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Abstract
Individual age can be used to design more efficient and suitable management plans in 
both in situ and ex situ conservation programmes for targeted wildlife species. DNA 
methylation is a promising marker of epigenetic ageing that can accurately estimate 
age from small amounts of biological material, which can be collected in a minimally 
invasive manner. In this study, we sequenced five targeted genetic regions and used 
8–23 selected CpG sites to build age estimation models using machine learning meth-
ods at only about $3–7 per sample. Blood samples of seven Felidae species were 
used, ranging from small to big, and domestic to endangered species: domestic cats 
(Felis catus, 139 samples), Tsushima leopard cats (Prionailurus bengalensis euptilurus, 
84 samples) and five Panthera species (96 samples). The models achieved satisfac-
tory accuracy, with the mean absolute error of the most accurate models recorded 
at 1.966, 1.348 and 1.552 years in domestic cats, Tsushima leopard cats and Panthera 
spp. respectively. We developed the models in domestic cats and Tsushima leopard 
cats, which were applicable to individuals regardless of health conditions; therefore, 
these models are applicable to samples collected from individuals with diverse char-
acteristics, which is often the case in conservation. We also showed the possibility of 
developing universal age estimation models for the five Panthera spp. using only two 
of the five genetic regions. We do not recommend building a common age estimation 
model for all the target species using our markers, because of the degraded perfor-
mance of models that included all species.
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1  |  INTRODUC TION

Age information is important for both ex situ and in situ wildlife 
conservation, as it is relevant to individual behaviour, health, 
reproductive capacity and mortality (Blomqvist & Sten,  1982; 
Kirkwood & Austad, 2000; Nussey et al., 2013; Youn et al., 2022; 
Zhao et al., 2019). Age estimation can help determine demographic 
characteristics and predict current and future extinction risks for 
wildlife populations (Lacy, 2019; Oli & Dobson, 2003). Age esti-
mation in injured or dead wild individuals also helps examine the 
relationships between age and the causes of injury or mortality 
(Conroy et al., 2019; Thorel et al., 2020); when certain age groups 
are found to have particularly high mortality rates, the causes 
of mortality can be deduced and preventive measures taken. 
Knowing the age of rescued wild individuals would help inform 
appropriate health care and enrichment activities that maximize 
the welfare of individuals of different age classes and thereby im-
prove the efficiency of a breeding programme (Caselli et al., 2022; 
Eskelinen et al., 2015; Hecht, 2021).

Age estimation methods have been conducted based on mor-
phological observations or measurements and mark–recapture, such 
as longtime tracking and direct observation in primates (Mori, 1979), 
mark–recapture in bats (Wilkinson & Brunet-Rossinni,  2009) and 
scar/speckle-counting in cetaceans (Hartman et  al.,  2016; Yagi 
et al., 2023). However, these methods are difficult to implement for 
species that are hard to observe or recapture or do not show prom-
inent age-related changes in appearance. Age estimation of mam-
mals can also be done via measuring the development and eruption 
of teeth and bones (Chevallier et al., 2017; White et al., 2016), but 
this requires either carcasses or long-term restraint of captured live 
animals.

Molecular ageing markers have been highlighted as new, less 
invasive age estimation tools that can determine individuals' ages 
by sampling and analysing small amounts of biological materials 
(Bocklandt et al., 2011; Gruber et al., 2021; Petkovich et al., 2017; Xia 
et al., 2017). DNA methylation is one of the most accurate age mark-
ers (Horvath, 2013; Li et al., 2018; Paoli-Iseppi et al., 2017; Stubbs 
et al., 2017). It is an epigenetic process in which 5-methylcytosine is 
formed via transfer of a methyl group, usually onto the C5 position 
of cytosine in the cytosine–guanine dinucleotide (CpG) sites in mam-
mals (Bogdanović & Veenstra,  2009). Recently, epigenetic clocks 
have been developed based on the mammalian DNA methylation 
array HorvathMammalMethylChip40 (Arneson et al., 2022), which 
provides more than 37,000 highly conserved CpGs with high cover-
age; they have been used to accurately estimate age in mammalian 
species such as plains zebras (Equus quagga) (Larison et  al.,  2021), 
roe deer (Capreolus capreolus) (Lemaître et al., 2022), beluga whales 
(Delphinapterus leucas) (Bors et  al.,  2021) and naked mole-rats 
(Heterocephalus glaber) (Horvath et al., 2022). However, high costs 
(approximately $160/sample), requirement of large quantities of 
DNA (ideally more than 250 ng/sample) and relatively complex data 
processing still limit its wide application to conservation projects, 
especially those with limited budgets and few good-quality samples. 

Such projects will benefit more from a study design that uses only a 
few target genes selected from previous studies of related species.

Felids have received much conservation attention, however, few 
studies have focused on improving their age assessment for conser-
vation implications. Recent publications for tigers (Panthera tigris) 
and lions (P. leo) were still based on teeth measurement (Sharma 
et  al.,  2022; White et  al.,  2016). DNA methylation-based age es-
timation that can be conveniently implemented for live felid indi-
viduals is still lacking, except for two studies focusing primarily on 
domestic cats (Felis catus) (Qi et al., 2021; Raj et al., 2021). Previously 
(Qi et  al.,  2021), we estimated domestic cat age with mean abso-
lute error (MAE) at 3.83 years using a cost-effective RT-PCR-based 
method based on two gene regions. We also tried to build a pilot 
age estimation model for snow leopards (n = 11), and the MAE was 
2.10 years. Raj et  al.  (2021) successfully developed high-accuracy 
models for domestic cats using the HorvathMammalMethylChip40, 
achieving MAE = 0.79 years, the most accurate value achieved by an 
epigenetic clock for cats, with 34 CpGs from about 10 gene regions 
(the gene regions used in the clock were not specified). The domes-
tic cat clock developed by Raj et al. (2021) was also tested on some 
samples of other felid species: MAE = 1.65, 1.41 and 3.01 years for 
cheetahs (Acinonyx jubatus, n = 14), lions (n = 7) and tigers (n = 8), re-
spectively. Although the HorvathMammalMethylChip40 provided 
accurate values, developing low-cost epigenetic clocks can facilitate 
wider application in conservation. Additionally, a larger sample size 
of other felid species will not only help develop more convincing epi-
genetic clocks for each species but also allow us to study whether 
the same age estimation models could be employed across multi-
ple felid species. Although the body size and living environments 
of felids are varied, the genetic distance among cat families is rel-
atively small; felid genomes show strong collinearity and recent ge-
netic divergence (Cho et al., 2013; Davis et al., 2009; Wurster-Hill 
& Centerwall, 1982). The occurrences of interspecific hybrids in big 
and small cats in captivity (Gray, 1972) also supported this genome 
collinearity. These include many Panthera hybrids: ligers (male lions 
and female tigers), tigons (male tigers and female lions), jaglions (male 
jaguars and female lions), tipards (male tigers and female leopards) 
and leopon (male leopards and female lions); and domestic cat breeds 
that are interspecific hybrids, such as the Bengal and Savannah.

