

Orbital Engineering in Silleń −**Aurivillius Phase Bismuth Oxyiodide Photocatalysts through Interlayer Interactions**

Kanta [Ogawa,](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kanta+Ogawa"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) [Hajime](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hajime+Suzuki"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) Suzuki, Aron [Walsh,](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Aron+Walsh"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf)[*](#page-7-0) and [Ryu](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ryu+Abe"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) Abe[*](#page-7-0)

Cite This: *Chem. Mater.* 2023, 35, [5532−5540](https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.chemmater.3c00932&ref=pdf) **Read [Online](https://pubs.acs.org/doi/10.1021/acs.chemmater.3c00932?ref=pdf)**

ABSTRACT: Multicomponent inorganic compounds containing post-transitionmetal cations such as Sn, Pb, and Bi are a promising class of photocatalysts, but their structure−property relationships remain difficult to decipher. Here, we report three novel bismuth-based layered oxyiodides, the Sillén–Aurivillius phase Bi₄NbO₈I, Bi₅BaTi₃O₁₄I, and Bi₆NbWO₁₄I. We show that the interlayer Bi–Bi interaction is a key to controlling the electronic structure. The replacement of the halide layer from Cl to I negatively shifts not only the valence band but also the conduction band, thus providing lower electron affinity without sacrificing photoabsorption. The suppressed interlayer chemical interaction between the 6p orbitals of the Bi lone-pair cations reduces the conduction bandwidth. These

oxyiodides have narrower band gaps and show much higher water oxidation activities under visible light than their chloride counterparts. The design strategy has not only provided three novel Bi-based photocatalysts for water splitting but also offers a pathway to control the optoelectronic properties of a wider class of lone-pair $(\rm ns^2np^0)$ semiconductors.

■ **INTRODUCTION**

Semiconductors containing post-transition metals are promising candidates for efficient solar-to-energy conversion owing to the electronic structure contributions of the s^2 lone-pair electrons, e.g., as found for Bi(III) or $Pb(II).^{1-3}$ $Pb(II).^{1-3}$ $Pb(II).^{1-3}$ $Pb(II).^{1-3}$ $Pb(II).^{1-3}$ These cation s^2 orbitals hybridize with the anion p orbitals to form the valence band maximum (VBM) that determines the oxidation potential of the compound. For example, Bi 6s−O 2p hybridization reduces O 2p localization and results in a valence band more negative than conventional oxides such as $TiO₂$ or SrTiO₃, which enhances the visible-light photocatalytic response (e.g., in BiVO_4 BiVO_4 , $\overset{4}{}^5$ $\overset{4}{}^5$ $\text{Bi}_4\text{NbO}_8\text{Cl}$, $\overset{2}{}^6$ $\overset{2}{}^6$ $\overset{2}{}^6$ $\overset{2}{}^6$ and $Pb_2Ti_2O_{5.4}F_{1.2}^{7}$. Similarly, Pb 6s–O 2p hybridization in PbWO4 not only shifts the VBM negatively but also enhances the hole mobility.⁸ In the related lead halide perovskites, lone-pair hybridization is also key to their defect-tolerant nature.^{[9](#page-7-0)} In contrast to the valence band, the conduction band minimum (CBM) is largely formed by the empty and more diffuse cation p orbitals, which affords good electron conductivity owing to the low effective mass and spatially delocalized conduction $band.¹⁰$

In the field of photocatalysis, Bi-based materials have emerged as promising photocatalysts for dye degradation,^{[11,12](#page-7-0)} water splitting, $6,13,14$ $6,13,14$ $6,13,14$ and CO_2 reduction.^{[15](#page-8-0)} An important family is Bi (or Pb)-based oxyhalides with layered crystal structures. The common moiety in their structures is the Bi/Pb oxide-based fluorite-like layer, $[M_2O_2]$, intergrown with single, double, or triple halide layers, $[X]$, $[X_2]$, or $[M'_xX_3]$, which is the so-called Sillen phase. Sillen phase materials include BiOCl, PbBiO₂Cl, and PbBi₃O₄Cl₃ photocatalysts.^{[16](#page-8-0),[17](#page-8-0)} The Sillen phases can further intergrow with an Aurivillius phase

containing a perovskite layer, of general formula $[Bi_2O_2]$ -[A*n*[−]1B*n*O3*n*+1], producing a Silleń −Aurivillius phase of the general formula $[A_2O_2][X_n][A_2O_2][A'_{m-1}B_mO_{3m+1}],$ represented by its simplest member Bi_4NbO_8Cl (i.e., $n = 1$, $m =$ 1), which itself is a promising water-splitting photocatalyst.¹⁸ These Sillén and Sillén-Aurivillius photocatalysts also feature electronic signatures of the lone-pair cations, including an elevated valence band suitable for visible-light water splitting, along with robustness against self-oxidation by holes. Notably, the latter has been challenging to achieve for low-electronegative anions such as S^{2-} or N^{3-} due to facile oxidation by photogenerated holes. Additionally, the lower part of the conduction band of Sillén and Sillén-Aurivillius mainly consists of cation p orbitals favorable for electron transfer, $1,10,19$ $1,10,19$ $1,10,19$ $1,10,19$ while in conventional photocatalysts, more localized cation d (Ti 3d, V 3d, Nb 4d, Ta 5d, W 5d) orbitals are present.^{[20](#page-8-0)}

Owing to the specific electronic structure of Sillen and Sillén–Aurivillius compounds due to the s² lone-pair electrons of Bi or Pb, a unique strategy is required to control and design the material properties such as band gaps, band edge positions, and carrier mobilities. While the cation−anion orbital interactions described earlier are one component, there are

