammatory responses hinges 
significantly on the regulation of mRNA decay [14]. 
Central to this regulation is the inherent instability of 
mRNAs encoding inflammation-associated genes, nota-
bly cytokines and chemokines [23]. Their rapid turno-
ver is largely dictated by specific sequences within their 
3′ untranslated regions (UTRs), which serve as recog-
nition sites for a spectrum of RNA-binding proteins 
(RBPs). These RBPs include ZFP36 family, Roquin-1/2, 
and Regnase family proteins, classes of proteins that har-
bor the CCCH-type zinc finger domain (Fig. 1, discussed 
below). They trigger exo- or endo-nucleolytic cleavage of 
the mRNAs, exerting precise control over the synthesis 
of proinflammatory mediators and crucial molecules piv-
otal in directing immune responses [14].

Multiple mechanisms to control mRNA turnover 
in eukaryotes
The complex interplay between RBPs and mRNA decay 
machinery underlies mRNA metabolism (Fig. 2). Shielded 
by post-transcriptional modifications such as 5′ capping 
and poly(A) tail formation, mature mRNAs are guarded 
against degradation. These protective moieties cloak the 
vulnerable 5′ and 3′ bare ends, shielding them from rapid 
decay. However, once exposed through various mecha-
nisms, the mRNAs begin to undergo degradation.

Among the pathways orchestrating this degradation 
is the initiation by mRNA deadenylation—a truncation 
of the poly(A) tail. This process primarily involves the 
PAN2-PAN3 and CCR4-NOT complexes [24]. As the 
poly(A) tails diminish, the cytoplasmic RNA exosome 
gains access to the mRNA’s 3′ ends, commencing 3′-5′ 
exonucleolytic decay. Additionally, decapping mediated 
by the DCP1 and DCP2 complex, either before or after 
deadenylation, marks the start of mRNA decay [25]. The 
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Fig. 1  Domain structures of ZFP36, Regnase, and Roquin family proteins. Immune-related RNA-binding proteins (RBPs) such as ZFP36, Regnase, 
and Roquin family proteins share the common CCCH-type zinc finger (ZF) domain. The TTP family contains tandem ZF domains. The Regnase family 
features a PIN-like RNase domain, alongside ZF domains, as well as N-terminal (NTD) and C-terminal (CTD) domains. Roquin family proteins possess 
the ROQ domain, a RING finger domain, and ZF domains. The multiple RNA-binding domains of these proteins facilitate complex RNA recognition

Fig. 2  Diverse pathways governing mRNA decay. A Various RNA binding proteins (RBPs) like TTP, Roquin, and the YTHDF family, along with stalled 
translating ribosomes, initiate mRNA decay pathways by recruiting the deadenylase complex. This results in poly(A) tail shortening, enabling access 
for the cytoplasmic RNA exosome complex to undertake 3′-5′ exonucleolytic decay. Additionally, decapping exposes 5′ ends, targeted by XRN1 
for 5′-3′ exonucleolytic decay. B An alternative pathway, endonucleolytic mRNA decay, is initiated by endonucleases such as the Regnase family. 
Regnase-1-mediated mRNA decay requires active translation and the RNA helicase UPF1
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exposed 5′ ends are then recognized and cleaved by the 
5′-3′ exonuclease XRN1, promoting further degrada-
tion. RNA-binding proteins, such as tristetraprolin (TTP, 
ZFP36) and Roquin-1/2 (RC3H1/2), play pivotal roles in 
modulating mRNA turnover by controlling the recruit-
ment of deadenylation and/or decapping machinery. 
Moreover, RNA m6A methylation primarily interacts 
with YTHDF family proteins, which recruits the CCR4-
NOT complex and promotes the deadenylation [26, 27].

Alternatively, mRNA turnover can also be kickstarted 
by direct endonucleolytic decay, exemplified by the 
Regnase family [28]. Endoribonucleases cleave mRNAs 
internally, yielding unprotected 5′ and 3′ ends that 
become targets for XRN1 and the cytoplasmic RNA exo-
some, respectively. This alternative pathway expedites the 
degradation of immune-related mRNAs.