In the present study, we aimed to construct easily applicable age 
estimation models for conservation applications that yield accept-
able accuracies using only a few gene regions and lower-cost tar-
geted bisulphite sequencing. We compared the differences in DNA 
methylation profiles of different felid species and discussed the pos-
sibility of constructing common age estimation models across mul-
tiple felid species.

Our target species comprised small and big cat species. The do-
mestic cat (F. catus) and Tsushima leopard cat (Prionailurus bengalen-
sis euptilurus) were the target small cat species. The domestic cat is a 
beloved companion and model animal for other small felines. The age 
estimation model developed for the domestic cat can be used as a ref-
erence for other endangered small felines for which adequate sample 
sizes are difficult to obtain. Alternatively, the Tsushima leopard cat is a 
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critically endangered species that requires age estimation for improved 
conversation strategies. The Tsushima leopard cat is an isolated pop-
ulation of the Amur leopard cat (Pr. bengalensis euptilurus) found only 
on Tsushima Island in Japan, with about 100 wild and 30 captive indi-
viduals (Inoue, 2021). Rescue and breeding programmes have begun 
since 1999, and over time, many samples have been collected. We also 
included five Panthera spp. that require urgent conservation—jaguars 
(Panthera onca), Amur leopards (P. pardus orientalis), African lions (P. leo 
leo), snow leopards (P. uncia) and Amur tigers (P. tigris altaica).

In the models, we also assessed the influence of sex and health 
conditions, which may contribute to epigenetic ageing (Bors 
et  al.,  2021; Qi et  al.,  2021). Age estimation models developed in 
previous studies focused only on healthy individuals, necessitating 
revalidation before the models can be applied to diseased animals, 
which is common in wildlife conservation. In the present study, we 
overcame this shortcoming by including numerous samples from dis-
eased individuals during model building. High applicability of models 
is important in the conservation context because rescued individu-
als have varied conditions.

2  |  MATERIAL S AND METHODS

2.1  |  Ethics statement

All methods were carried out in accordance with relevant guidelines 
and regulations. The study was performed in compliance with the 
ARRIVE guidelines. All experimental protocols were approved by the 
ethical committee of Wildlife Research Center of Kyoto University, 
and all sample collection and experiments were conducted with 
permission from the ethical committee (approval numbers: WRC-
2019&2020-012A, WRC-2021&2022-013A and WRC-2023-010A). 
All domestic cat samples were obtained with the consent of the cat 
owners. Other Felidae species samples were collected with the ap-
proval of each zoo/conservation centre. Approval from the Ministry 
of the Environment Japan was also obtained for the Tsushima leop-
ard cat samples.

2.2  |  Sample collection

2.2.1  |  Domestic cat samples

A total of 139 residual blood samples were obtained from clinical 
health check-ups of 105 domestic cats from July to September 2020 
from the Kyoto Medical Center, Daktari Animal Hospital and Anicom 
Specialty Medical Institute, Inc. The information recorded by the vet-
erinarians on age, breed, neuter status, sex and health condition was 
provided by the institutions. All domestic cat samples were stored at 
−80°C for less than 1 month before DNA extraction. The ages of the 
cats ranged between 0.41 and 21.04 years, and the female-to-male sex 
ratio (F:M) was 50:55 = 10:11. Most domestic cat samples were ob-
tained from mixed-breed individuals (n = 65). The remaining individuals 

(n = 40) were purebred cats. As few samples were available for each 
cat breed (n ≤ 8), the influence of breed was not considered. Most, ex-
cept six of the 112 adult individuals over 3.5 years old were neutered, 
while only one out of 15 individuals under 2 years old were neutered. 
Because of the extreme disparity in age distributions between neu-
tered and un-neutered individuals, similar-age individuals from the two 
groups could not be found. Therefore, we did not investigate the effect 
of neutering on the accuracy of age estimation. Health conditions and 
other information are provided in Table 1 and Appendix S1.

2.2.2  |  Tsushima leopard cat samples

Tsushima leopard cat blood samples were collected during health 
checks in Tsushima Wildlife Conservation Center and zoos from 
2006 to 2021. These samples were stored at −20°C for 0–1 year or 
−80°C for 0–15 years. We included 84 samples of known age from 19 
captive-born individuals (age ranged 0.50–15.32 years; F:M = 9:10; 
Table 1) and 15 samples from four rescued wild-born individuals of 
unknown age (F:M = 3:1; Table 1). Health conditions and other de-
tailed information can be found in Appendix S2.

2.2.3  |  Panthera spp. samples

A total of 96 blood samples from 35 individuals (age: 0.26–
23.74 years, F:M = 16:19) of Panthera spp. including jaguars, Amur 
leopards, African lions, snow leopards and Amur tigers, were col-
lected during routine health checks in Japanese zoos from 2001 
to 2022 and stored at −80°C for 0–21 years. The sample size for 
each species is summarized in Table 1. Health conditions and other 
detailed information can be found in Appendix  S3. Considering 
the small sample sizes of each species, small genetic distances (Li 
et  al.,  2016) and similar lifespans (e.g. maximum age = 25 years in 
Japanese zoos) (Animal Lifespan, 2017), we merged all Panthera spp. 
samples into one dataset for all subsequent analyses.