Received: April 19, 2023 Revised: June 27, 2023 Published: July 12, 2023

other factors, such as the coordination environment (i.e., the Madelung site potential), which contribute to the unique VBM character. 21 In addition, it has been shown that the introduction of less ionic iodine in $Bi_3Ba_2Nb_2O_{11}X$ with a double perovskite layer $(n = 2)$ electrostatically destabilizes oxygen sites in the perovskite layer and modifies the valence band energy. 22 On the other hand, design strategies for the conduction band have not yet been established. Although the electronic structure of Bi-based layered oxyhalides has been calculated based on density functional theory (DFT) ,^{[2,3](#page-7-0),[6,14,](#page-7-0)[23,24](#page-8-0)} few studies probe the details of the conduction band. While the negative shifting of the CBM of the Bi-based layered oxychloride has been achieved by changing the intralayer interaction of Bi and O in a Silleń Bi₂MO₄Cl ($M =$ Bi₂, La₁, Y₁), this shift is accompanied by breaking the Bi−O bonds, decreasing photoconductivity, and widening the band bap, which significantly deteriorates the photocatalytic activity.²

In this study, we demonstrate that the conduction band can be controlled without widening the band gap or sacrificing photocatalytic activity. This is achieved by changing the interlayer cation−cation interactions. Although Silleń −Aurivillius oxyhalides exhibit great structural variety, 18 most synthesis reports are on the chlorides with few on oxyiodides 26,27 26,27 26,27 because the oxyiodides had been considered to be unstable as photocatalysts until the discovery of the first oxyiodide water oxidation photocatalyst $Bi_3Ba_2Nb_2O_{11}L^{22}$ $Bi_3Ba_2Nb_2O_{11}L^{22}$ $Bi_3Ba_2Nb_2O_{11}L^{22}$ Here, we synthesized three novel layered perovskite oxyiodides, Bi_4NbO_8I , $Bi_5BaTi_3O_{14}I$, and $Bi_6NbWO_{14}I$ (Figure 1a−c), by introducing iodine into various Silleń −Aurivillius

Figure 1. Crystal Structures of Sillén-Aurivillius oxyhalides (a) Bi_4NbO_8X (*n* = 1), (b) $Bi_3Ba_2Nb_2O_{11}X$ (*n* = 2), and (c) Bi₅BaTi₃O₁₄X (*n* = 3) and (d) Sillen–Aurivillius-related oxyhalide $Bi_6NbWO_{14}X$. For $n = 3$, the occupancy ratios in Bi/Ba1 and Bi/Ba2 sites are 0.63:0.37 and 0.87:0.13, respectively.

oxyhalides beyond $n = 2$. The iodine negatively shifts both band edges, which is in stark contrast to the case of $n = 2$. The origin of the conduction band shift is discussed from the perspective of the interlayer Bi−Bi interaction. The developed oxyiodides have narrower band gaps than the oxychlorides owing to the elevated valence bands, functioning as water oxidation photocatalysts under visible light with much higher activities than their chloride counterparts.

■ **RESULTS AND DISCUSSION**

Synthesis. The three oxyiodides were synthesized via the solid-state reaction method. [Figure](#page-2-0) 2a shows the synchrotron powder X-ray diffraction (SXRD) pattern of $Bi₄NbO₈I$, where Rietveld refinement confirmed the successful synthesis of the targeted material. The structure was further analyzed using neutron powder diffraction (NPD; [Figure](https://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.3c00932/suppl_file/cm3c00932_si_001.pdf) S1) to produce the refined structure in [Table](https://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.3c00932/suppl_file/cm3c00932_si_001.pdf) S1. Notably, $Bi₄NbO₈I$ has been considered difficult to be synthesized because of the lattice mismatch between the perovskite $[NbO₄]$ layer and the fluorite $[Bi_2O_2]$ layer.^{[26](#page-8-0)} We employed Bi_3NbO_7 , which has an oxygen-deficient fluorite structure,²⁸ as a precursor of Nb species [\(Figure](https://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.3c00932/suppl_file/cm3c00932_si_001.pdf) S2), while the previous attempt used a "rigid" oxide containing perovskite structure of the $NbO₄$ unit, such as $BiNbO₄²⁶$ $BiNbO₄²⁶$ $BiNbO₄²⁶$ This result indicates that not only the lattice matching but also the choice of the precursor materials affects the success or failure of synthesis of the targeted layered structures. We also successfully synthesized $Bi_5BaTi_3O_{14}I$ ($n=$ 3) and $Bi_6NbWO_{14}I$ [\(Figures](https://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.3c00932/suppl_file/cm3c00932_si_001.pdf) S3 and S4, XRD patterns). Highangle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images recorded parallel to the layers, along with the STEM/energy-dispersive X-ray spectroscopy (EDX) line scan analysis and elemental mapping ([Figures](#page-2-0) 2b−d and S5−[S7](https://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.3c00932/suppl_file/cm3c00932_si_001.pdf)), are consistent with each crystal structure obtained from the XRD analysis. SEM-EDX mapping images of these oxyhalides show a uniform distribution of the constituted elements at a stoichiometric elemental ratio, further confirming the successful formation of these products ([Figure](https://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.3c00932/suppl_file/cm3c00932_si_001.pdf) S8).

Band Gaps and Band Edge Positions. The oxyiodides have narrower band gaps than the corresponding chloride counterparts because of the negatively shifted valence bands, as with the previously reported case of $Ba₂Bi₃Nb₂O₁₁I$ $(n = 2)^{22}$ $(n = 2)^{22}$ $(n = 2)^{22}$ ([Figure](#page-2-0) 3). [Figure](#page-2-0) 3b summarizes the band edge positions of the oxyiodides and the corresponding oxychloride. Based on the n-type character of these materials [\(Figure](https://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.3c00932/suppl_file/cm3c00932_si_001.pdf) S9), the flatband potential determined via Mott−Schottky analysis was considered the bottom of the conduction band.²⁹ In addition to the three novel oxyiodides, the band positions of BaMBi₃Nb₂O₁₁I (M = Ba, Sr, Ca) with the double perovskite layer ($n = 2$; [Figure](https://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.3c00932/suppl_file/cm3c00932_si_001.pdf) S4) were also shown. While the $n = 2$ with $M = Ba$ was reported as a photocatalyst,^{[22](#page-8-0)} the optical properties of its Sr and Ca substitutes have remained elusive despite there being a synthesis report.²⁷ The valence band energies of all of the oxyiodides are negative compared to those of the chloride counterparts, being mainly composed of O 2p ([Figure](https://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.3c00932/suppl_file/cm3c00932_si_001.pdf) S10). The high polarizability of iodine energetically destabilizes the oxygen in the perovskite layer, contributing to the negatively shifted VBM^{[22](#page-8-0)} [\(Figure](https://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.3c00932/suppl_file/cm3c00932_si_001.pdf) S11).