Recent findings have highlighted the role of translat-
ing ribosomes in recruiting mRNA decay machinery. 
For instance, Regnase-1-mediated mRNA decay requires 
mRNA translation [29, 30]. Several other RNA decay 
mechanisms, such as nonsense-mediated mRNA decay 
(NMD), no-go decay, and codon optimality-mediated 

mRNA decay (COMD), rely on translating ribosomes 
for mRNA degradation [31–34]. While it is unclear how 
these processes tie into inflammatory responses, inves-
tigating their roles in inflammation regulation poses an 
intriguing avenue for future exploration.

mRNA marks recognized by RBPs dictate mRNA decay
The instability of mRNAs encoding inflammation-related 
molecules primarily stems from inherent sequences 
within their 3′ UTRs [14]. Specifically, two classes of 
motifs, termed cis-elements, have been identified—AU-
rich elements (AREs) and stem-loops (Fig. 3A, B). AREs 
represent sequences enriched in A and U, often featur-
ing repetitions of AUUUA pentamers. They are preva-
lent in 5–22% of human mRNAs, particularly in those 
encoding proinflammatory genes such as TNF, IL-6, 
IL-2, and cyclooxygenase 2 (COX2) [35, 36]. AREs are 
recognized by ZFP36 family members consisted of 
TTP and ZFP36L1/2 [37] (Figs. 1 and 3A). Also, several 
ARE-binding proteins including AUF1 (ARE/poly-(U) 
binding degradation factor 1, also known as HNRNPD) 
and human antigen R (HuR, also known as ELAVL1), 

Fig. 3  Post-transcriptional mRNA mark recognition by RNA-binding proteins. mRNAs encoding inflammation-related genes contain cis-elements 
and RNA modifications crucial for post-transcriptional regulation. AU-rich elements (AREs) and stem-loops (A, B) are cis-elements recognized 
by multiple RBPs, either destabilizing or stabilizing target mRNAs. Additionally, RNA m6A modifications (m6A) deposited by m6A writer proteins 
are recognized by direct and/or indirect m6A reader proteins (C), influencing post-transcriptional regulations. The m6A modification can also be 
removed by m6A erasers
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recognize AREs. TTP is one of the most-studied ARE-
binding proteins and has a prominent role in the regu-
lation of immune response [38]. TTP harbors tandem 
CCCH-type zinc finger domains that enable the bind-
ing to AREs. Moreover, other members of this family 
ZFP36L1 and ZFP36L2 also harbors tandem CCCH-type 
zinc finger domains and are involved in the turnover of 
ARE-containing mRNAs. In addition to the ZFP36 family 
members, AUF1 is another RBP with two RNA recogni-
tion motifs (RRM) that bind to and destabilize ARE-con-
taining mRNAs [39]. Conversely, HuR recognizes and 
stabilizes ARE-containing mRNAs [40, 41].

Stem-loop elements, characterized by a pyrimidine–
purine–pyrimidine loop sequence, serve as cis-elements 
primarily recognized by Regnase family proteins and 
Roquin-1/2 [29, 42, 43] (Figs. 1 and 3B). The Regnase fam-
ily consists of Regnase-1–4 (ZC3H12A-D, MCPIP1-4), and 
Regnase-1/3 has been shown to interact with stem-loop ele-
ments [29, 43], although the contributions of Regnase-2/4 
remains relatively unclear. Their recognition relies on both 
the structural features and the presence of canonical loop 
sequences [29, 44]. These elements are abundant within 
the 3′ UTRs of mRNAs encoding inflammatory mediators 
and immune-related transcription factors, notably IL-6, 
IL-2, TNF, inducible T cell costimulator (ICOS), NF-κB 
inhibitor zeta (NFKBIZ), and NF-κB inhibitor delta (NFK-
BID) [14]. While both Regnase and Roquin families target 
similar motifs, their domain structures and mechanisms for 
mRNA degradation are strikingly different (Fig.  1). Mem-
bers of the Regnase family harbor a CCCH-type zinc finger 
domain and a PIN-like RNase domain, whereas Roquin-1/2 
are characterized by a CCCH-type zinc finger domain cou-
pled with a unique ROQ domain specific to this family [45]. 
Regnase-1 employs its endonuclease activity to cleave tar-
get mRNAs containing stem-loop structures in a manner 
dependent on translation and the RNA helicase UPF1, while 
Roquin predominantly recruits the CCR4-NOT complex 
to promote the decay of translationally-inactive mRNAs 
[29, 30, 42, 46]. Therefore, these proteins nonredundantly 
degrade target mRNAs [29, 47, 48]. There is also evidence 
suggesting that Roquin collaborates with Regnase-1, form-
ing a complex to facilitate the endonucleolytic decay of 
target mRNAs [49]. However, further investigation is war-
ranted to elucidate the precise contribution of this mRNA 
degradation pathway during immune responses. In addi-
tion, contrary to the Regnase-1 and Roquin, ARID5A is 
known to recognize stem-loop elements and counteract 
with Regnase-1-mediated mRNA decay [50].