2.3  |  DNA extraction and bisulphite conversion

Genomic DNA of all samples was extracted using the DNeasy Blood 
& Tissue Kit (QIAGEN GmbH, Hilden, Germany), followed by bisul-
phite conversion using the EZ DNA Methylation-Gold Kit (Zymo 
Research, Irvine, CA, USA) according to the manufacturer's protocol.

2.4  |  Gene regions, primer design and PCR  
conditions

We targeted five DNA regions adjacent to five genes, namely, TCF21 
(Transcription factor 21), PRMT8 (Protein Arginine Methyltransferase 
8), DLX5 (Distal-less homeobox 5), RALYL (RALY RNA binding protein 
like) and ELOVL2 (ELOVL fatty acid elongase 2). Previously, we found 
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that RALYL and ELOVL2 were significantly correlated with chrono-
logical age in domestic cats and snow leopards (Qi et  al.,  2021); 
however, the accuracy of the two-marker age estimation model 
can be improved (domestic cat: MAE = 3.83 years, snow leopard: 
MAE = 2.10 years). In the present study, we included three more can-
didate genes: TCF21, PRMT8 and DLX5, which showed age-related 
methylation rate changes in dogs, which like felids, fall under the 
order Carnivora (Lowe et al., 2018). These five genes are involved 
in many housekeeping/essential pathways, and their abnormal gene 
expression levels are detected in several types of cancer tissues 
(Safran et al., 2021; Stelzer et al., 2016). Homogeneous gene regions 
were searched against the reference genomes of each target species 
using BLAST+ 2.11.0 (Altschul et  al.,  1990; Camacho et  al.,  2009) 
provided by the National Centre for Biotechnology Information 
(NCBI). The reference genomes that were used are as follows: do-
mestic cat—F.catus_Fca126_mat1.0 (GCF_018350175.1), Tsushima 
leopard cat—Fcat_Pben_1.1_paternal_pri (GCF_016509475.1), jag-
uar—PanOnc_v1_BIUU (GCA_004023805.1), leopard—Panpar1.0 
(GCF_001857705.1), lion – P.leo_Ple1_pat1.1 (GCF_018350215.1), 
snow leopard—Puncia_PCG_1.0 (GCF_023721935.1) and tiger—P.
tigris_Pti1_mat1.1 (GCF_018350195.1). The target regions are lo-
cated in the gene bodies of the target genes, except for ELOVL2, 
which is located in the promoter/enhancer region. Bisulphited DNA 
was subjected to PCR amplification with TaKaRa EpiTaq™ HS (Takara 
Bio, Shiga, Japan), using the primers and PCR conditions provided in 
Table 2 (the sequence information on NCBI for each target region 
and each species is listed in Table S1). The singleplex PCR reactions 
were prepared separately for each primer pair at a final volume of 
20 μL, containing 2 μL of bisulphited DNA (5–10 ng), 0.5 U TaKara 
EpiTaq HS, 1× EpiTaq PCR Buffer (Mg2+ free), 2.5 mM MgCl2, 0.3 mM 
dNTP mixture and 500 nM each of forward and reverse primers.

2.5  |  Next-generation sequencing

NEBNext Multiplex Oligos for Illumina (Dual Index Primers Set 1 
and Set 2, for sample indices) and NEBNext Ultra II DNA Library 
Prep Kit for Illumina (for adaptor ligation and PCR enrichment) (New 
England Biolabs, Ipswich, MA, USA) were used to generate MiSeq-
compatible barcoded DNA sequencing libraries for each gene am-
plicon and sample following the manufacturer's protocol. Barcoded 
libraries were pooled together in equimolar amounts to make a single 
pooled library after concentration measurement using Tapestation 
D1000 (Agilent, Santa Clara, CA, USA). Next-generation sequencing 
was performed using Illumina MiSeq with the MiSeq Reagent Kit v2 
(500 cycles) (Illumina, San Diego, CA, USA).

2.6  |  Methylation data organizing

Quality check and trimming of sequence data were performed 
using fastp v0.20.1 with base quality threshold -q set to 20. The 
quality-filtered sequences were aligned to the bisulphite-converted TA
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reference genome of respective species using these parameters: 
--score_min L, 0, -0.4, --non_directional in Bismark v0.22.3. The 
bisulphite-converted reference genomes were generated with bis-
mark_genome_preparation. The count of methylated CpG sites and 
total coverage was output in cov.gz files with bismark_methylation_
extractor (−-comprehensive) and processed using the bsseq 1.26.0. 
package (Hansen et al., 2012) in R 4.0.5 (R Core Team, 2021). CpG 
sites with coverage lower than 100 for DLX5 and 1000 for other 
regions were excluded from further analysis. DLX5 had lower cover-
age (ranging from 42 to 1660, mean = 406); therefore, we set a lower 
threshold. The most often commonly used threshold in targeted bi-
sulphite sequencing is 1000× (Leitão et al., 2018), but 100× could 
also be found in some studies (Chen et al., 2017). Samples with ex-
tremely lower coverage than others (0–2 samples per species) were 
not counted for sample collection (as detailed in Section 2.2) and 
were also excluded from the analysis.

2.7  |  Age estimation model

2.7.1  |  Data splitting

We designated four groups of samples to be included in our analy-
sis (Figure 1). Domestic cats, Tsushima leopard cats and Panthera 
spp. each constituted a group, and the fourth group contained 
samples from all the species (ALL dataset). For the ALL dataset, 
unlike in the other three groups, relative age was used instead of 
age. Relative age is individual age relative to the maximum lifes-
pan of its species and ranges between 0 and 1 (Appendix S4) (Lu 
et al., 2023; Raj et al., 2021). According to the global animal age 
database and records of Japanese zoos, the maximum lifespans 
are 30, 20 and 25 years for domestic cats, Tsushima leopard cats 
and Panthera spp., respectively (AnAge: Animal Lifespan, 2017; de 
Magalhães et al., 2007).