A notable difference from the case of $n = 2$ is the conduction band position shifted by iodine introduction. While the iodine introduction to $n = 2$ exert little influence on the CBM,^{[22](#page-8-0)} the other oxyiodides (Bi_4NbO_8I , $Bi_5BaTi_3O_{14}I$, and $Bi_6NbWO_{14}I$) have about 0.14−0.16 eV negatively shifted compared to its

Figure 2. (a) Rietveld refinement of the SXRD pattern of prepared Bi₄NbO₈I. The refined structure is shown in [Table](https://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.3c00932/suppl_file/cm3c00932_si_001.pdf) S1. (b−d) HAADF-STEM images: atomic-resolution STEM-EDX elemental maps of (b) Bi_4NbO_8I along the $[100]_t$ direction, (c) $Bi_5BaTi_3O_{14}I$ along the $[110]_t$ direction, and (d) $Bi_6NbWO_{14}I$ along the $[110]_t$ direction.

Figure 3. Optical absorption spectra (a) and band edge positions (b) of the series of oxychlorides and oxyiodides: $Bi₄NbO₈X$, $BaM Bi_3Nb_2O_{11}X$ (M = Sr, Ca), $Bi_5BaTi_3O_{14}X$, and $Bi_6NbWO_{14}X$. The band edge positions were estimated from Mott−Schottky plots in 0.1 M phosphate buffer solution (pH 6), as shown in [Figure](https://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.3c00932/suppl_file/cm3c00932_si_001.pdf) S9. Considering the n-type characters of these materials, the flat-band potentials were considered the conduction band minima.

chloride counterparts (Figure 3b). Namely, both band edges are negatively shifted in energy by iodine introduction, where the degree of the shift is larger for the valence band, enabling a negative conduction band shift without sacrificing photoabsorption.

Origin of the Conduction Band Shift. To gain deeper insights into the origins of the observed behavior, we performed quantum chemical analysis using DFT. [Figure](#page-3-0) 4a shows the calculated electronic density of states of $Bi₄NbO₈Cl$. While the upper valence band is composed of O 2p orbitals, the lower conduction band shows highly dispersed (low density) nature mainly from Bi 6p*^z* [\(Figure](#page-3-0) 4b,c). As shown in [Figure](#page-3-0) 4d, the lower conduction band is characterized by charge density connecting two Bi atoms across the halide layer; it is formed by the overlap of Bi 6p*^z* orbitals. This observation is consistent with previous reports on Bi-based layered oxyhalides,^{[23](#page-8-0),[30](#page-8-0)} although its origin has not been addressed. Here, we propose an explanation by considering the revised lone-pair model $¹$ and formation via interlayer band formation.</sup>

Let us start with the intralayer interaction between Bi and O in the O−Bi−O block in the fluorite layer. The active orbitals of the ionic building blocks are Bi $6s^26p^0$ and O $2p^6$. Overlap between Bi 6s and O 2p results in filled bonding and antibonding combinations. The antibonding combination is formed in the upper valence band [\(Figure](#page-3-0) 5). However, the secondary mixing of the nominally empty Bi 6p orbitals results in energetic stabilization with a stereochemically active Bi lone pair. Most studies have focused on the valence band effects (e.g., BiVO₄,^{[4,5](#page-7-0)} Bi₄NbO₈Cl,^{2,6} and Pb₂Ti₂O_{5.4}F_{1.2}^{[7](#page-7-0)}) that arise from the filled bonding component of Bi 6p. Here, we are concerned with the empty antibonding component that forms the lower conduction band.

In Bi₄NbO₈Cl and other Sillenⁱ and Sillen–Aurivillius phases, two Bi atoms in different fluorite layers face each other across the halide layer. Umezawa et al. have shown that the CBM of SnO with a layered structure is formed by the interlayer Sn−Sn interaction.[31](#page-8-0) The interlayer Bi−Bi distance in the present materials (e.g., 3.9 Å in Bi_4NbO_8Cl)^{[32,33](#page-8-0)} is comparable to the Sn–Sn distance in SnO (3.8 Å) ,^{[31](#page-8-0)} which suggests that the

Figure 4. (a–c) Projected electronic density of states (PDOS) of Bi₄NbO₈Cl calculated by DFT. (d, e) Charge distribution of the lower part of the conduction band minimum (CBM) for Bi_4NbO_8X , where $X = (d)$ Cl and (e) I.

Figure 5. Formation of the conduction band of the Silleń −Aurivillius compounds via the intra- and interlayer interactions. Through the intralayer interaction (left side), the antibonding Bi 6s/O 2p combination further interacts with Bi 6p_z to produce occupied bonding (antibonding + p_z) and unoccupied antibonding (antibonding + p_z)* levels. The latter further interacts with another (antibonding + p_z)* via the interlayer interaction to form the conduction band. The resulting conduction band minimum (right side) is affected by the interlayer Bi−Bi distance, which can be altered by the halide layer. On the other hand, the occupied (antibonding + p*z*) level lies within the valence band, while the perovskite layer contributes to the bottom of the valence band [\(Figure](https://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.3c00932/suppl_file/cm3c00932_si_001.pdf) S13).

interlayer interaction should also be considered in the present case. Such interlayer interaction can form a band (Figure 5). This description can explain the characteristic charge density shown in Figure 4d, where the conduction band is derived from the Bi−Bi 6p interaction. Crystal orbital Hamilton population analysis further confirms the favorable chemical interaction between adjacent Bi sites [\(Figure](https://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.3c00932/suppl_file/cm3c00932_si_001.pdf) S12).

