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Abstract. Multi-View Multi-Task Learning (MVMTL) aims to
make predictions on dual-heterogeneous data. Such data contains
features from multiple views, and multiple tasks in the data are re-
lated with each other through common views. Existing MVMTL
methods usually face two major challenges: 1) to save the predictive
information from full-order interactions between views efficiently.
2) to learn a parsimonious and highly interpretable model such that
the target is related to the features through a subset of interactions.
To deal with the challenges, we propose a novel MVMTL method
based on multiplicative sparse tensor factorization. For 1), we rep-
resent full-order interactions between views as a tensor, that enables
to capture the complex correlations in dual-heterogeneous data by a
concise model. For 2), we decompose the interaction tensor into a
product of two components: one being shared with all tasks and the
other being specific to individual tasks. Moreover, tensor factoriza-
tion is applied to control the model complexity and learn a consensus
latent representation shared by multiple tasks. Theoretical analysis
reveals the equivalence between our method and a family of models
with a joint but more general form of regularizers. Experiments on
both synthetic and real-world datasets prove its effectiveness.

1 Introduction

Nowadays, many real-word applications involve data collected from
multiple sources and views (feature heterogeneity). For example, in
image annotation, each image has features from multiple views, such
as color histogram, wavelet texture and edge direction. To utilize the
information from different views, Multi-View Learning (MVL) is
proposed to improve the performance by saving view consistency,
i.e., the predictions of different views should be mutually consis-
tent [7, 3, 23]. In addition, some practical applications exhibit the
relationship between different tasks (task heterogeneity). For ex-
ample, in protein function prediction, each protein may associated
with multiple classes, such as transcription, cellular organization and
metabolism. Rather than learning tasks independently, Multi-Task
Learning (MTL) learns related tasks together to improve its gener-
alization ability by saving task correlations, i.e., different tasks may
share useful related information [29, 17, 32].

MVL and MTL enable to deal with feature and task heterogene-
ity, respectively, but neither of them can handle dual-heterogeneity,
where multiple tasks are correlated through common views. A repre-
sentative example is the classification of web pages. Each web page
contains information from at least three views: image, text and hyper-
link, and can be annotated with multiple topics, such as sports, news

and education. To solve this kind of problem, Muli-View Multi-Task
Learning (MVMTL) is proposed to capture both task correlations and
view consistency, based on graph model [6], joint regularization [31],
multilinear model [19], deep learning [33] and feature learning [24].

Experimental results [19, 24] on various real-world applications
have shown that MVMTL has achieved much success on dual-
heterogeneous data. However, existing MVMTL models still suffer
from two main problems: 1) lack of ability to efficiently save pre-
dictive information from full-order interactions1 among views and
tasks. Previous methods usually require views to be consistent, which
may be too restrictive in practice, since different views also provide
complementary information. Take web page classification as an ex-
ample, text often provides complementary information to image and
hyperlink. As a result, considering full-order interactions between
views might capture all the complex hidden relationships. However,
it typically results in exponentially growth of model complexity. 2)
incapable to learn parsimonious and highly interpretable models that
removes irrelevant interactions, leading to degraded performance in
practice. Even though full-order interactions easily blow up the di-
mensionality, only a few interactions may be useful for training the
model, including a small subset of interactions shared among multi-
ple tasks and the own specific interactions of eack task. For example,
a topic of a web page is probably correlated with a subset of interac-
tions among texts, images and hyperlink.

To overcome the aforementioned two problems, we propose a
novel MVMTL method based on Multiplicative Sparse Tensor
Factorization (MSTF). Specifically, in order to capture the complex
relationship in dual-heterogeneous data by a concise model, we use a
tensor structure to represent full-order MVMT interactions, in which
different orders collectively provide distinct and complementary in-
formation (for Problem 1). To make the model parsimonious and in-
terpretable, we propose the vanilla MSTF model by decomposing
the model parameters into an element-wise product of two compo-
nents: one is sparse and shared across all the tasks and the other one
is specific for each task (for Problem 2). To prevent from overpa-
rameterization, we further apply CANDECOMP / PARAFAC (CP)
decomposition [12] and Tucker decomposition [27] to the shared
component and the specific one, respectively, and propose the MSTF
model. We illustrate the framework of vanilla MSTF and MSTF in
Figure 1. Theoretical analysis shows the equivalence between MSTF

1 Full-order interactions include first-order and higher-order interactions,
where first-order interactions represent contributions of the original fea-
tures in each view and higher-order interactions represent contributions of
the tensor product of multi-view features.
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Figure 1. Illustration of the proposed framework. Given three views, the weight tensor of the t-th task Wt in vanilla MSTF is decomposed into an element-
wise product of a task-shared component A and a task-specific one Bt, where red points represent nonzero interactions shared across multiple tasks. In MSTF,
tensor factorization is applied to A and Bt. The i-th sample Xt,i in the t-th task is represented as a tensor by the tensor product of multi-view features, i.e.,

Xt,i = [1;x
(1)
t,i ] ◦ [1;x

(2)
t,i ] ◦ [1;x

(3)
t,i ], to save full-order feature interactions. The predicted output is calculated by ŷt,i = 〈Wt,Xt,i〉.

and a family of methods that are jointly regularized with a general
form of regularizers. We develop an efficient alternating algorithm
to optimize the proposed method. Experimental results on both syn-
thetic and real-world datasets show the effectiveness of MSTF. The
contributions in this work can be summarized as follows:

• We propose a novel MVMTL method, MSTF, that collectively
models full-order interactions by a concise and multiplicatively
decomposable tensor, where only a few interactions are active and
shared across tasks.