RNA methylation serves as an additional layer of 
post-transcriptional modification influencing mRNA 
turnover. Among the diverse modifications, N6-meth-
yladenosine (m6A) methylation stands out as one of 

the most prevalent internal RNA alterations [51, 52]. 
The installation of m6A modifications on mRNAs pri-
marily occurs co-transcriptionally through the action 
of a canonical m6A “writer” complex, constituted by 
METTL3, METTL14, and other accessory components 
such as WTAP and ZC3H13 (Fig.  3C). These m6A 
modifications deposited by the METTL3/14 complex 
are recognized by “reader” proteins such as members 
of the YTHDF and YTHDC families [53]. Addition-
ally, several direct and indirect reader proteins such as 
HNRNPG and IGF2BPs are involved in detecting m6A 
modifications [54, 55]. These reader proteins insti-
gate various post-transcriptional regulatory changes, 
including alterations in mRNA turnover, translation 
status, and alternative splicing [26, 56, 57]. Moreover, 
m6A modification can be removed by “eraser” proteins 
including ALKBH5 and FTO [52].

Recent studies have unveiled additional RNA m6A 
methyltransferases, notably METTL16 and ZCCHC4 
[58]. These writers selectively deposit m6A modifica-
tions on a restricted subset of RNA species. METTL16, 
recognized as a well-conserved m6A writer, targets U6 
snRNA alongside mRNAs encoding S-adenosyl methio-
nine (SAM) synthases and DNA-repair-related mol-
ecules [58–62]. It has been proposed that METTL16 
controls SAM concentration by regulating mRNAs 
encoding SAM synthases, which is crucial for various 
methylation processes, including METTL3-mediated 
m6A methylation [58, 63]. This suggests a potential 
indirect regulatory role of METTL16 on the inflam-
matory response through its impact on METTL3/14 
methylation activity. However, recent findings hint 
at the possibility of METTL16 acting independently 
of METTL3/14, applying m6A modifications to a dis-
tinct set of mRNA targets [62]. Interestingly, unlike 
canonical m6A writer complex, METTL16 requires the 
MTR4-nuclear RNA exosome complex for the regula-
tion of METTL16 substrate mRNAs. Further explora-
tion is important to elucidate their specific roles in 
modulating the immune response.

Post‑transcriptional control of immune response
Post-transcriptional control orchestrated by RBPs 
leads to a diverse array of regulations spanning mul-
tiple layers of the immune response. These include 
the regulation of both immune and non-immune cells, 
along with intricate control over immune cell differen-
tiation and activation. Additionally, self-RNAs neces-
sitate post-transcriptional modifications to evade 
undesirable immune reactions. This section aims to 
discuss each of these layers in detail.
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Regulation of innate immune response and signaling
In response to infection by microorganisms, innate 
immune cells initiate proinflammatory cytokine produc-
tion such as TNF, IL-6, and type I IFNs [3]. The innate 
immune stimulation such as the treatment with TLR 
ligands leads to the transient degradation and/or inacti-
vation of RBPs such as Regnase-1 and TTP, enabling the 
robust expression of the proinflammatory cytokines at 
the onset of inflammation [44, 64, 65]. Simultaneously, 
myeloid cells transactivates the mRNAs encoding a num-
ber of RBPs such as Regnase-1/3 and TTP [66], thereby 
dampening the expression of proinflammatory cytokine 
mRNAs at the later phase of inflammation. Thus, post-
transcriptional regulation emerges as a pivotal factor in 
modulating the expression of proinflammatory cytokines. 
Additionally, post-transcriptional mechanisms intricately 
modulate the response to innate immune signaling and/
or the polarization in myeloid cells and other cell types. 
Upon the proinflammatory stimulation, macrophages 
undergo the polarization into the classically activated 
phenotype with proinflammatory properties [67]. During 
this polarization, METTL3 has been shown to be upreg-
ulated, which further promotes the proinflammatory 
phenotype [68]. These lines of evidence suggest that the 
immune-related RBPs are integrated into the regulation 
of the activation of innate immune system. The specific 
roles of RBPs in the regulation of the innate immune sys-
tem are discussed below.