The workflow of our analysis is summarized in Figure 1. The data 
were first split into training and test datasets. To select CpGs that were 
stably selected across different datasets and also evaluate model per-
formance more comprehensively, we prepared five sets of training and 
test data through one-time data splitting with stratified k-fold (k = 5, 
similar age and species distribution across folds) using the Python 
package scikit-learn 1.2.0 (Pedregosa et al., 2011) with StratifiedKFold 
and MultilabelStratifiedKFold functions in Python 3.8.8 (Van Rossum 
& Drake, 2009). In rotation, each fold was used as the test data and 
the remaining as training data for the following procedures of model 
building. The methods of feature/CpG selections are described in 
Section 2.7.3. Finally, we evaluated model performance on an ensem-
ble of predictions conducted across the five test datasets.

2.7.2  |  Data preprocessing

CpGs with zero or near-zero variance and those that were highly 
correlated (Pearson correlation ≥.8) were excluded from the training TA
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6 of 15  |     QI et al.

data. Before model tuning, methylation rates of the remaining CpGs 
in training and test were standardized. The dataset was further pro-
cessed using the R package caret 6.0–94 (Kuhn,  2008) and dplyr 
1.1.3 (Hadley et al., 2023) in R 4.3.1 (R Core Team, 2021), following 
the method described by Anastasiadi and Piferrer (2023).

2.7.3  | Model tuning

We first used elastic net regression to tune our models, as the 
method is a mix of ridge and lasso regression which performs au-
tomatic feature shrinkage (i.e. feature selection) together with 
regression. Elastic net regression is widely adopted in many DNA 
methylation-based age estimation studies (Bors et  al.,  2021; Lu 
et  al.,  2023; Nakamura et  al.,  2023; Raj et  al.,  2021; Thompson 
et al., 2017; Vidaki et al., 2021).

Additionally, we conducted stepwise model tunings, that is, 
selecting features first and then conducting regression, to check 
whether model performances could be improved further. We per-
formed feature selection via two methods. First, we adopted the 
most frequently used feature selection method; selecting CpGs 
based on correlations between their methylation and chronologi-
cal age (the mean correlation of training data over five runs), with 
Pearson correlation coefficients over .5 or .7 as the thresholds 
(Figure  1). Second, we used the elastic net regression to select 
features before later regression, which is not frequently seen in 
age estimation studies but has been done in other machine learn-
ing studies (Topuz et  al.,  2018). We considered CpGs that were 
selected in the elastic net-based feature selection in over four of 
all five training sets (over 80%) as explanatory variables in later re-
gression models. As shown in Figure 1, after feature selection, we 
created regression models with elastic net regression and support 

F I G U R E  1 Workflow for model building. Data were first split into training (20%) and test sets (80%) in five runs, followed by model tuning 
using five different methods in the order of feature selection and regression. Cross-validations were conducted to find the best model in 
each model-tuning method in training data (leave-one-individual-out cross-validation [LOIOCV] for each study group, additional leave-one-
species-out cross-validation [LOSOCV] for Panthera spp. and ALL dataset). Finally, predictions and model performance on test data were 
evaluated. SVMr, support vector machine radial.

Methylation data
A. Domestic cat
B. Tsushima leopard cat
C. Panthera spp.
D. ALL dataset (A+B+C)

Model tuning
(run in each training data with five methods in five runs)

Test Training Data splitting*
(split into five folds, each fold used
as test data in rotation in five runs)

Prediction**

Feature selection

Regression
Elastic net

Elastic net

Elastic net

Elastic net

SVMr

20% samples 80% samples

Cor > 0.5 or
Cor > 0.7

Elastic net

Cor > 0.5 or
Cor > 0.7

SVMr

Run 5Run 4Run 3Run 2Run 1
traintraintraintraintest

Data
(five
folds)

traintraintraintesttrain
traintraintesttraintrain
traintesttraintraintrain
testtraintraintraintrain

Data splitting* Prediction**

Run 5Run 4Run 3Run 2Run 1
testtesttesttesttestData

Predicted age

Evaluation of model performance

(predict the age of each test data in five runs &
evaluate the model performance on the ensemble)
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    |  7 of 15QI et al.

vector machine radial (SVMr) in the training data. SVMr, similar 
to elastic net regression, has been found to produce high estima-
tion accuracy (Krivonosov et al., 2022; Nakamura et al., 2023; Qi 
et al., 2021; Xu et al., 2015).

Model evaluation and parameter tuning based on leave-one-
individual-out cross-validations (LOIOCV) were conducted in fea-
ture selection (elastic net-based) and regression. In LOIOCV, data 
from one individual are excluded for validation at each iteration 
of analysis. Additionally, leave-one-species-out cross-validations 
(LOSOCV) were performed for Panthera spp. and the ALL dataset to 
check species influence.

We performed elastic net regression and its hyperparame-
ter tuning with cv.glmnet in the R package glmnet 4.1-8 (Friedman 
et al., 2010). Optimized alpha and lambda were determined under 
cross-validations based on the smallest mean absolute difference 
between predicted age and chronological age (MAE). For SVMr, we 
used the Python package scikit-learn 1.2.0 (Pedregosa et al., 2011) 
with GridsearchCV and SVR functions to find the best gamma in the 
range of 2−15 to 26 and the best cost in the range of 2−5 to 216, under 
cross-validations based on MAE, as with elastic net regression.

2.7.4  |  Age prediction and evaluation of model 
performance on test data

We predicted age from test data and evaluated model precision 
with MAE, median absolute error (MedAE), root mean square error 
(RMSE) and squared correlation between predicted age and chrono-
logical age (R2). Model accuracy was evaluated using the Pearson 
correlation between predicted age and chronological age (r). MAE, 
MedAE and RMSE in ALL dataset models are measured based on rel-
ative age (percentages) and are not directly comparable with those 
of other study groups based on age (years).