• The equivalence between MSTF and a general family of jointly
regularized models has been proved, leading to several novel
MVMTL formulations.

• We develop an efficient alternating algorithm to optimize the prob-
lem, and experimental results show its effectiveness on both syn-
thetic and real-word datasets.

2 Related Works

For Multi-Task Learning (MTL), by assuming that multiple tasks
share a common latent representation, different regularizers are used
to promote low-rankness [22] or sparsity [4, 16] of the model.
KMSV [2] uses a new tight approximation for rank constraint. Group
structures have also been studied [25, 1]. [30] uses a generalized
block-diagonal structure, while VSTG [9] performs variable selec-
tion and learns an overlapping group structure. Some other meth-
ods are proposed to capture both task correlation and task specificity
based on model decomposition by summation [8, 5] or multiplica-
tion [18, 28]. In order to exclude useless features, the additive meth-
ods need the corresponding elements in all components to be zeros,
while the multiplicative methods only need the entries in one compo-
nent to be zeros, which shows its superiority in feature selection [28].

For Multi-View Multi-Task Learning (MVMTL), IteM2 [6] con-
structs a bi-partite graph to capture the relations among tasks and
views. CSL-MVMT [10] is proposed by learning a shared latent

space of different tasks with common views. MAMUDA [11] learns
task-view correlations in the transformed discriminant feature space.
SPLIT [24] learns view-wise weights and saves task correlations by
multiplicatively decomposing the basis matrix. MTMVCSF [20] cap-
tures both consistent and complementary information by latent fea-
ture representation of multiple views. These methods can be con-
sidered as matrix-based methods, because they are limited to model
first-order feature interactions by organizing model weights in a sim-
ple matrix form.

Different from the aforementioned matrix-based methods, recently
several Tensor-based MVMTL methods have been proposed to cap-
ture higher-order interactions by using the flexible and expressive
tensor structure. In [14], aptMTVL uses an adaptive basis multi-
linear factor analyzers to handle task-view-label relations. In [15],
racMVMT captures the task-view interactions based on asymmet-
ric bilinear factor analyzers and rank constraints. However, they are
not sparse models and both ignore full-order interactions among fea-
tures. MFM [19] learns both task-specific features and task-view
shared full-order feature interactions by using multilinear factoriza-
tion machines, and uses CP decomposition to reduce the complex-
ity. However, it is not flexible enough to learn a parsimonious and
interpretable model and fails to directly model task correlations. In
contrast, the proposed MSTF uses a tensor structure to represent full-
order interactions and efficiently captures a subset of useful interac-
tions shared across tasks by multiplicative sparse tensor factorization.

3 Preliminaries

3.1 Notations and Tensor Basics

In this paper, we use lowercase letters, bold lowercase letters, bold
uppercase letters and caligraphic letters to denote scalars, vectors,
matrices and tensors, respectively. Here we introduce some basic
concepts of tensor based on [13]. An N -order tensor is denoted
by X ∈ R

I1×···×IN and element (i1, ..., iN ) of X is denoted by
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xi1,...,iN . For two same-sized tensors X ,Y ∈ R
I1×···×IN , the in-

ner product is denoted by 〈X ,Y〉 =
∑

i1,...,iN
xi1,...,iN yi1,...,iN

and the element-wise product is denoted by X � Y = Z with
element (i1..., iN ) being zi1,...,iN = xi1,...,iN yi1,...,iN . The ten-
sor (outer) product of N vectors x(1), ...,x(N) is denoted element-
wised by (x(1) ◦ · · · ◦ x(N))i1,i2,...,iN = x

(1)
i1

· · ·x(N)
iN

. The n-
mode product of a tensor X ∈ R

I1×···×IN with a matrix U ∈
R

J×In is denoted by (X ×n U) ∈ R
I1×···×In−1×J×In+1×···× IN

with its element being (X ×n U)i1×···×in−1×j×in+1×···× IN =∑In
in=1 xi1,i2,...,iNujin . Let ‖ · ‖k denote the tensor lk-norm with

‖A‖k = k

√∑
i1,...,iV

|ai1...iV |k, where k is a positive integer. The

tensor Frobenius norm ‖ · ‖F and the tensor l1-norm are obtained by
k = 2 and k = 1, respectively. For a three-order tensor X , its CP
decomposition is defined as

X =
R∑

r=1

ar ◦ br ◦ cr, (1)

where ar ∈ R
I1 ,br ∈ R

I2 and cr ∈ R
I3 . R is a positive integer

that is often called CP-rank. Its Tucker decomposition is defined as

X = G ×1 A×2 B×3 C =
∑

r1,r2,r3

gr1r2r3ar1 ◦ br2 ◦ cr3 , (2)

where A ∈ R
I1×R1 ,B ∈ R

I2×R2 and C ∈ R
I3×R3 are factor

matrices and G ∈ R
R1×R2×R3 is the core tensor. In (2), ar1 ,br2

and cr3 represent the r1-th, r2-th and r3-th columns of A,B and C,
respectively. In fact, CP decomposition is the special case of Tucker
decomposition when the core tensor is super-diagonal.