A large body of studies using the RBP-deficient mice 
have shown that the regulation of proinflammatory 
cytokine mRNAs involves multiple RBPs. For instance, 
TTP facilitates the decay of several ARE-containing 
mRNAs, including TNF, CSF2, IL6, and IL5 mRNA, sup-
pressing the development of autoimmune-like symp-
toms like arthritis and nephritis [69–72]. Roquin and 
Regnase-1 also contribute significantly to the degradation 
of mRNAs encoding various proinflammatory media-
tors including TNF, IL-6 and chemokines [29, 42, 66]. 
Conversely, ARID5A has been shown to counteract IL6 
mRNA degradation by Regnase-1, whose depletion leads 
to protection against LPS-induced septic shock in  vivo 
[50]. In addition to the RBPs that binds to AREs and 
stem-loops, studies indicate that m6A modifications reg-
ulate the production of type I IFNs and interferon-stim-
ulated genes (ISGs) after exposure to double-stranded 
DNA [73]. This effect involves the direct destabilization 
of IFNB mRNA through YTHDF2 and is counteracted by 
ALKBH5 [73, 74]. Therefore, post-transcriptional mecha-
nisms coordinate multiple RBPs to fine-tune the expres-
sion of proinflammatory cytokines.

The transduction of IFN signaling is subject to intricate 
post-transcriptional regulation. It has been reported that 

Regnase-3 plays a crucial role in suppressing IFN signaling 
in myeloid cells in  vivo, although the underlying mecha-
nism is obscure [75]. Also, the m6A-independent function 
of YTHDF3 involves downregulating ISGs by activating the 
transcriptional corepressor FOXO3 [76]. METTL3-medi-
ated m6A modifications on Stat1 and Irf1 mRNAs restrain 
IFN-γ signaling [77]. Additionally, RBPs such as DDX6 and 
RBM47 regulate type I IFN signaling and/or ISG expression 
[78, 79]. These findings clearly indicate that the IFN signal-
ing is intricately regulated by a concerted action of multi-
ple RBPs. This tight association between IFN signaling and 
RBPs underscores the need for comprehensive explora-
tion into the regulatory roles of RBPs in this process in the 
future.

RBPs play a crucial role in the development and function 
of innate immune cells. Specifically, m6A modification has 
been found to regulate macrophage activation. Evidence 
suggests that METTL3-mediated m6A modifications 
promote proinflammatory signaling, including TLR and 
NF-κB pathways, or facilitate the polarization towards the 
classically-activated phenotype [68, 80, 81]. However, con-
flicting reports propose the suppression of macrophage 
activation or proinflammatory polarization by m6A regu-
lators such as METTL3 and YTHDF2 [82, 83]. Conse-
quently, the precise roles of METTL3-mediated m6A 
modifications in macrophages remain a subject of debate, 
warranting further investigation.

Additionally, m6A modification plays a pivotal role in 
various innate immune cell types. METTL3 has been 
shown to promote activation and T cell priming in DCs 
through its catalytic activity [84]. Interestingly, mice with 
YTHDF1-deficient DCs reportedly exhibit enhanced 
cross-priming activity and anti-tumor immunity [85], 
highlighting the reader-specific function of m6A modifi-
cation. The authors found that YTHDF1 binds and pro-
motes the translation of mRNAs that encode lysosomal 
cathepsins, which act as negative regulators of cross-
presentation [85]. In neutrophils, METTL3-mediated 
m6A methylation promotes the TLR signaling  activa-
tion, thereby controlling the release from the bone mar-
row into circulation upon LPS stimulation in vivo [86]. In 
natural killer (NK) cells, METTL3-mediated m6A modi-
fication, recognized by YTHDF2, is crucial for effector 
function and survival [87, 88]. Moreover, m6A modifica-
tion is required for the cell types that bridge innate and 
adaptive immune response such as invariant natural 
killer T (iNKT) and γδT cells. METTL3-mediated m6A 
modification is essential for iNKT cell development, 
survival, and functionality [89]. Furthermore, ALKBH5 
restricts the development of γδT cells [90]. These find-
ings underscore the importance of m6A modification in 
the development of innate immune cells and the immune 
response orchestrated by these cells.
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Regulation of adaptive immunity
Once the innate immune cells are activated upon the 
infection of microorganisms, these cells present antigens 
from the engulfed  microorganisms in a complex with 
MHC molecules. The complex is recognized by TCR and 
triggers the activation of downstream TCR signaling in 
T cells, igniting the effector function of T cells. Simul-
taneously, TCR signaling has been shown to activate the 
MALT1 paracaspase to cleave a number of RBPs such 
as Regnase-1 and Roquin, which promote the degrada-
tion of mRNAs important for T cell effector functions 
[91, 92]. This dynamic dampening of post-transcriptional 
mechanisms upon TCR stimulation supports the full 
activation of T cells, thereby governing adaptive immune 
response. Moreover, antibody production and B cell 
response is also controlled by multiple RBPs, implying 
the central role of the post-transcriptional mechanisms 
in the control of adaptive immune response.