2.8  |  Factors affecting the deviation of predicted 
age from chronological age

To investigate what variables influenced ΔAge (difference between 
predicted age and chronological age) and |ΔAge| (absolute differ-
ence between predicted age and chronological age) in each group 
(i.e. domestic cats, Tsushima leopard cats, Panthera spp. and ALL 
dataset), we applied linear mixed models with individual ID as a 
random effect using the R package lmerTest 3.1.3 (Kuznetsova 
et  al.,  2017). Chronological age, sex (female and male) and health 
condition (healthy and diseased) were used as explanatory variables 
for all study groups. For groups comprising more than one species, 
the Panthera spp. and the ALL dataset, ‘species’ was used as an ad-
ditional explanatory variable. In Panthera spp., the snow leopard 
was used as the standard in the variable ‘species’, because of the 
large sample size (n = 33) and relatively wide and even age distribu-
tion (minimum age = 0.93, maximum age = 17.66, average age = 7.77, 
Table 1). In the ALL dataset, domestic cats were used as the standard. 

The Akaike's information criterion (AIC) of models was used to de-
termine whether interactions among each factor pair must be in-
cluded—if including interactions made AIC smaller, then interactions 
were added as additional explanatory variables. Domestic cats had 
the largest sample size; for the variable ‘health condition’, we not 
only compared healthy (n = 34) versus diseased conditions (n = 105), 
but also used detailed disease categories as the explanatory varia-
bles: healthy (n = 34), cancer (n = 13), chronic kidney disease (n = 48), 
diabetes (n = 23), digestive disease (n = 9) and other diseases (n = 33). 
Note that several individuals had multiple diseases; therefore, the 
sum of the health categories was larger than the total sample size. 
The small sample sizes for each disease category in Tsushima leop-
ard cats and Panthera spp. made separate analyses of disease groups 
statistically less plausible; therefore, we simply categorized samples 
into healthy and diseased—Tsushima leopard cats comprised 47 
healthy and 37 diseased individuals, and Panthera spp. eighty-three 
healthy and 13 diseased individuals.

3  |  RESULTS

3.1  |  Correlation between methylation rates and 
chronological age

Over 100 CpGs were detected in domestic cats (n = 106), Tsushima 
leopard cats (n = 108) and Panthera spp. (n = 105). CpGs found in at 
least one group were listed with their NCBI position of each species 
in Appendix S5, of which 80.8% (97 out of 120) were found in all spe-
cies. Pearson correlation coefficients between CpG methylation rate 
and age in the training data ranged from −0.12 to 0.77 (mean = 0.29) 
for domestic cats, −0.18 to 0.77 (mean = 0.23) for Tsushima leopard 
cats, −0.14 to 0.92 (mean = 0.43) for Panthera spp. and −0.04 to 0.68 
(mean = 0.24) for ALL dataset.

3.2  |  Age estimation model

The CpGs included in the best model determined for each study 
group are shown in Figure 2 (see Appendix S5 for detailed results). 
Overall, for all study groups, the workflow of elastic net feature 
selection followed by SVMr regression produced the best models. 
Table  3 shows the model performances evaluated by five indexes 
(i.e. MAE, MedAE, RMSE, R2 and r). Model performances of all fea-
ture selection–regression methods are summarized in Table S2. The 
correlations between chronological age and the methylation rate of 
the CpGs selected by elastic net feature selection were not limited 
to high values (>.5, Figure 2). Selected CpGs of Panthera spp.—eight 
CpGs under LOIOCV and four CpGs under LOSOCV—were only lo-
cated in two regions, DLX5 and ELOVL2, which were different from 
domestic cats and Tsushima leopard cats (Figure  2). For domestic 
cats, all five targeted gene regions contributed to the best model 
(composed of 23 CpGs); for Tsushima leopard cats, 14 CpGs in four 
regions, excluding TCF21, yielded the best models. For the ALL 
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8 of 15  |     QI et al.

dataset, the best LOIOCV model is composed of many more CpGs 
(31 CpGs) in all five targeted gene regions, while the best LOSOCV 
model only contained eight CpGs from DLX5, RALYL and ELOVL2.

Excluding the ALL dataset, Pearson correlation coefficients 
between predicted and chronological age (r) under the best mod-
els were higher than .890, and R2 values were larger than .80. MAE 
was 1.966 for domestic cats; 1.348 for Tsushima leopard cats; 
1.552 (under LOIOCV) and 1.582 (under LOSOCV) for Panthera spp. 
and  .086 (under LOIOCV) and .086 (under LOSOCV) for the ALL 
dataset. Larger prediction errors (i.e. MAE, MedAE and RMSE) and 
lower R2 and age correlations were obtained when adopting the best 
ALL dataset model in other data groups (i.e. domestic cats, Tsushima 
leopard cats and Panthera spp.) (Table S3). Plots of the best age esti-
mation models are shown in Figure 3. Changes in the predicted age 
of individuals with multiple samples are shown in Figures S1–S3 for 
all study groups.

As a large sample size of diseased domestic cats was available 
(n = 105), we also attempted age prediction for the healthy domestic 
cats by using the diseased samples as training data and the healthy 
samples (n = 34) as test data. Very similar results (diseased [training]: 
MAE = 1.521, r = .907; healthy [test]: MAE = 1.971, r = .902, Table S4) 
were obtained compared to previous domestic cat models that in-
cluded all samples (Table 4). This indicates that health conditions did 
not influence model performance.

3.3  |  Factors affecting the deviation of predicted 
age from chronological age

The results of mixed linear regression for investigating the factors 
influencing ΔAge are summarized in Table  4 and Table  S5. Older 
samples had a younger predicted age compared to chronological age 

F I G U R E  2 Selected CpGs of five targeted gene regions in the best model for each study group. Coloured bars represent CpG sites that 
were selected and show correlation coefficients <0.2 between methylation rates and chronological ages (green), 0.2–0.5 (yellow), 0.5–0.7 
(orange) and >0.7 (red).

Panthera spp.