3.2 General MVMTL Formulation

Given the MVMTL problem with V views and m tasks, let
(X

(1)
t ,X

(2)
t , ...,X

(V )
t ) denote the data of the t-th task. X

(v)
t ∈

R
nt×dv is the data matrix of the v-th view in the t-th task, where

nt denotes the number of samples in the t-th task and dv denotes

the dimensionality of the v-th view. The i-th row x
(v)
t,i

T
of X(v)

t is
the i-th sample of the v-th view in the t-th task. A classic way for
MVMTL is to use a linear model to minimize the regularized empir-
ical loss between predicted output and real target yt,i, i.e.,

min
W

m∑
t=1

1

nt

nt∑
i=1

L(yt,i,
V∑

v=1

〈w(v)
t ,x

(v)
t,i 〉) + λΩ(W), (3)

where L is the loss function, Ω is the regularizer and λ > 0 is the
hyperarameter. In (3), w(v)

t denotes the weight vector for the v-th
view in the t-th task, which is the t-th column of the v-th view weight
matrix W(v) ∈ R

dv×m. W = [W(1); · · · ;W(v)] ∈ R
d×m(d =∑

v dv) is the total weight matrix.

4 Methodology

4.1 Multilinear Models with Full-Order Interactions

The linear model in (3) only considers original features and ig-
nores higher-order interactions among views. Therefore, inspired
by MFM [19], we construct a tensor-based data structure for each
data sample to capture full-order interactions. Specifically, the i-
th sample Xt,i in the t-th task is formulated in tensor form by

Xt,i = [1;x
(1)
t,i ] ◦ · · · ◦ [1;x

(V )
t,i ]. Then, we introduce the multilin-

ear predictive model for the predicted output ŷt,i:

ŷt,i = 〈Wt, [1;x
(1)
t,i ] ◦ · · · ◦ [1;x(V )

t,i ]〉 = 〈Wt,Xt,i〉, (4)

where Wt ∈ R
(d1+1)×···×(dV +1) denotes the weight tensor of the

t-th task, with each entry in Wt saving the weight coefficient of
corresponding multi-view feature interaction. An illustrative exam-
ple is shown in Figure 1. Furthermore, considering both first-order
and higher-order interactions can easily handle incomplete and even
missing views in MVMTL problems.

4.2 The Vanilla MSTF Method

Although we consider full-order MVMT interactions in (4), in prac-
tice, only a subset of interactions may be related with the target and
multiple tasks probably share a common subset of interactions. For
example, in web page classification, distinct topics of web pages are
probably related to text-image interactions via a small number of
common pathways. Therefore, to select such interactions and learn
a interpretable model, we decompose the weight tensor Wt of the
t-th task into an element-wise product of two components A and Bt,
i.e.,

Wt = A� Bt, t = 1, 2, ...,m, (5)

where A is shared by all tasks and controls the sparsity across tasks,
while Bt is specific for each task and models task-specificity. Typi-
cally, A is treated as a binary tensor, with 1 indicating the relevance
of the corresponding interaction and 0 otherwise. To avoid the diffi-
culty of combinational optimization, the constraint on A is relaxed to
be non-negativity, i.e., A ≥ 0. Hence, to promote across-task sparsity
by A and meanwhile learn task-specific weights by Bt, we propose
the optimization problem of vanilla MSTF (vMSTF):

min
A,Bt

m∑
t=1

1

nt

nt∑
i=1

L(yt,i, 〈Wt,Xt,i〉) + λ1‖A‖1 + λ2

m∑
t=1

‖Bt‖2F ,

s.t. Wt = A� Bt, A ≥ 0, ∀t, (6)

where λ1 and λ2 are positive hyperparameters. If (A)i1...iV = 0, then
corresponding interaction in (Wt)i1...iV is removed for all tasks, re-
gardless of (Bt)i1...iV ’s value. Therefore, vMSTF enables to rule out
irrelevant interactions by learning a sparse A, and save task-specific
weights in Bt, t = 1, 2, ...,m.

4.3 The MSTF method

The proposed vMSTF in (6) successfully builds a sparse and inter-
pretable model as the target is correlated to interactions via a few
pathways, each of which probably involve a small subset of fea-
tures. However, since A,Bt ∈ R

(d1+1)×···×(dV +1), there will be
(m + 1)

∏
v(dv + 1) parameters to learn, and the number of pa-

rameters will increase exponentially with the number of views, mak-
ing it intractable for large-scale problems. In addition, multiple tasks
and views are usually correlated with each other through common
interactions, indicating shared low-rank subspace. Thus, in order to
further control model complexity and capture task-view correlations,
we apply tensor factorization to A and Bt. Specifically, since A can
be simply treated as a sparse indicator across all tasks, we apply
rank-1 CP decomposition2 to it, i.e., A = a(1) ◦ · · · ◦ a(V ), where
2 Rank-1 CP decomposition works well in practice, as shown in Table 3 and