The negative shift by replacing Cl with I can be explained using this model. The Bi−Bi interlayer interaction is lowered by iodine introduction because replacement of Cl with I having a larger ionic size increases the Bi−Bi distance (Figure 4e).

This change narrows the conduction bandwidth, which results in a negative shift of the CBM (Figure 5). Note that the change in the average Bi−O distance of the Bi next to the halide layer accompanied by the replacement of Cl with I is small (from 2.22 to 2.23 Å).

In contrast to three novel oxyiodides ($Bi₄NbO₈I$ (*n* = 1), $Bi_5BaTi_3O_{14}I$ (*n* = 3), and $Bi_6NbWO_{14}I$), the iodine introduction to $BaMBi_3Nb_2O_{11}Cl$ (*n* = 2) exerts little influence on the conduction band position ([Figure](#page-2-0) 3b), although it increases the Bi−Bi interlayer distance. The notable difference is found in the density of states [\(Figure](https://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.3c00932/suppl_file/cm3c00932_si_001.pdf) S14); while Bi 6p

Figure 6. Electronic band structures of (a) Bi₄NbO₈Cl ($n = 1$), (b) Bi₅BaTi₃O₁₄Cl ($n = 3$), (c) Bi₆NbWO₁₄Cl, and (d) Ba₂Bi₃Nb₂O₁₁Cl ($n = 2$).

forms the CBM of Bi_4NbO_8Cl ($n = 1$), $Bi_5BaTi_3O_{14}Cl$ ($n = 3$), and $Bi₆NbWO₁₄Cl$, the B-site cation in the perovskite layer (Nb 4d) also contributes to the lower conduction band in $Ba_2Bi_3Nb_2O_{11}Cl$ ($n=2$). This difference is clearly seen in band dispersion (Figure 6), where the conduction bands of Bi_4NbO_8Cl , $Bi_5BaTi_3O_{14}Cl$, and $Bi_6NbWO_{14}Cl$ are derived from highly dispersive Bi 6p, while for *n* = 2, Nb 4d forms a second dispersive band slightly higher in energy. For the iodide of $n = 2$, this Nb d_{x2-y2} band actually forms the CBM; the increased Bi−Bi distance reduces the Bi-derived bandwidth ([Figure](https://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.3c00932/suppl_file/cm3c00932_si_001.pdf) S15b), but it no longer alters the Nb-derived CBM position. We note that the highly dispersive nature of the Nb band only in $n = 2$ may be due to the less tilted octahedron in the perovskite layer ([Figure](#page-1-0) 1). Nb d*x*2−*y*2, which is the lowest energy orbital in the compressed octahedral geometry of the perovskite layer of $n = 2$ [\(Figure](https://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.3c00932/suppl_file/cm3c00932_si_001.pdf) S15d), forms the lowest energy bond via *π** interaction with O 2p [\(Figure](https://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.3c00932/suppl_file/cm3c00932_si_001.pdf) S15e). Smaller tilting usually provides stronger *π** interaction (i.e., higher dispersion of d orbital).^{[34](#page-8-0)} In fact, the introduction of distortion to the perovskite layer in $n = 2$ significantly reduces the Nb contribution to the bottom of the conduction band ([Figure](https://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.3c00932/suppl_file/cm3c00932_si_001.pdf) S16). The more compressed Nb octahedra in the iodide of $n = 2$ [\(Figure](https://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.3c00932/suppl_file/cm3c00932_si_001.pdf) S15f) may also contribute to the small shift of the CBM by further stabilizing the Nb 4d*x*2−*y*² orbital.

In the present Sillén–Aurivillius materials, while the lower conduction band is largely composed of the fluorite layer, the upper valence band is composed of the perovskite layer.^{14,[22,35](#page-8-0)} Their positions are dominated by different factors; the CBM is affected by the interlayer Bi−Bi distance of the two fluorite layers, while the VBM is affected by the energetic stability of the oxygen in the perovskite layer. The iodine introduction exerts influence on each band edge through different mechanisms (i.e., the elongated Bi−Bi distance and the electrostatic destabilization of the O site, respectively), which enables the negative shift of both band positions simultaneously. Thus, the CBM negative shift occurs without

sacrificing photoabsorption. This is in stark contrast to SnO, where the same factor determines the positions of both the valence and conduction bands. 31 Therein, decreasing the interlayer Sn−Sn interaction narrows the bandwidth of both bands, resulting in the negative shift of CBM, the positive shift of the VBM, and thus a widened band gap.

Photocatalytic Activity. Table 1 summarizes the photocatalytic water oxidation activities of each sample under visible

Table 1. Photocatalytic Water Oxidation Activities of Each Sample under Visible Light in the Presence of $Ag⁺$ Electron Acceptors*^a*

			initial rate of O_2 evolution $(\mu$ mol h ⁻¹)	
no.	compound	Сl		
1	$Bi4NbO8X$ $(n = 1)$	4.8	41.5	
2	$Ba_2Bi_3Nb_2O_{11}X$ $(n = 2)$	4.7	37.6	
3	$BaSrBi3Nb2O11X$	7.7	62.0	
4	$BaCaBi3Nb2O11X$	6.2	32.3	
5	$Bi_5BaTi_3O_{14}X$ $(n = 3)$	4.3	24.2	
6	$Bi_{6}NbWO_{14}X$	13.8	89.6	

a Reaction conditions: photocatalyst (0.1 g) dispersed in aqueous AgNO₃ solution (8 mM, 100 mL); light source, Xe lamp (300 W) fitted with an L42 cutoff filter for visible-light irradiation (*λ* > 400 nm).

light in the presence of electron acceptors (Ag+). All of the oxyiodides function as water oxidation photocatalysts and show O_2 evolution. This is in contrast to the case of Bi_2MO_4Cl , where the negative shift of the conduction band is accompanied by the loss of photocatalytic activity due to the broken Bi−O bonds. The photocatalytic activity of each oxyiodide is found to be superior to that of the oxychloride counterpart.