ALL dataset

Domestic cat

Tsushima leopard cat

TCF21 PRMT8 DLX5

RALYL ELOVL2

CpG site
Cor ≤ 0.2
0.2 < Cor ≤ 0.5
0.5 < Cor ≤ 0.7
Cor > 0.7

Panthera spp.

ALL dataset

Domestic cat

Tsushima leopard cat

Target region
Gene

Panthera spp. (LOSOCV)

ALL dataset (LOSOCV)

ALL dataset (LOSOCV)

Panthera spp. (LOSOCV)

MAE MedAE RMSE R2 r

Domestic cat 1.966 1.595 2.514 .808 .899

Tsushima leopard cat 1.348 0.984 1.902 .805 .897

Panthera spp. 1.552 1.279 1.997 .873 .934

Panthera spp. (LOSOCV) 1.582 1.222 1.983 .875 .936

ALL dataset 0.086 0.071 0.110 .737 .859

ALL dataset (LOSOCV) 0.086 0.074 0.110 .735 .857

Note: MAE, MedAE and RMSE in ALL dataset models are measured based on relative age 
(percentages) and are not directly comparable with those of other study groups based on age 
(years).
Abbreviations: LOSOCV, leave-one-species-out cross-validation; MAE, mean absolute error; 
MedAE, median absolute error; r, Pearson correlation between predicted age and chronological 
age (p-values of r were all less than .001); R2, squared correlation between predicted age and 
chronological age; RMSE, root mean square error.

TA B L E  3 Accuracy and precision of the 
best models.
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    |  9 of 15QI et al.

in all groups (p < .001). Sex did not contribute to ΔAge in any group. 
Health conditions did not affect ΔAge in domestic cats, Tsushima 
leopard cats and the ALL dataset (Table 4; Table S5). However, the 
diseased samples showed smaller ΔAge than healthy samples in 
Panthera spp. (p = .005, Table 4).

Older Tsushima leopard cats tended to have smaller ΔAge in the 
best ALL-dataset models regardless of the cross-validation methods 
used (i.e. LOIOCV or LOSOCV, p < .001), while older Panthera spp. 
(especially lion, snow leopard and tiger, Table  S5) tended to have 
larger ΔAge under LOSOCV (p < .001, Table  4). For Panthera spp. 

F I G U R E  3 Best age estimation models for (a) domestic cats, (b) Tsushima leopard cats, (c) Panthera spp., (d) Panthera spp. (LOSOCV), 
(e) ALL dataset and (f) ALL dataset (LOSOCV). Detailed model accuracy and precision are summarized in Table 3. In the ALL dataset, age 
is converted to relative age (individual age relative to the maximum lifespan of its species). The solid lines and dashed lines represent the 
regression and identity lines (y = x) respectively. MAE in ALL dataset models are measured based on relative age (percentages) and are not 
directly comparable with those of other study groups based on age (years). MAE, mean absolute error; R2, squared correlation between 
predicted age and chronological age; r, Pearson correlation between predicted age and chronological age.

Domestic cat
MAE = 1.966 yr
R2 = 0.808
r = 0.899

Tsushima leopard cat
MAE = 1.348 yr
R2 = 0.805
r = 0.897

Panthera spp.
MAE = 1.552 yr
R2 = 0.873
r = 0.934

Panthera spp. (LOSOCV)
MAE = 1.582 yr
R2 = 0.875
r = 0.936

ALL dataset
MAE = 0.086
R2 = 0.737
r = 0.859

ALL dataset (LOSOCV)
MAE = 0.086
R2 = 0.735
r = 0.857

(a) (b)

(c) (d)

(e) (f)
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10 of 15  |     QI et al.

models, a larger ΔAge was found in jaguars than the other spp. under 
LOIOCV (p = .032, Table 4).

The results of mixed linear regression for investigating the fac-
tors influencing |ΔAge| are summarized in Table  S6. Male domes-
tic cats had larger |ΔAge| in the best domestic cat model (p = .028). 
Older Panthera had slightly larger |ΔAge| in the best Panthera spp. 

models, regardless of whether under LOIOCV (p = .0497) or LOSOCV 
(p = .037). Samples of male individuals (p = .007) and Tsushima leop-
ard cats (p < .001) had larger |ΔAge| in the best ALL dataset model 
under LOIOCV. Older samples (p = .035) and samples of Tsushima 
leopard cats (p = .0013) had larger |ΔAge| in the best ALL dataset 
model under LOSOCV.

3.4  |  Age prediction for wild samples of Tsushima 
leopard cats

The predicted ages of wild-born Tsushima leopard cats of unknown 
age are summarized in Table  5. Excluding the two samples from 
Leocat_w3, the estimated epigenetic ages of others were consistent 
with the ages estimated from morphological observation. The esti-
mated ages of the samples taken at short intervals, such as within 
1 year, also showed variation to some extent (e.g. individual Leocat_
w1, mean = 10.438 years, SD = 0.556 years; individual Leocat_w4, 
mean = 10.144 years, SD = 1.269 years).

4  |  DISCUSSION

From the performance of the age estimation models developed for 
domestic cats, Tsushima leopard cats and Panthera spp., age estima-
tion in these species appeared to be successful with high accuracy 
using 8–23 CpGs from only 2–5 gene regions, cross-validated by 
LOIOCV (Pearson correlation coefficient between predicted age and 
chronological age [r] > .890, MAE ranging 1.348–1.966 years; Table 3). 
The cost for next-generation sequencing analysis per sample was 
approximately $7 based on five markers for a total of 334 samples, 
which was less than one-tenth of HorvathMammalMethylChip40 
($160/sample). Therefore, the method presented in this study is cost-
effective and practical for conservation applications. To the best of 
our knowledge, this study is also the first to analyse several Felidae 
species, from small to big cat species (Panthera spp.), with appre-
ciable sample sizes. We also acknowledge that model performance 
could be further improved by applying more age-correlated mark-
ers. For example, SLC12A5, as demonstrated by Raj et al. (2021), was 
highly related to the age of domestic cats and is a strong candidate.