Figure 4. In addition, it helps to derive Theorem 1 and 2, that generalizes a
family of models.
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a(v) ∈ R
(dv+1). For Bt, as it models task-specific weights of inter-

actions, which typically contains more complex and rich information
than the sparsity structure saved in A, we then apply Tucker decom-
position to control its complexity and learn the latent representation,
i.e., Bt = Gt ×1 C(1) · · · ×V C(V ), where C(v) ∈ R

(dv+1)×rv

and Gt ∈ R
r1×r2×···×rV . Note that C(v) (∀v) are shared across all

tasks, that saves task correlations and further reduces the model size.
Then, based on (5), we have:

Wt = (a(1) ◦ · · · ◦ a(V ))� (Gt ×1 C
(1) · · · ×V C(V ))

= Gt ×1C
(1)· · ·×V C(V )×1 diag(a

(1)) . . .×V diag(a(V ))

= Gt ×1 (diag(a
(1))C(1)) · · · ×V (diag(a(V ))C(V ))

= Gt ×1 F
(1) ×2 F

(2) · · · ×V F(V ). (7)

where F(v) ∈ R
(dv+1)×rv = diag(a(v))C(v) and diag(a(v)) rep-

resents a diagonal matrix with the elements of a(v) on the main di-
agonal. Eq.(7) shows that applying tensor factorization to A and Bt

in (5) is equivalent to directly applying Tucker decomposition to Wt

and then promoting sparse F(v) by imposing sparsity constraint on
a(v). Therefore, we propose the optimization problem of MSTF:

min
a(v)≥0,C(v),Gt

m∑
t=1

1

nt

nt∑
i=1

L(yt,i, 〈Wt,Xt,i〉)+

V∑
v=1

(λ1‖a(v)‖1 + λ2‖C(v)‖2F ) + λ3

m∑
t=1

‖Gt‖2F ,

s.t.Wt=Gt×1F
(1). . .×V F(V ),F(v)=diag(a(v))C(v), ∀t,v, (8)

where λ1, λ2 and λ3 are positive hyperparameters. The l1-norm on
a(v) brings sparsity to F(v) and thus leads to sparse Wt. Compared
with vMSTF, two more advantages are achieved by MSTF. First,
the number of parameters decreases from (m + 1)

∏
v(dv + 1) to∑

v(dv +1)(rv +1)+m
∏

v rv(rv 
 dv, ∀v) by tensor factoriza-
tion. Second, tensor factorization brings deeper insight into relation-
ship among views and tasks, which can improve model performance
without physically building the weight tensor.

5 Theoretical Analysis

In this section, we will give the theoretical analysis3 for both vMSTF
and MSTF that reveals the equivalence between the two models and
a family of joint regularization with a general form of regularizers.
For vMSTF in (6), we introduce a general optimization problem:

min
A≥0,Bt

m∑
t=1

L(Wt) + λ1‖A‖kk + λ2

m∑
t=1

‖Bt‖pp,

s.t. Wt = A� Bt, t = 1, 2, ...,m, (9)

where k, p are two positive integers. In this paper, we mainly focus
on k, p ∈ {1, 2}. When k = 1, p = 2, (9) becomes (6). In this

section, we denote 1
nt

nt∑
i=1

L(yt,i, 〈Wt,Xt,i〉) by L(Wt) for brevity.

Then we have the following theorem:

Theorem 1 Let (Â, B̂t) be the optimal solution of problem (9) and
Ŵ be the optimal solution of the following optimization problem,

min
W

m∑
t=1

L(Wt) +γ

d1+1∑
i1=1

. . .

dV +1∑
iV =1

√
‖wi1...iV :‖p/qp , (10)

3 The proofs for Theorems 1 and 2 are provided in the supplement.

Table 1. A summary of conclusions from Theorems 1 and 2 with k, p ∈
{1, 2}. Ω1 and Ω2 denote the corresponding regularizers on wi1...iV : in
(10) and (F(v))i: in (13), respectively.

(k, p) γ
vanilla MSTF MSTF

Ω1(W) (A)i1...iV Ω2(F(v)) (a(v))i

(1,1) 2λ
1
2
1 λ

1
2
2 ‖wi1...iV :‖1/21

λ2
λ1

m∑
t=1

|(Bt)i1...iV | ‖(F(v))i:‖1/21
λ2
λ1

rv∑
j=1

|(C(v))ij |

(1,2) 2λ
2
3
1 λ

1
3
2 ‖wi1...iV :‖2/32

λ2
λ1

m∑
t=1

|(Bt)i1...iV |2 ‖(F(v))i:‖2/32
λ2
λ1

rv∑
j=1

|(C(v))ij |2

(2,1) 2λ
1
3
1 λ

2
3
2 ‖wi1...iV :‖2/31 (λ2

λ1
)
1
2

√
m∑
t=1

|(Bt)i1...iV | ‖(F(v))i:‖2/31 (λ2
λ1

)
1
2

√
rv∑
j=1

|(C(v))ij |

(2,2) 2λ
1
2
1 λ

1
2
2 ‖wi1...iV :‖2 (λ2

λ1
)
1
2

√
m∑
t=1

|(Bt)i1...iV |2 ‖(F(v))i:‖2 (λ2
λ1

)
1
2

√
rv∑
j=1

|(C(v))ij |2

where wi1...iV : ∈ R
m is the mode-(V + 1) fiber of

W = [W1; ...;Wm] ∈ R
(d1+1)×···×(dV +1)×m. When γ =

2

√
λ
p/kq
1 λ

2−p/kq
2 and q = (k + p)/2k, we have Ŵt = Â � B̂t.