Considering that the iodides show higher photocatalytic activity even under monochromatic light (i.e., have higher apparent quantum efficiency at 405 nm) than the chloride counterparts [\(Table](https://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.3c00932/suppl_file/cm3c00932_si_001.pdf) S2), the positive influence of iodine should extend beyond the band gap narrowing. Indeed, the carrier effective masses are affected [\(Table](https://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.3c00932/suppl_file/cm3c00932_si_001.pdf) S3). Notably, iodine introduction decreases the calculated hole effective mass for every material. Iodine introduction decreases the electron effective mass for Bi_4NbO_8X ($n = 1$), $Bi_5BaTi_3O_{14}X$ ($n = 3$), and $Bi_6NbWO_{14}X$ but increased that of $Ba_2Bi_3Nb_2O_{11}X$ (*n* = 2). This is probably due to the change of the lower part of the conduction band from Bi 6p to localized Nb 4d in *n* = 2, which can relate to the H_2 evolution activity from a sacrificial hole scavenger [\(Figure](https://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.3c00932/suppl_file/cm3c00932_si_001.pdf) S17). By calculating the dielectric constants ([Table](https://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.3c00932/suppl_file/cm3c00932_si_001.pdf) S4), we further computed the carrier mobilities within the Fröhlich polaron model, motivated by the polar bonding nature of these materials similar to lead halide perovskites 3 and antimony chalcogenides. 37 The iodides show higher electron mobilities except for $n = 2$ (Table 2). On the other

Table 2. Calculated Average Mobilities $(\mathrm{cm^{2}~V^{-1}~s^{-1}})$ along the Layer (*x*, *y* Plane) of Electrons (e) and Holes (h) at 300 K within the Fro**̈**hlich Polaron Model

	Cl			
	e	h	e	h
$BiaNbOsX$ $(n = 1)$	110.3	1.3	148.2	19.6
$Ba_2Bi_3Nb_2O_{11}X$ (n = 2)	80.3	1.1	50.1	8.3
$Bi_5BaTi_3O_{14}X$ $(n = 3)$	125.6	1.2	154.4	1.8
Bi ₆ NbWO ₁₄ X	90.1	0.4	174.4	1.7

hand, the hole mobilities of the iodide are much higher than those of the chlorides for every structure. In the photocatalytic activity shown in [Table](#page-4-0) 1, $Ag⁺$ was employed as a sacrificial electron acceptor and the water oxidation reaction can be a rate-determining step. Therefore, the increased hole mobilities can be a contributing factor to the increased photocatalytic activity by iodine introduction.

We used $Bi_6NbWO_{14}I$, showing the highest photocatalytic activity as an O_2 evolution photocatalyst, in Z-scheme water splitting. RuO₂-loaded Bi₆NbWO₁₄I achieved O₂ evolution in the presence of Fe³⁺, which is the oxidant of the Fe³⁺/Fe²⁺ redox mediator, under visible-light illumination ([Figure](#page-6-0) 7a). The amount of Fe^{2+} converted from Fe^{3+} by the photoexcited electrons in this half-reaction was determined by complexometric determination [\(Figure](#page-6-0) 7b), which was exactly four times the O_2 evolved, confirming the stoichiometric redox reaction (i.e., $4Fe^{3+} + 2H_2O \rightarrow O_2 + 4Fe^{2+} + 4H^+$). The gradual decrease of the activity in [Figure](#page-6-0) 7a can be caused by the decreased concentration of Fe^{2+} and/or the increased rate of reverse reaction including Fe²⁺ (i.e., Fe²⁺ + h⁺ \rightarrow Fe³⁺). Subsequently, visible-light water splitting using $RuO₂$ -loaded $Bi_6Nb\overline{WO}_{14}I$ was conducted with the Fe³⁺/Fe²⁺ couple as the redox mediator and Ru-loaded strontium titanate doped with Rh cations³⁸ (Ru/SrTiO₃:Rh) as the H₂-evolution photo-catalyst. As shown in [Figure](#page-6-0) 7c, H_2 and O_2 evolve stoichiometrically at steady rates, demonstrating Z-scheme water splitting under visible light.

■ **CONCLUSIONS**
In this study, three new members of the Sillén–Aurivillius oxyiodide family were successfully synthesized. While iodine introduction to the Sillen–Aurivillius compound with $n = 2$ exerts little influence on the position of the CBM, the CBMs of Bi_4NbO_8X (*n* = 1), $Bi_5BaTi_3O_{14}X$ (*n* = 3), and $Bi_6NbWO_{14}X$ negatively shift with iodine introduction, where the Bi−Bi interlayer interaction plays an important role. These Sillén-Aurivillius oxyiodides show photocatalytic O_2 evolution activity much higher than their oxychloride counterparts. The present study demonstrated the negative shift of the conduction band by introducing iodine without sacrificing the photoabsorptivity and photocatalytic activity. Further modification of the charge of each layer and making solid solutions of Cl and I will control the Bi−Bi interlayer interaction, enabling fine tuning of the band positions for targeted reactions. The present strategy not only develops the three novel Bi-based photocatalysts for water splitting but also offer a new insight into controlling the optoelectronic properties and band positions of the $\text{ns}^2 \text{np}^0$ semiconductors.