DLX5 and ELOVL2 were the two gene regions selected across all 
the targeted species that indicate possible usefulness as age estima-
tion markers for other unstudied Felidae species. As was mentioned 
in Section 2.6, the coverage of DLX5 was lower than other regions. 
We suspect that the skewed distribution of the number of reads for 
target regions is because during library preparation, all target regions 
were pooled per sample and tagged using a PCR-based approach; 
although the starting mixture was adjusted to be equimolar, the lon-
gest regions (DLX5) were the least amplified. Although the less cov-
erage may have resulted in a larger deviation of DLX5 methylation 
rates (Roeh et al., 2018), resulting in less correlation with age, the 
region is still found to be important for all species (Figure 2). RALYL 
showed considerable age-related methylation changes of its CpGs 

TA B L E  4 Coefficients and p-values for the mixed linear 
regression of ΔAge in the best age estimation models of Panthera 
spp. and the ALL dataset.

Estimate p-value

Panthera spp.
Marginal 

R2 = .311
Conditional 

R2 = .532

(Intercept) 1.736 .009**

Chronological age −0.147 .0011**

Sex (Male) −0.336 .512

Health condition (Diseased) −2.294 <.001***

Species (Jaguar) 2.390 .032*

Species (Leopard) 0.100 .877

Species (Lion) 0.738 .343

Species (Tiger) 0.576 .474

Panthera spp. 
(LOSOCV)

Marginal 
R2 = .274

Conditional 
R2 = .633

(Intercept) 1.778 .013*

Chronological age −0.161 <.001***

Sex (Male) 0.028 .961

Health condition (Diseased) −1.635 .005**

Species (Jaguar) 1.229 .292

Species (Leopard) −0.204 .778

Species (Lion) 0.837 .335

Species (Tiger) 0.286 .753

ALL dataset
Marginal 

R2 = .391
Conditional 

R2 = .416

(Intercept) 0.085 <.001***

Chronological relative age −0.224 <.001***

Sex (Male) −0.002 .864

Health condition (Diseased) 0.007 .576

Species (Tsushima leopard 
cat)

0.098 <.001***

Species (Panthera spp.) −0.026 .303

Age × Species (Tsushima 
leopard cat)

−0.301 <.001***

Age × Species (Panthera 
spp.)

0.048 .413

ALL dataset 
(LOSOCV)

Marginal 
R2 = .477

Conditional 
R2 = .568

(Intercept) 0.128 <.001***

Chronological relative age −0.367 <.001***

Sex (Male) −0.002 .888

Health condition (Diseased) 0.000 .994

Species (Tsushima leopard 
cat)

0.067 .007**

Species (Panthera spp.) −0.092 <.001***

Age × Species (Tsushima 
leopard cat)

−0.215 .0011**

Age × Species (Panthera 
spp.)

0.220 <.001***

Note: Results of the remaining study groups are presented in Table S5.
*p < .05. **p < .01. ***p < .001.
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for Panthera spp. (i.e. most of the correlation coefficients were larger 
than .5, Appendix S5), which was consistent with the observations 
made in Qi et al.  (2021). However, RALYL was not the first choice 
in age estimation model building for Panthera spp. PRMT8 appears 
to be an important gene for domestic cats and Tsushima leopard 
cats, because the methylation changes of its CpGs were found to 
be highly correlated with age, and about one-third of the sites were 
selected in the best models of these two small feline species.

We also built common models across all targeted felid species. 
However, the model performance was not as good as the species 
group-specific models (Table S3). This is especially so for Tsushima 
leopard cats, as the MAE increased drastically from 1.348 to 2.388 
(under LOIOCV) and 2.468 (under LOSOCV). Younger Tsushima 
leopard cats tended to have an older predicted age, while older 
samples tended to have a younger predicted age, compared to 
their chronological age (Figure  3e,f). Although the selected CpGs 
in the ALL dataset LOIOCV model covered most of the CpGs in 
the Tsushima leopard cat-specific model (Figure  2), the contribu-
tion of CpGs was assumed to be largely different (SVMr is a non-
linear model, so the actual feature contribution was not extracted). 
Additionally, the increased complexity of the ALL dataset LOIOCV 
model (i.e. larger sets of CpGs, that is, 31 CpGs were used) and sig-
nificant species difference observed in both ΔAge and |ΔAge| of 
the best LOSOCV model (Table 4; Tables S5 and S6) implies that, at 
least for the five genomic regions explored in this study, combining 
all samples to construct a common age estimation model for felids 
seems not advisable.

A common age estimation model for Panthera spp. seems 
plausible, which is supported by the high prediction accuracy 
(MAE = 1.582 years) maintained in the Panthera LOSOCV model 
(Table  3; Figure  3f). The closer genetic distance among Panthera 
spp. could be the reason for the relatively high estimation accuracy 

(Li et al., 2016). Because only two regions (DLX5 and ELOVL2) were 
used to construct the age estimation model for Panthera spp., the 
cost could be reduced to half—only about $3 per DNA sample. 
Nevertheless, species differences were observed to some extent 
in the LOIOCV model. The difference between the predicted and 
chronological age of jaguars tended to be larger than the other spe-
cies in the LOIOCV model (Table 4); however, a definite conclusion 
cannot be made as only four samples of jaguars were available. The 
performance of the developed models with regard to some Panthera 
spp., especially jaguars, African lions and Amur tigers, cannot be as-
certained due to the low sample size. The samples of Panthera spp. 
were obtained from captive individuals in Japanese zoos, which in-
evitably included some individuals with close or distant blood rela-
tions and a relatively uniform living environment, which may also be 
one of the reasons for the small model deviation. In the future, this 
should be addressed using a larger sample size from more diverse 
parentage and environment for constructing a more reliable com-
mon model for Panthera spp. and separate models for each species, 
to further investigate whether a common model or separate models 
is best suited for the Panthera genus.