In addition, task-shared Â is related to task-specific B̂t by:

(A)i1...iV = (
λ2

λ1
)

1
k k

√√√√
m∑
t=1

|(Bt)i1...iV |p, ∀i1, ..., iV . (11)

The above theorem shows that under some circumstances, (9) is
equivalent to (10), which leads to group sparsity of W by treating
the (i1, ...iV )-th interactions across tasks as a group and promote
sparsity at the inter-group level. In addition, the direct relationship in
(11) between A and Bt helps us to develop an efficient optimization
algorithm.

Similarly, we introduce another general optimization problem for
MSTF in (8):

min
a(v)≥0,

C(v),Gt

m∑
t=1

L(Wt)+
V∑

v=1

(λ1‖a(v)‖kk+λ2‖C(v)‖pp)+λ3

m∑
t=1

‖Gt‖2F ,

s.t.Wt=Gt×1F
(1). . .×V F(V ),F(v)=diag(a(v))C(v), ∀t,v. (12)

When k = 1, p = 2, (12) becomes (8). Then we have the following
theorem:

Theorem 2 Let (â(v), Ĉ(v), Ĝt) be the optimal solution of problem
(12) and (F̂(v), Ĝt) be the optimal solution of the following problem,

min
F(v),Gt

m∑
t=1

L(Wt)+γ
V∑

v=1

dv+1∑
i=1

√
‖(F(v))i:‖p/qp +λ3

m∑
t=1

‖Gt‖2F ,

s.t. Wt = Gt ×1 F
(1) ×2 F

(2) · · · ×V F(V ), ∀t, (13)

where (F(v))i: ∈ R
rv represents the i-th row of F(v). When

γ = 2

√
λ
p/kq
1 λ

2−p/kq
2 and q = (k + p)/2k, we have F(v) =

diag(a(v))C(v). In addition, â(v) is related to Ĉ(v) according to:

(a(v))i = (
λ2

λ1
)

1
k k

√√√√
rv∑
j=1

|(C(v))ij |p, ∀i. (14)

The above theorem shows that (12) is equivalent to (13) under
some circumstances and a(v) is relative to C(v). A summary of con-
clusions from Theorems 1 and 2 is shown in Table 1.

6 Optimization

Since (9) and (12) are general forms of vMSTF in (6) and MSTF in
(8), respectively, here we develop optimization algorithms for (9) and
(12). We show the algorithm for MSTF in this section and present the
algorithm for vMSTF in the supplement.
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6.1 Algorithm for MSTF

The optimization problem in (12) is convex w.r.t a(v),C(v) and Gt,
respectively, so we can use an alternating algorithm to solve it. Least
squared loss is used here and algorithms for other losses can be easily
extended. For clarity, we reformulate the loss in a matrix form. The
algorithm repeats following three steps until convergence.

1. Update C(v) with fixed a(v) and Gt. Let (Xt,i)(v), (Wt)(v) and
(Gt)(v) be the mode-v matricization of tensor Xt,i, Wt and Gt,
respectively. Then we get the subproblem w.r.t. C(v):

min
C(v)

m∑
t=1

1

nt
‖yt−Xt[(F

(−v)(Gt)(v)
T)⊗diag(av)]vec(C

(v))‖22

+ λ2‖vec(C(v))‖pp, (15)

where Xt denotes the data matrix of the t-th task with the i-
th row being vec((Xt,i)(v))

T , F(−v) = F(V ) · · · ⊗ F(v+1) ⊗
F(v−1) · · ·⊗F(1), and ⊗ represents the kronecker product. When
p = 1, (15) is a lasso problem which can be solved by acceler-
ated proximal gradient descent [21]. When p = 2, it is a ridge
regression problem which is solved by a closed-form solution.

2. Update a(v) with fixed C(v) and Gt. According to Table 1, a(v)

can be solved by a closed-form solution.
3. Update Gt with fixed a(v) and C(v). Let Xt with the i-th row

being vec(Xt,i)
T , then each task can be independently optimized

and the subproblem is a ridge regression problem:

min
Gt

1

nt
‖yt −Xt(F

(V ) ⊗ · · · ⊗ F(1))vec(Gt)‖22
+ λ3‖vec(Gt)‖22, (16)

which and can be solved by a closed-form solution.

Proposition 1 The proposed alternating algorithm does not in-
crease the objective value of (12) at each iteration, i.e.,

J(a(v)
(i+1)

,C(v)(i+1)
,G(i+1)

t )≤J(a(v)
(i)
,C(v)(i),G(i)

t ), (17)

in the (i+ 1)-th iteration, with J denoting its objective value.

It guarantees that the objective value of (12) will not increase in
each iteration. The proof of Proposition 1 and the Matlab code of
vMSTF and MSTF are given in the supplement.