■ **EXPERIMENTAL SECTION**

Synthesis. All of the oxyhalides were prepared by solid-state reactions. In the case of $Bi_3Ba_2Nb_2O_{11}X$ (X = Cl, Br, I), Sillen-type BaBiO₂X and Aurivillius-type Bi₃BaNb₂O₉ were mixed in the 1.05:1 composition and heated in air $(X = CI, Br)$ in an evacuated silica tube $(X = I)$, and Cl for a certain case) at 800 °C for 20 h.^{[27](#page-8-0)} BaBiO₂X precursors were prepared by calcining a stoichiometric mixture of BaCO₃ (FUJIFILM Wako Pure Chemical Corp.) and BiOX in air (X = Cl, Br) in an evacuated silica tube $(X = I)$ at 800 °C for 20 h. BiOCl was purchased from FUJIFILM Wako Pure Chemical Corp., while BiOBr and BiOI were synthesized by a soft liquid deposition method;^{[39](#page-8-0)} 5 mmol Bi(NO₃)₃.5H₂O (FUJIFILM Wako Pure Chemical Corp.) was dispersed in 30 mL of ethanol and mixed with the solution of 5 mmol KX ($X = Br$ or I) (FUJIFILM Wako Pure Chemical Corp.) dissolved in 10 mL of pure water. After 5 h of stirring at room temperature, the precipitate was collected by centrifugation, washed several times with water and ethanol, and finally dried in air at 60 °C. Bi₃BaNb₂O₉ was prepared by calcinating the mixture of $Bi₂O₃$ (FUJIFILM Wako Pure Chemical Corp.), BaCO₃, and $Nb₂O₅$ (FUJIFILM Wako Pure Chemical Corp.) at 1000 °C for 24 h.^{[40](#page-8-0)} Bi₃BaMNb₂O₁₁X (M = Sr, Ca, X = Cl, I) were also prepared via similar procedures, where $Bi_3MNb_2O_9$ (M = Sr, Ca) were used as precursors. SrCO₃ (FUJIFILM Wako Pure Chemical Corp.) or $CaCO₃$ (FUJIFILM Wako Pure Chemical Corp.) was used instead of BaCO₃. The mixture of BaBiO₂X (X = Cl, I) and $Bi_3MNb_2O_9$ was calcined in an evacuated silica tube at 800 °C (M = Sr) or 850 °C ($M = Ca$) for 20 h.

 $Bi₄NbO₈X$ (X = Cl, I) was synthesized by a solid-state reaction of $BiNbO₇$ and $BiOX$ (X = Cl, I). These precursors were thoroughly mixed with a molar ratio of 1:1.05 and heated in an evaluated silica tube at 700 °C for 10 h. The BiNbO₇ precursor was prepared by calcining the mixture of Bi_2O_3 and Nb_2O_5 at 800 °C for 5 h. $Bi_5BaTi_3O_{14}I$ was synthesized by calcination of Bi_2O_3 , TiO_2 (FUJIFILM Wako Pure Chemical Corp.), and BaBiO₂X (10 mol %) excess) in an evaluated silica tube at 850 °C for 20 h. Bi₆NbWO₁₄X $(X = Cl, I)$ was prepared by calcining the mixture of $Bi₂O₃$, $Nb₂O₅$, $WO₃$ (Kojundo Chemicals), and BiOX (5 mol % excess) in an evaluated silica tube at 800 °C for 20 h.

 $SrTiO₃:Rh⁴¹$ $SrTiO₃:Rh⁴¹$ $SrTiO₃:Rh⁴¹$ was prepared by the solid-state reaction. A mixture of $TiO₂$, $SrCO₃$, and $Rh₂O₃$ (Ti/Sr/Rh = 1:1.07:0.01) was calcined in air at 800 °C for 1 h and subsequently at 1000 °C for 10 h. A Ru-based cocatalyst (0.7 wt % calculated as metal) was loaded onto $SrTiO₃:Rh$ by photodeposition using RuCl₃·nH₂O (FUJIFILM Wako Pure Chemical Corp.) as a precursor.^{[38](#page-8-0)}

Material Modeling. All calculations were performed using density functional theory (DFT) within the periodic boundary condition using the Vienna Ab Initio Simulation Package (VASP).^{[42](#page-8-0)} The projector augmented wave (PAW) method was employed. The Perdew−Burke−Ernzerhof (PBE)^{[43](#page-8-0)} formulation of the generalized gradient approximation (GGA) was employed as the exchange− correlation functional with D3 dispersion. The atomic positions were

Figure 7. (a) O_2 evolution over the RuO₂-loaded Bi₆NbWO₁₄I sample in an aqueous Fe(NO₃)₃ solution (8 mM, 100 mL) at pH 2.4 under visiblelight irradiation (λ > 400 nm). (b) Optical absorption spectra of Fe²⁺ after the photocatalytic reaction of [Figure](#page-4-0) 6a detected as the Fe²⁺-2,4,6-tris(2pyridyl)-1,3,5-triazine (TPTZ) complex. Fe²⁺ (1.77 mM, 177 μmol) is equivalent to 44.3 μmol O₂. (c) H₂ and O₂ evolution over a mixture of RuO_2 -loaded Bi₆NbWO₁₄I and Ru/SrTiO₃:Rh (50 mg each) in FeCl₃ aqueous solution (2 mM, 100 mL) at pH 2.4 under visible-light irradiation $(\lambda > 400$ nm).

optimized until the Hellman−Feynman forces on each atom were below 0.001 eV Å $^{-1}$. The energy convergence criterion was set to $10^{-5}\,$ eV. A plane-wave energy cutoff of 600 eV was used for all calculations. The 4 × 4 × 1, 7 × 7 × 2, 6 × 6 × 1, 3 × 3 × 1 Γ-centered *k*-point meshes were employed for geometry optimization of $Bi₄NbO₈X$, $Bi_3Ba_2Nb_2O_{11}X$, $Bi_5BaTi_3O_{14}X$, and $Bi_6NbWO_{14}X$, respectively, and were doubled for projected density of states (PDOS) and crystal orbital Hamilton population (COHP) calculations using the LOBSTER package.^{[44](#page-8-0)} The conductivity effective mass tensors were calculated using AMSET.⁴⁵ The dielectric constants were calculated by density functional perturbation theory (DFPT). Electronic band structure diagrams were generated using the sumo package.^{[46](#page-8-0)} The Fröhlich polaron properties were solved using the Polaron Mobility package.⁴