Stepwise elastic net feature selection-SVMr regression yielded 
the best models in our study. In these models, some CpGs with a low 
correlation (Figure 2) between the methylation rate and chronologi-
cal age were selected. This suggests that CpGs must not be selected 
based solely on the correlation coefficients. Sources of variation for 
the correlation between CpGs and age are limited when few genes 
are used. Furthermore, in some cases, CpGs that are highly correlated 
with age are likely to cluster at a limited number of gene locations, fo-
cusing only on the magnitude of the correlation coefficients with bias 
towards selecting only CpGs with a similar correlation with age. This 
results in a low diversity of explanatory variables in age estimation 
models and consequently, low accuracy in the age estimates.

TA B L E  5 Predicted age and sample information of wild-born Tsushima leopard cats.

Individual ID Sex Rescued date Sampling date
Predicted age/age stage at the time of 
sampling (morphology)

Predicted age (years) 
(DNA methylation)

Leocat_w1 F 2005/3/4 2013/5/23 11 years 10.306

Leocat_w1 F 2005/3/4 2013/6/21 11 years 11.048

Leocat_w1 F 2005/3/4 2013/7/28 11 years 9.961

Leocat_w2 M 2010/8/6 2015/3/12 6 years 6.044

Leocat_w2 M 2010/8/6 2021/1/11 12 years 13.138

Leocat_w3 F 2015/12/26 2018/2/13 Old 10.437

Leocat_w3 F 2015/12/26 2020/6/9 Old 6.166

Leocat_w4 F 2020/5/13 2020/6/28 Adult/Old 10.139

Leocat_w4 F 2020/5/13 2020/10/15 Adult/Old 8.636

Leocat_w4 F 2020/5/13 2020/11/19 Adult/Old 10.013

Leocat_w4 F 2020/5/13 2020/12/6 Adult/Old 9.057

Leocat_w4 F 2020/5/13 2020/12/16 Adult/Old 9.807

Leocat_w4 F 2020/5/13 2021/1/14 Adult/Old 9.448

Leocat_w4 F 2020/5/13 2021/6/22 Adult/Old 12.257

Leocat_w4 F 2020/5/13 2021/10/23 Adult/Old 11.796
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Unlike most previous studies, we included both healthy samples 
and samples with a variety of diseases. In the context of wildlife 
conservation, rescued individuals of unknown age may be healthy or 
diseased; therefore, an age estimation model that could be applied 
with sufficient accuracy on individuals with varied health conditions 
would be required. Our models for domestic cats and Tsushima 
leopard cats did not find significant estimation differences between 
the healthy and unhealthy samples (Tables S5 and S6). For domestic 
cats, further evidence was provided by the very similar performance 
in the model trained on all samples and that trained on the diseased 
samples to predict the age of healthy samples. Consequently, it 
suggests that our models for the two small cat species are robust 
enough to estimate ages in samples whose health conditions are var-
ied or unknown.

We noticed a better estimation accuracy in the diseased samples 
of Panthera spp. compared to that of the healthy samples (Table 4). 
Most of these diseased samples were from individuals between the 
ages of 10 and 20 years (Appendix S3), which may still be relatively 
healthy considering their relative ages to the species' maximum life 
spans, and thus expressed a young epigenetic age. Moreover, cur-
rent disease diagnosis methods for Panthera spp. are not as exten-
sive as those used for domestic cats. Some individuals who were 
unhealthy and displayed shifted epigenetic age, may have been mis-
diagnosed as healthy individuals, or vice versa. Nevertheless, only a 
few diseased samples (n = 13) were included compared to the healthy 
samples (n = 83) in the Panthera spp. group (Table 1). Therefore, the 
effect of disease on age estimation cannot be accurately estimated 
based on the samples included in this study.

Similar to the results of many previous studies (El Khoury 
et al., 2019; Prado et al., 2021; Raj et al., 2021), the developed models 
tended to underestimate the age of older individuals. As suggested 
by El Khoury et al. (2019), one explanation could be the saturation 
of methylation rates of targeted CpGs, that is, CpGs already reach 
either full methylation or complete de-methylation before the indi-
viduals age further. Another assumption is that long-lived individuals 
are biologically younger and have a younger predicted epigenetic 
age than their chronological age.

We used LOIOCV for the age estimation models built on captive 
Tsushima leopard cats to reduce the influence of different sample 
sizes in different individuals; however, future sampling should be 
improved further. We only had a small number of samples except 
for the age classes 2–6 years old, and most samples over 6 years old 
came from only two individuals (Leocat_3 and Leocat_5; Figure S2). 
We also predicted the ages of several wild-born Tsushima leop-
ard cats of unknown age (Table 5), including both newly rescued 
(Leocat_w4) and those who lived long in a captive environment 
(Leocat_w1, Leocat_w2, Leocat_w3). The estimation results were 
satisfactory, which implied that this model, which was developed 
using captive individuals, can potentially also be applied to wild 
individuals.

Importantly, the estimation variation existed even among sam-
ples that were collected within 1 year from the same individual (see 
within-individual age change plot, Figures S1–S3). Therefore, for all 

species, we recommend multiple sampling within a 1-year window 
or less to obtain an average predicted age as the final predicted age. 
Environmental effects are also associated with DNA methylation 
change and age acceleration. To investigate the accuracy of age esti-
mation on wild populations, a larger sample of wild-born individuals 
with known age, especially subadult and young adult individuals, is 
required.

In conclusion, we successfully developed epigenetic clocks 
using 8–23 CpGs from 2 to 5 gene regions with satisfactory accu-
racy for domestic cats (MAE = 1.966 years), Tsushima leopard cats 
(MAE = 1.348 years) and Panthera spp. (MAE = 1.552 years), using 
cost-effective next-generation sequencing and multiple machine-
learning algorithms. Our models for domestic cats and Tsushima 
leopard cats are applicable to individuals of varying healthy con-
ditions. We do not recommend building a common age estimation 
model for all the target species using our markers. Alternatively, 
we showed the possibility of developing a common model for five 
Panthera spp. The changes in predicted age for the same individual 
implied that multiple sampling within a 1-year window to obtain the 
mean of predicted age as the final predicted age is advisable for fu-
ture applications.
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