6.2 Computational Analysis

For vMSTF, in each iteration, it has a linear time complexity in
the number of samples and tasks, which is O(mn(

∏
v(dv + 1))),

where n =
∑

t nt. Details of vMSTF are given in the sup-
plement. For MSTF, updating {C(v)}Vv=1 and {Gt}mt=1 require
O(mn(

∑
v rv(dv+1))) and O(mn

∏
v rV ), respectively. Calculat-

ing {a(v)}Vv=1 requires O(m(
∑

v(dv + 1))). Therefore, MSTF has
a total time complexity of O(mn

∏
v rv +mn(

∑
v rv(dv + 1))) in

each iteration, which is linear in the number of features, samples and
tasks. Since rv 
 dv , MSTF has much superiority in time complex-
ity compared to vMSTF, especially when the number V of views and
the dimension dv of each views are large.

Table 2. The statistics of used seven real-world datasets

Datasets V m dv nt Domain

FOX 2 4 747∼2711 1523 Text categorization
Emotions 2 6 8∼64 593 Music emotion detection
Yeast 2 14 24∼79 2417 Bioinformatics
NUS-Object 5 7 64∼225 10370 Image annotation
NUS-Scene 5 15 63∼224 16406 Image annotation
Mirflickr 6 38 100∼4096 25000 Image annotation
Corel5k 6 260 100∼4096 4999 Image annotation

7 Experiments

7.1 Experimental Setting

7.1.1 Synthetic Datasets

For synthetic datasets, we set the number of tasks and views as m =
5 and V = 2, respectively. Each task has the same number of samples
(n = 100) and each view has the same number of features (d = 19).
For A, a(1) and a(2) are randomly sampled from uniform distribution
U(0, 1). For Bt, C(v) ∈ R

(d+1)×rv and Gt ∈ R
r1×r2 are randomly

sampled from normal distribution N (0, 6), with r1 = r2 = 4. Then
A and Bt ∈ R

(d+1)×(d+1) can be generated by A = a(1) ◦ a(2)

and Bt = Gt ×1 C(1) ×2 C(2), respectively, and the weight tensor
Wt for each task is calculated by A � Bt. To make Wt sparse,we
assign zero values to selected entries of a(1) and a(2) according to
the indices {1 : 3, 7 : 9, 13 : 15, 19 : 20} and {1 : 3, 18 : 20},
respectively. Finally, the target of each sample is calculated by yt,i =

〈Wt,Xt,i〉+ ξt,i, where Xt,i ∈ R
(d+1)×(d+1) = [1;x

(1)
t,i ] ◦ [1;x(2)

t,i ]

and x
(v)
t,i is randomly sampled from normal distribution N (0, 5) and

ξt,i ∼ N (0, 0.01) denotes the stochastic noise.

7.1.2 Real-World Datasets

Experiments are conducted on seven real-world datasets: FOX4,
Emotions5, Yeast5, NUS-Object6, NUS-Scene6, Mirflickr7 and
Corel5k8. Their statistics are summarized in Table 2. More details
are shown in the supplement.

7.1.3 Comparing Methods

We compare MSTF9 with three types of methods: MTL, MVMTL
and baseline. For MTL, we use MMTFL [28], VSTG [9] and
KMSV [2] as the comparing methods. MMTFL uses multiplica-
tion method to do feature selection, VSTG performs variable selec-
tion and learns group structure, and KMSV applies a new tight ap-
proximation for rank constraint. For MVMTL, we use MFM [19],
racMVMT [15] and SPLIT [24] as the comparing methods. Both
MFM and racMVMT are tensor-based MVMTL methods, while
SPLIT is a multiplicative matrix-based model. Lasso [26] is used
as the baseline. The proposed vMSTF and MSTF are implemented
based on the specific choices of k and p in (9) and (12): vMSTF uses
k = 1 and p = 2, and MSTF uses k = 2 and p = 2.

4 https://sites.google.com/site/qianmingjie/home/datasets/
5 https://sourceforge.net/projects/mulan/files/datasets/
6 http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
7 https://press.liacs.nl/mirflickr/
8 https://github.com/watersink/Corel5K/
9 We provide the MATLAB code of vMSTF and MSTF at: https://github.

com/xywang27/MSTF
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Table 3. Experimental results on seven real-world datasets. The best results of each dataset are highlighted in boldface.

Dataset metric Lasso MMTFL VSTG KMSV MFM racMVMT SPLIT vMSTF MSTF

FOX
ACC .920(.007) .909(.006) .915(.007) .977(.004) .979(.002) .889(.019) .916(.008) .976(.003) .979(.003)

AUC .996(.001) .996(.001) .996(.001) .996(.000) .996(.002) .994(.001) .997(.001) .996(.001) .997(.001)

Emotions
ACC .732(.018) .716(.011) .726(.016) .796(.013) .783(.013) .729(.016) .732(.015) .799(.010) .785(.007)
AUC .835(.010) .813(.015) .841(.015) .836(.006) .841(.011) .833(.016) .839(.011) .842(.014) .820(.008)

Yeast
ACC .603(.004) .571(.013) .581(.017) .800(.003) .805(.006) .576(.005) .591(.009) .805(.003) .807(.002)

AUC .685(.008) .646(.011) .688(.007) .701(.003) .741(.015) .685(.017) .691(.007) .707(.008) .708(.012)

NUS-Object
ACC .678(.007) .661(.010) .644(.012) .884(.005) .889(.008) .655(.011) .646(.006) .885(.006) .892(.004)