Roquin and Regnase-1 are closely linked with the regu-
lation of the T cell response and therefore, they are one of 
the most studied molecules in this context. Loss-of-func-
tion mutations or deficiencies in Roquin proteins result 
in aberrant T cell activation and spontaneous accumu-
lation of follicular helper T (Tfh) and Th17 cells in vivo 
[92–94]. Similarly, Regnase-1 deficiency in T cells triggers 
spontaneous T cell activation in vivo [91]. This is attrib-
utable to the role of Roquin and Regnase-1 in degrad-
ing the mRNAs encoding T cell activating factors such 
as IL-2, ICOS, IL-6, and NFKBIZ [91, 92, 94]. Addition-
ally, deficiency in Regnase-1 has been shown to enhance 
the anti-tumor immunity of CD8+ T cells by improving 
effector functions due to the upregulation of BATF, a 
critical Regnase-1 target for this phenotype [95]. Simul-
taneous loss-of-function mutations in Regnase-1 and 
Roquin in T cells intensify spontaneous T cell activation 
and Th1 differentiation, culminating in systemic inflam-
mation and cardiac fibrosis in  vivo [47]. As described 
above, T cell activation appears to dampen the repression 
by Regnase-1 and Roquin, as these proteins are cleaved 
by MALT1 paracaspase [91, 92]. Intriguingly, the consti-
tutively active mutant of MALT1 induces spontaneous 
T cell activation and severe autoimmune inflammation 
[96]. Recent reports indicate that this phenotype is signif-
icantly alleviated by concurrent mutation in the MALT1 
cleavage site of Roquin-1 [97]. Furthermore, mice har-
boring MALT1-insensitive Roquin-1 display resistance to 
experimental autoimmune encephalitis (EAE). These dis-
coveries highlight the critical role of dynamic regulation 
of RBP activity in T cells for immune response control.

The canonical components of the m6A writer com-
plex play pivotal roles in the proliferation and activation 
of naïve T cells, while it plays an essential role in  regu-
latory T cells (Treg) as well [98–100]. This is due to the 

repression of key negative regulators of IL-7-STAT5 
signaling such as SOCS1, SOCS3, and CISH by m6A 
modifications [98]. Also, it has been proposed that the 
T cell-specific deletion of WTAP leads to augmented 
TCR signaling and activation-induced cell death [101]. 
ALKBH5 promotes autoimmune pathology by upregu-
lating proinflammatory mediators such as IFN-γ and 
CXCL2 [102]. Furthermore, the development of Tfh 
cells, crucial for germinal center formation, necessitates 
METTL3 [103]. Therefore, m6A modification is an essen-
tial post-transcriptional regulator in T cells.

B cell development and activation are also  intricately 
regulated by RBPs. ZFP36L1 and ZFP36L2 play redun-
dant roles in B cell development in the bone marrow 
by promoting the cell quiescence [104], with ZFP36L1 
specifically required for marginal zone B cells and anti-
body-secreting cells [105, 106]. Similarly, Regnase-1/3 
redundantly contribute to early B cell development 
by degrading NFKBIZ mRNA, while deficiencies in 
Regnase-1, but not Regnase-3, result in aberrantly acti-
vated B cell phenotypes [43, 107]. Recent studies suggest 
that TIA1 and TIAL1 collaboratively regulate the splicing 
of DNA repair genes, influencing B cell lymphopoiesis 
[108]. Also, HuR has been shown to be required for B cell 
proliferation and activation, and germinal center reaction 
[109, 110]. Moreover, m6A deposition plays a vital role in 
various stages of antibody production. Studies indicate 
that METTL3-mediated m6A deposition is essential for 
early B cell development and the germinal center reac-
tion [111–113].

Regulation of non‑immune cells
Post-transcriptional mechanisms have a significant influ-
ence on the function of non-immune cells that intersect 
with immune regulation, such as epithelial cells and 
fibroblasts. Notably, Regnase-1 has been implicated in 
regulating a variety of non-immune cells, alongside its 
role in innate and adaptive immune cells.