Characterizations. Powder XRD (MiniFlex II, Rigaku, X-ray source: Cu K*α*), UV−visible diffuse reflectance spectroscopy (V-650, JASCO), and SEM-EDX (NVision 40, Carl Zeiss-SIINT) were used for characterization of samples. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and annular bright-field scanning transmission electron microscopy (ABF-STEM) images were collected using a JEM-ARM200CF (JEOL Ltd., Tokyo, Japan) operating at an accelerating voltage of 200 kV and equipped with a cold field-emission gun and a Cs corrector to observe atomic columns. Elemental analysis was performed using a JEM-ARM200CF equipped with an energy-dispersive X-ray (EDX) spectroscopy system. Samples were prepared by grinding the material and depositing a few drops of the suspension onto a holey copper grid covered with a thin carbon film. SXRD patterns were collected at the BL02B2 beamline in SPring-8, Japan $(\lambda = 0.419432 \text{ Å})$. NPD data was

collected at RT using the BL09 Spica beamline at the Japan Proton Accelerator Research Complex (J-PARC). The collected X-ray and neutron diffraction data were analyzed using RIETAN-FP^{[48](#page-8-0)} and Z-Rietveld.^{[49](#page-8-0)}

Mott−**Schottky Measurements.** The sample was mixed with a small amount of water; then, the obtained paste was coated on a fluorine-doped tin oxide (FTO) conductive substrate via a squeezing method and dried in air at 60 °C. The Mott−Schottky plots were recorded using an electrochemical analyzer (PARSTAT2263, Princeton Applied Research). Electrochemical measurements were performed in a three-electrode cell using a Pt wire counter electrode, a Ag/AgCl reference electrode, and phosphate-buffered solution (0.1 M, $pH = 6.0$) with an amplitude of 10 mV and a frequency of 1 kHz.

Photocatalytic Reactions. The photocatalytic reactions were performed in a gas closed-circulation system. Photocatalyst powders (0.1 g) were dispersed in an aqueous AgNO₃ solution $(8 \text{ mM}, 100 \text{ m})$ mL) in a Pyrex top-window cell. The photocatalysts were irradiated with visible light $(\lambda > 400 \text{ nm})$ through a cutoff filter (HOYA; L42) from a 300 W Xe-arc lamp (PerkinElmer; Cermax PE300BF). The quantity of the evolved gases was determined using an online gas chromatograph (thermal conductivity detector; molecular sieve 5 Å column packing; Ar carrier gas). The apparent quantum efficiency (AQE) was evaluated using a 405 nm monochromatic light-emitting diode (LED) light source (ASAHI SPECTRA, CL-1501).

For water oxidation reaction in the presence of an Fe³⁺ electron acceptor, ruthenium oxide $(RuO₂)$ was loaded as a cocatalyst. A small amount of sample was mixed with an aqueous solution containing Ru(III) acetylacetonate $(Ru(acc)_{3})$ (Sigma-Aldrich) followed by heating under an Ar flow at 450 °C for 30 min.

The Z-scheme water-splitting reaction was conducted using $RuO₂$ loaded $Bi_6NbWO_{14}I$ (0.05 g) and Ru-loaded SrTiO₃:Rh (0.05 g) as H_2 - and O_2 -evolving photocatalysts, respectively. They were suspended in an aqueous $Fe(NO_3)$ ₃ solution (2 mM, 100 mL). The

solution. The suspension was irradiated with visible light (*λ* > 400 nm). **Complexometric Titration of Fe2+.** The amount of Fe2+ produced from Fe^{3+} reduction during the O_2 evolution reaction was quantified as follows. After the photocatalytic reactions, the powdery sample was removed from the solution by filtration. The concentrations of Fe cations remaining in the solutions were determined from the absorption spectra of the solutions measured by UV−vis spectroscopy (Shimadzu, UV-1800). The reaction solution (50 μ L), 2 M acetate buffer solution (2.1 mL), and 9.6 \times 10[−]⁴ M TPTZ solution (0.7 mL) were mixed, and then the produced amount of $Fe²⁺$ was determined on the basis of the absorbance at 596.5 nm.

solution pH was adjusted to ~2.4 with diluted aqueous HNO₃

■ **ASSOCIATED CONTENT**

\bullet Supporting Information

The Supporting Information is available free of charge at [https://pubs.acs.org/doi/10.1021/acs.chemmater.3c00932](https://pubs.acs.org/doi/10.1021/acs.chemmater.3c00932?goto=supporting-info).

> XRD patterns, HAADF-STEM images, SEM images, Mott−Schottky plots, DFT results, and COHP analysis data ([PDF\)](https://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.3c00932/suppl_file/cm3c00932_si_001.pdf)

Accession Codes

CCDC 2266014 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, U.K.; fax: +44 1223 336033.

■ **AUTHOR INFORMATION**

Corresponding Authors

- Aron Walsh − *Centre for Processable Electronics and Department of Materials, Imperial College London, London SW7* 2AZ, U.K.; ● [orcid.org/0000-0001-5460-7033;](https://orcid.org/0000-0001-5460-7033) Email: a.walsh@imperial.ac.uk
- Ryu Abe − *Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan;* [orcid.org/0000-0001-8592-](https://orcid.org/0000-0001-8592-076X) [076X;](https://orcid.org/0000-0001-8592-076X) Email: ryu-abe@scl.kyoto-u.ac.jp

Authors

- Kanta Ogawa − *Centre for Processable Electronics and Department of Materials, Imperial College London, London SW7 2AZ, U.K.;* orcid.org/0000-0002-6995-9848
- Hajime Suzuki − *Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan;* [orcid.org/0000-0002-8891-](https://orcid.org/0000-0002-8891-2033) [2033](https://orcid.org/0000-0002-8891-2033)