AUC .884(.005) .883(.007) .846(.017) .885(.006) .886(.003) .883(.008) .857(.017) .884(.011) .891(.012)

NUS-Scene
ACC .633(.005) .598(.005) .593(.019) .903(.003) .902(.004) .592(.008) .601(.006) .903(.002) .905(.003)

AUC .815(.006) .807(.006) .779(.013) .812(.005) .800(.004) .804(.009) .775(.011) .809(.007) .817(.013)

Mirflickr
ACC .586(.012) .594(.009) .603(.015) .627(.005) .580(.020) .604(.008) .545(.021) .617(.000) .663(.000)

AUC .639(.006) .637(.009) .637(.014) .476(.017) .571(.023) .650(.009) .577(.012) .594(.000) .663(.000)

Corel5k
ACC .603(.010) .610(.041) .586(.052) .786(.062) .777(.015) .601(.022) .511(.013) .818(.000) .829(.000)

AUC .692(.026) .670(.040) .652(.039) .507(.019) .728(.030) .679(.032) .551(.021) .577(.001) .677(.001)

(a) Designed W∗
::1 (b) W::1 by vMSTF (c) W::1 by MSTF

Figure 2. Illustration of sparse structures in weight tensor W ∈ R
20×20×5

recovered by vMSTF and MSTF on the synthetic dataset. Here the first frontal
slice W::1 ∈ R

20×20 is shown. The darker the color, the larger the values,
and white means zero.

7.1.4 Configuration

For each task, we randomly select 60%, 20% and 20% of total
samples as training set, validation set and testing set, respectively.
We repeat this procedure five times and report the mean value and
standard deviation of two metrics: Accuracy (ACC) and Area Un-
der ROC-Curve (AUC). For grid search, the regularization coeffi-
cients of all the comparing methods and vMSTF are selected from
{10−5, 10−4, · · · , 105}. The regularization coefficients of MSTF
are selected from {10−8, 10−7, · · · , 102}. For VSTG and KMSV,
the number K of bases is selected from {1, 2, 3, 4}, and k of k-
support norm in VSTG is selected from {1, 2, 3}. For MFM, the di-
mension R of latent factors is fixed to be 20, as recommended in [19].
In SPLIT, the number of latent topics is selected from {1, 2, 3, 4}. In
the proposed MSTF, we set a latent factor ratio α = rv

dv+1
, ∀v and

select it from {0.05, 0.1, 0.15, ..., 0.5}. For each algorithm, we set
the maximum number of iterations to be 1000 and terminate it once
the relative change of its objective value is less than 10−4.

7.2 Experiments on Synthetic Datasets

7.2.1 Illustration of Feature Interaction Selection

We investigate the effect of feature interaction selection by vM-
STF and MSTF on the synthetic dataset. Figure 2 shows the re-
sult of the first frontal slice W::1 ∈ R

20×20 of the weight tensor
W ∈ R

20×20×5, which models zero-order, first-order and second-
order feature interactions in the first task. The results of the other
slices are omitted, as they exhibit similar patterns. Here W∗

::1 in Fig-
ure 2(a) denotes the designed pattern, W::1 in Figure 2(b) is learned
by vMSTF with λ1 = 103 and λ2 = 1, and W1 Figure 2(c) is
learned by MSTF with λ1 = λ2 = λ3 = 0.1 and α = 0.2. As

(a) Correlation modeling (b) Running time

Figure 3. Study on correlation modeling (a) and running time (b) on the
synthetic datasets. In (a), the latent factor ratio α is varied from 0.05 to 0.5
by step 0.05 and three synthetic datasets are generated with different α∗ ∈
{0.2, 0.25, 0.3}. In (b), experiments are conducted on five synthetic datasets,
which are generated by varying the number of views V from 2 to 6. RMSE
and running time in seconds is shown in logarithm scale.

shown in Figure 2, both vMSTF and MSTF successfully recover the
sparse structure in the weight tensor, by selecting the designed sub-
set of mode-3 fibers of W , which are shared across five tasks. Since
W∗

::1 is designed according to the setting of MSTF, MSTF recovers
the underlying sparse pattern better than vMSTF.

7.2.2 Analysis on Correlation Modeling and Running Time

To show the effectiveness of tensor factorization on modeling task-
view correlations, we generate three synthetic datasets with α∗ ∈
{0.2, 0.25, 0.3} and apply MSTF by changing α from 0.05 to 0.5 by
step 0.05. As the synthetic datasets belong to the regression problem,
Root Mean Squared Error (RMSE) is used as the metric. We report
the results of MSTF in Figure 3(a). It shows that on three datasets,
RMSE drops first and then stabilizes as α increases, and MSTF al-
ways performs the best when α = α∗. Therefore, once the interac-
tions are modeled by a small number of latent factors, MSTF has a
chance to improve its performance in less model complexity.

To compare the running time of vMSTF and MSTF, we conduct
an experiment on five synthetic datasets by varying the number V
of views from 2 to 6. Experimental results are shown in Figure 3(b).
It shows that the running time of vMSTF rapidly increases as V in-
creases, due to its exponentially growth of the model size w.r.t. V .
The running time of MSTF grows much more slowly compared to
vMSTF. Therefore, we can conclude that MSTF can reduce the com-
putational time by tensor factorization, especially when the number
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(a) Yeast (b) NUS-Object

Figure 4. Comparison of different variants (k, p ∈ {1, 2} in (9) and (12))
of vMSTF and MSTF in ACC on the Yeast and NUS-Object datasets.

of views is large, and achieve high performance at the same time,
once the dataset indeed exhibits a small number of latent factors.