The intestines serve as a critical site for constant rec-
ognition of food antigens and commensal bacteria by the 
immune system. The epithelial lining, acting as a barrier 
against unwanted pathogens, also needs to absorb nutri-
ents from ingested food. Regnase-1 is implicated in facili-
tating dietary iron uptake in the duodenum, a crucial 
nutrient for both host and pathogens, at the steady state 
[114]. Additionally, it plays a role in intestinal epithelial 
regeneration following dextran sodium sulfate (DSS) 
treatment, a mouse model of colitis [115].

The lung and skin are organs that require effective 
clearance and control of harmful pathogens. In lung 
epithelial cells, Regnase-1 downregulation contrib-
utes to regulating bacterial infections from the airway 
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[116]. Also, in the skin, Regnase-1 in keratinocytes 
suppresses IL-17R signaling, thus inhibiting psoriasis 
development [117].

Adipose tissue hosts numerous immune cells and 
plays a crucial role in systemic energy metabolism [118]. 
Regnase-1 in adipocytes has been linked to adipocyte dif-
ferentiation in vitro [119], although in vivo studies have 
not fully elucidated its specific role. The multifaceted 
functions of a single RBP across diverse cell types high-
light its potential to modulate tissue-specific immune 
reactions. Investigating the roles of other RBPs in various 
contexts could unveil additional layers of complexity and 
immune regulatory networks.

Post‑transcriptional modification of self‑RNA 
and the control of global RNA decay
Cytoplasmic RNAs are under constant scrutiny by the 
RLRs including MDA5 and RIG-I, which recognizes 
double-stranded RNAs (dsRNAs) that are not com-
monly observed in self-RNA [120]. Following sensing 
of viral dsRNAs, RLRs trigger signaling pathways that 
result in the production of type I IFNs. Under physi-
ological conditions, RBPs and post-transcriptional 
modifications keep the burden of dsRNAs low (Fig. 4). 
However, the failure to suppress the immune response 
against self RNAs can lead to a range of human dis-
eases known as Aicardi–Goutières syndrome (AGS), 
characterized by heightened type I IFN production 
[121]. Moreover, the activation of type I IFN signal-
ing is known to trigger the intracellular RNA decay by 
the OAS-RNase L system, which serves as a mecha-
nism to cleave viral and cellular RNAs [122]. The rec-
ognition of dsRNAs by OAS initiates the production 

of 2′-5′ oligoadenylate from ATP, which facilitates the 
formation of active dimerized RNase L. The RNA cleav-
age by RNase L produces ligands for RIG-I and MDA5, 
thereby further instigating the inflammatory response 
[123]. Hence, maintaining tight control over self-RNA 
modifications is a crucial component in maintaining 
immune homeostasis.

The action of ADAR1, which mediates A-to-I edit-
ing of RNAs, plays a vital role in mitigating intracellu-
lar dsRNA levels [124]. This editing process alters the 
secondary structure of dsRNAs, thereby aiding in evad-
ing recognition by intracellular dsRNA sensors such as 
MDA5, PKR, and ZBP1 [125, 126]. This system is cru-
cial for suppressing the production of type I IFNs and 
preventing autoimmune-like pathologies triggered by 
the recognition of self-RNAs. Notably, AGS-causing 
mutations in the ADAR1 gene found in both human 
and mouse models, genetically corroborate the impor-
tance of this system in preventing autoimmune reac-
tions [127, 128].

RNA m6A modification is proposed to play a role in 
shielding self-RNA from innate immune sensors. Ini-
tially, in vitro studies suggest that m6A-modified RNAs 
exhibit reduced immunogenicity compared to unmodi-
fied RNAs, evading the activation of TLRs and RLRs 
[129, 130]. This evasion mechanism might be associated 
with m6A’s ability to regulate RNA secondary structures 
[131–133]. Inhibiting or eliminating METTL3 increases 
intracellular dsRNA levels, facilitating recognition by 
RIG-I or MDA5, subsequently activating type I IFN 
signaling and RNase L activation [134–136]. Addition-
ally, deletion of the m6A writer METTL16 heightens 
expression of ISGs, although the underlying mechanisms 

Fig. 4  Post-transcriptional control to evade immune responses and global RNA decay. Intracellular recognition of double-stranded RNAs (dsRNAs) 
activates innate immune signaling, initiating global RNA decay via the OAS-RNase L system. Processes like RNA editing and m6A modification play 
pivotal roles in altering RNA secondary structures, facilitating evasion from innate immune responses against self-RNAs
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remain largely unclear [62]. Thus, m6A modification 
emerges as a novel element in shielding self-RNA from 
recognition by the innate immune system.

Relevance to human inflammatory diseases
RBPs have been strongly linked to the pathogenesis of 
various human inflammatory diseases, with Regnase-1 
particularly implicated in multiple pathological condi-
tions associated with abnormal inflammation. In idi-
opathic pulmonary fibrosis, group 2 innate lymphoid 
cells (ILC2), which are the important player in the type 
2 immune responses by producing IL-5 and IL-13, have 
been implicated in the disease pathogenesis [137]. In 
this context, a negative correlation has been established 
between Regnase-1 protein expression in ILC2 and their 
quantity in bronchoalveolar lavage fluid in these patients 
[138]. Similarly, Regnase-1 expression levels in periph-
eral blood mononuclear cells (PBMCs) from pulmonary 
artery hypertension patients have shown an inverse 
relationship with disease severity [139]. Correlations 
have also been observed between Regnase-1 expression 
in PBMCs and the size of neurological lesions in multi-
ple sclerosis patients [140]. Augmented expression of 
Regnase-1 has been demonstrated in human psoriatic 
skin lesions [117]. Additionally, gain-of-function muta-
tions in the ZC3H12A gene (encoding Regnase-1) have 
been identified in intestinal epithelial cells of ulcerative 
colitis patients [141, 142]. These findings collectively 
underscore the pivotal role of Regnase-1 in the pathogen-
esis of inflammatory diseases.

In addition to the clinical relevance of Regnase-1, 
numerous studies have elucidated the connection 
between other RBP mutations and inflammatory dis-
eases. In a Japanese hereditary antithrombin patient 
with autoimmune disease-like symptoms, a substan-
tial genomic deletion encompassing the RC3H1 gene, 
encoding Roquin-1, has been documented [143]. Addi-
tionally, homozygous nonsense mutations in Roquin-1 
lead to hyperinflammation in relapsing hemophagocytic 
lymphohistiocytosis (HLH) [144]. Furthermore, several 
genome-wide association studies have highlighted an 
association between Regnase-3 and the development of 
psoriasis [145, 146]. Notably, disease-associated single 
nucleotide polymorphisms (SNPs) have been linked to 
augmented Regnase-3 expression [147]. Moreover, muta-
tions in the ZFP36 gene (encoding TTP) have been iden-
tified in patients with rheumatoid arthritis [148, 149]. 
Additionally, single nucleotide polymorphisms associ-
ated with the ZFP36L1 gene have been linked to Crohn’s 
disease and idiopathic juvenile arthritis [150, 151]. These 
collective findings underscore the pivotal role of RBPs in 
the pathogenesis of human inflammatory diseases.

Therapeutic approaches targeting 
post‑transcriptional regulation
Current treatments for inflammatory and autoim-
mune diseases primarily involve immunosuppressants 
and monoclonal antibodies targeting proinflammatory 
cytokines and their receptors [152, 153]. While these 
therapies are effective for some patients, they are not 
universally successful and certain individuals may not 
respond well or may experience adverse effects, including 
immunocompromisation. Consequently, there is a press-
ing need to explore novel therapeutic avenues to address 
these limitations.

Given the fine-tuning role of post-transcriptional reg-
ulation in inflammatory responses, the specific inter-
vention in RBP-mediated mechanisms emerges as a 
promising therapeutic strategy for various autoimmune 
and inflammatory diseases [154]. Furthermore, in spe-
cific scenarios like infections, vaccinations, and anti-
tumor immunity, augmenting immune reactions can be 
advantageous. The intricate modulation of RBPs offers a 
potential avenue to precisely enhance immune responses 
in a more targeted and controlled manner. Here, we pre-
sent several examples that demonstrate therapeutic inter-
ventions harnessing post-transcriptional mechanisms to 
modulate inflammatory responses.

Antisense oligonucleotide (ASO)
Antisense oligonucleotides (ASOs) are a class of com-
pounds that bind complementarily to specific target 
sequences [155]. Depending on these sequences, ASOs 
can have various biological effects, such as translation 
inhibition, RNA degradation, and exon skipping. For 
instance, in the treatment of spinal muscular atrophy, 
an ASO therapeutics aiming to induce exon inclusion in 
SMN2 transcripts, Nusinersen (Spinraza), has been clini-
cally approved to address neurological symptoms [156]. 
These advancements mark the dawn of RNA medicine.