7.3 Experiments on Real-World Datasets

7.3.1 Evaluation on Comparing Methods

We conduct experiments on seven real-world datasets, and report the
results in Table 3, where the best results are highlighted in bold-
face. From Table 3, we find that vMSTF and MSTF together per-
form the best in 12 out of total 14 cases. This performance superi-
ority of vMSTF and MSTF on solving MVMTL problems probably
results from their capability on collectively capturing full-order in-
formation in multilinear predictive models and selecting useful in-
teractions shared accross tasks. MFM obtains the best result in AUC
on the Yeast and the Corel5k dataset, which shows the necessity to
capture full-order interactions in dual-heterogeneous datasets. SPLIT
and racMVMT are not as competitive as MFM, vMSTF and MSTF,
since SPLIT only considers first-order interactions and can not learn
a sparse and interpretable model, and racMVMT only saves second-
order interactions. As a matrix-based MTL method, MMTFL does
not perform very well, which demonstrates that simply promoting
sparsity in first-order linear model might not be effective enough to
deal with complex practical problems. KMSV outperforms MMTFL
and VSTG, which shows the importance of task correlation modeling
by imposing low-rank constraint on the weight matrix.

7.3.2 Analysis on Different Variants of vMSTF and MSTF

To evaluate the different variants of vMSTF and MSTF, experiments
are conducted by selecting k, p ∈ {1, 2} in (9) and (12), and the
results in ACC on the Yeast and NUS-Object datasets are shown in
Figure 4. The results on other datasets are given in the supplement.
As shown in Figure 4, we can find that for both vMSTF and MSTF,
the best performance is achieved when k = 2 and p = 2. In contrast,
the performance is the worst when k = 1 and p = 1. This indicates
that promoting strong sparsity (small values of k and p) may not be
suitable for some real-world datasets. In practice, setting an appro-
priate degree of sparsity is preferred for both vMSTF and MSTF.

7.3.3 Hyperparameter Sensitivity Analysis

Hyperparameter sensitivity analysis of the four hyperparameters
(λ1, λ2, λ3 and α) of MSTF is conducted on the NUS-Object dataset.
Specifically, λ1 and λ2 control the sparsity of task-shared A and task-
specific Bt, respectively, λ3 controls the strength of regularization on
the core tensor Gt and the factor ratio α controls the number of latent

(a) λ2 = λ3 = 10−3 (b) λ1 = λ3 = 10−3 (c) λ1 = λ2 = 10−3

Figure 5. Sensitivity analysis of λ1, λ2, λ3 and α of MSTF in AUC on the
NUS-Object dataset. Values (shown in the logarithm scale) of λ1, λ2, λ3 are
selected from {10−8, 10−7, ..., 102} while the value of α is selected from
{0.05, 0.1, ..., 0.5}.

(a) Yeast (b) NUS-Object

Figure 6. Convergence analysis of MSTF on two datasets. Algorithm con-
verges at 104th and 76th iterations on Yeast and NUS-Object, respectively.

factors. We select λ1, λ2, λ3 from {10−8, 10−7, ..., 102}, and select
α from {0.05, 0.1, ..., 0.5}. Experimental results are shown in Fig-
ure 5. The first experiment in (a) is conducted by fixing λ2 = λ3 =
10−3 and similar setting is applied in (b) and (c). From Figure 5,
we reach two conclusions: (1) As α increases, the performance rises
first and then stabilizes. It reaches the best when α is around 0.2; (2)
The best performance on the NUS-Object dataset is achieved when
λ1 ≤ 10−3 and λ2, λ3 ≤ 10−2. Typically, it is recommended to set
small values to λ1, λ2 and λ3, and set α between 0.1 and 0.4.

7.3.4 Convergence analysis

Convergence analysis of MSTF is conducted on the Yeast and the
NUS-Object dataset, where hyperparameters are fixed by λ1 = λ2 =
λ3 = 10−3 and α = 0.2. We terminate the algorithm once the rela-
tive change of the objective value is below 10−4 and report the con-
vergence curves in Figure 4. Figure 4 shows that the objective value
usually converges after a few number of iterations, which demon-
strates the effectiveness and efficiency of the proposed algorithms.

8 Conclusion

In this paper, we propose a multiplicative sparse tensor factoriza-
tion (MSTF) method for MVMTL, which considers full-order inter-
actions using a tensor structure and selects useful interactions across
tasks by multiplicative decomposition. Thanks to tensor factoriza-
tion, the number of model parameters is significantly reduced and a
consensus latent feature representation is learned. Theoretical anal-
ysis reveals the equivalence between MSTF and a family of formu-
lations with a general form of joint regularization, which essentially
promotes group sparse structure on the weight tensor. We develop an
efficient alternating algorithm to solve the optimization problems of
MSTF and vMSTF, and show its effectiveness on both synthetic and
real-world dual-heterogeneous datasets.
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