Recently, ASOs have been employed to disrupt mRNA 
secondary structures, thereby interrupting the cis-ele-
ments targeted by Regnase-1 or Roquin [140]. Regnase-1 
contains its target motifs within its 3′ UTR, creating 
a self-regulatory negative feedback system [44, 140]. 
ASOs that disrupt these motifs enhance the expression 
of Regnase-1, enabling it to suppress proinflammatory 
cytokines and chemokines. Therapeutically administered 
ASOs in mice have successfully ameliorated several mod-
els of inflammatory and autoimmune diseases, serving as 
proof-of-concept for mRNA structure-disrupting ther-
apy [140]. Similarly, disruption of stem-loops in Nfkbiz 
mRNA, which are targeted by Regnase-1/3, promotes the 
myeloid cell production from hematopoietic stem cells at 
the expense of lymphoid cells [43]. This approach holds 
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promise for targeting various mRNA secondary struc-
tures to modulate immune reactions.

Genetic ablation of RBPs
RBPs function as negative regulators of inflammatory 
responses, and their removal amplifies inflammatory 
reactions, presenting potential benefits in anti-tumor 
immunity. This particularly aids in generating potent 
chimeric antigen receptor (CAR)-T cells, ex vivo engi-
neered T cells designed to target tumor antigens. 
Research indicates that the deletion of Regnase-1 
enhances CAR-T cell efficacy in tumor clearance by 
rescuing them from exhaustion and promoting prolif-
eration [157]. Furthermore, a genome-wide CRISPR 
screen for CD8+ T cell fitness revealed that Roquin-1 
depletion promotes T cell expansion and anti-tumor 
immunity by upregulating IRF4 [158]. Concurrent 
disruption of Regnase-1 and Roquin-1 further height-
ens anti-tumor immunity [48]. These findings under-
score the potential of leveraging the anti-inflammatory 
roles of RBPs to bolster the immune response against 
tumors.

Recently, several techniques have been reported to 
induce the genome editing of immune cells or HSCs 
in  vivo. These include the delivery of adeno-associated 
virus vectors and lipid nanoparticles (LNPs) [159, 160]. 
These methodologies can be harnessed to deplete RBPs 
in vivo, potentially avoiding the need for costly ex vivo 
generation process of CAR-T cells. This line of research, 
together with the study of RBP functions, will make the 
RBP-targeted CAR-T cell therapy a readily available, 
universally applicable treatment.

Compounds that inhibit or modulate RBP function
The functions, activity, and subcellular localization of 
RBPs are tightly regulated by multiple factors, includ-
ing protein kinases, proteases, and ubiquitin ligases [44, 
64, 91, 161–163]. Targeting these regulatory systems 
could hold therapeutic promise in mitigating inflamma-
tory diseases. For example, the SMG1 inhibition, which 
disrupts Regnase-1-mediated mRNA decay, has dem-
onstrated potential by promoting the activation and 
proliferation of DCs in  vitro [30]. Such interventions 
could be harnessed to enhance immune responses for 
effective vaccination and combating infections.

Additionally, therapeutic targeting of m6A modification 
is under exploration. Various inhibitors for the canonical 
m6A writer complex have been reported and hold poten-
tial for therapeutic use [135, 164]. Recent studies suggest 
that inhibiting METTL3 increases the immunogenicity 
of cancer cells, thereby enhancing anti-tumor immunity 
[135]. This avenue might also be viable for modulating 
inflammatory diseases considering the pivotal role of 

m6A modification in the inflammatory response. How-
ever, since METTL3 inhibition affects diverse immune 
responses and cell differentiations, future studies will 
need to focus on delivering the inhibitors in a cell type-
specific manner to elicit the desired therapeutic effects.

Future perspectives
Here we have discussed the multifaceted roles of post-
transcriptional regulation in inflammatory diseases. 
Further elucidating the specific contributions of RBPs, 
especially the TTP, Roquin, and Regnase families, in 
orchestrating post-transcriptional regulatory mecha-
nisms promises deeper insights into the fine-tuning of 
immune reactions. Additionally, comprehending the 
intricate crosstalk between these RBPs and RNA modi-
fications, such as m6A methylation, holds the potential 
to unveil novel mechanisms underlying immune regula-
tion. Moreover, it has been reported that a large num-
ber of RBPs are expressed in immune cells, and future 
studies will uncover a crucial role of these novel RBPs in 
modulating immune responses [165, 166]. These essen-
tial studies will serve as the foundation for unlocking the 
potential of RNA-based therapeutics and RBP-targeting 
interventions, paving the way for promising frontiers in 
managing immune-related disorders.
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