Complete contact information is available at: [https://pubs.acs.org/10.1021/acs.chemmater.3c00932](https://pubs.acs.org/doi/10.1021/acs.chemmater.3c00932?ref=pdf)

Author Contributions

The manuscript was written through the contribution of all authors. All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

■ **ACKNOWLEDGMENTS**

This work was financially supported by JSPS KAKENHI Grant-in-Aid for Scientific Research (A) (JP20H00398), JSPS Research Fellow (Grant No. 19J23357), and JSPS overseas program. The authors are grateful to Dr. Takaaki Toriyama of Kyushu University for his helpful support in STEM analysis. The authors thank Dr. Chengchao Zhong for supporting NPD analysis. Via the authors' membership of the UK's HEC Materials Chemistry Consortium, which is funded by EPSRC (EP/L000202), this work used the ARCHER2 UK National Supercomputing Service [\(http://www.archer2.ac.uk](http://www.archer2.ac.uk)).

■ **REFERENCES**

(1) Walsh, A.; Payne, D. J.; Egdell, R. G.; Watson, G. W. [Stereochemistry](https://doi.org/10.1039/c1cs15098g) of Post-Transition Metal Oxides: Revision of the [Classical](https://doi.org/10.1039/c1cs15098g) Lone Pair Model. *Chem. Soc. Rev.* 2011, *40*, 4455−4463.

(2) Kunioku, H.; Higashi, M.; Tomita, O.; Yabuuchi, M.; Kato, D.; Fujito, H.; Kageyama, H.; Abe, R. Strong [Hybridization](https://doi.org/10.1039/C7TA08619A) between Bi-6s and O-2p Orbitals in Sillén–Aurivillius [Perovskite](https://doi.org/10.1039/C7TA08619A) Bi₄MO₈X (M = Nb, Ta; X = Cl, Br), Visible Light [Photocatalysts](https://doi.org/10.1039/C7TA08619A) Enabling Stable Water [Oxidation.](https://doi.org/10.1039/C7TA08619A) *J. Mater. Chem. A* 2018, *6*, 3100−3107.

(3) Suzuki, H.; Kunioku, H.; Higashi, M.; Tomita, O.; Kato, D.; Kageyama, H.; Abe, R. Lead Bismuth [Oxyhalides](https://doi.org/10.1021/acs.chemmater.8b01385?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) $PbBiO₂X$ (X = Cl, Br) as [Visible-Light-Responsive](https://doi.org/10.1021/acs.chemmater.8b01385?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Photocatalysts for Water Oxidation: Role of Lone-Pair Electrons in Valence Band [Engineering.](https://doi.org/10.1021/acs.chemmater.8b01385?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *Chem. Mater.* 2018, *30*, 5862−5869.

(4) Kudo, A.; Omori, K.; Kato, H. A Novel [Aqueous](https://doi.org/10.1021/ja992541y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Process for Preparation of Crystal [Form-Controlled](https://doi.org/10.1021/ja992541y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) and Highly Crystalline BiVO ⁴ Powder from Layered Vanadates at Room [Temperature](https://doi.org/10.1021/ja992541y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) and Its [Photocatalytic](https://doi.org/10.1021/ja992541y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) and Photophysical Properties. *J. Am. Chem. Soc.* 1999, *121*, 11459−11467.

(5) Walsh, A.; Yan, Y.; Huda, M. N.; Al-Jassim, M. M.; Wei, S.-H. Band Edge Electronic Structure of BiVO4: [Elucidating](https://doi.org/10.1021/cm802894z?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) the Role of the Bi s and V d [Orbitals.](https://doi.org/10.1021/cm802894z?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *Chem. Mater.* 2009, *21*, 547−551.

(6) Fujito, H.; Kunioku, H.; Kato, D.; Suzuki, H.; Higashi, M.; Kageyama, H.; Abe, R. Layered Perovskite [Oxychloride](https://doi.org/10.1021/jacs.5b11191?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Bi4NbO₈Cl: A Stable Visible Light Responsive [Photocatalyst](https://doi.org/10.1021/jacs.5b11191?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) for Water Splitting. *J. Am. Chem. Soc.* 2016, *138*, 2082−2085.

(7) Kuriki, R.; Ichibha, T.; Hongo, K.; Lu, D.; Maezono, R.; Kageyama, H.; Ishitani, O.; Oka, K.; Maeda, K. A Stable, [Narrow-Gap](https://doi.org/10.1021/jacs.8b02822?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Oxyfluoride [Photocatalyst](https://doi.org/10.1021/jacs.8b02822?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) for Visible-Light Hydrogen Evolution and Carbon Dioxide [Reduction.](https://doi.org/10.1021/jacs.8b02822?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *J. Am. Chem. Soc.* 2018, *140*, 6648−6655. (8) Kadowaki, H.; Saito, N.; Nishiyama, H.; Kobayashi, H.;

Shimodaira, Y.; Inoue, Y. Overall [Splitting](https://doi.org/10.1021/jp065655m?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) of Water by RuO₂ -Loaded $PbWO₄ Photocatalyst with $d^{10}s^2-d^0$ Configuration. *J. Phys. Chem. C*$ $PbWO₄ Photocatalyst with $d^{10}s^2-d^0$ Configuration. *J. Phys. Chem. C*$ $PbWO₄ Photocatalyst with $d^{10}s^2-d^0$ Configuration. *J. Phys. Chem. C*$ 2007, *111*, 439−444.

(9) Brandt, R. E.; Stevanovic,́ V.; Ginley, D. S.; Buonassisi, T. Identifying Defect-Tolerant [Semiconductors](https://doi.org/10.1557/mrc.2015.26) with High Minority-Carrier Lifetimes: Beyond Hybrid Lead Halide [Perovskites.](https://doi.org/10.1557/mrc.2015.26) *MRS Commun.* 2015, *5*, 265−275.

(10) Du, M. H. Efficient Carrier Transport in Halide [Perovskites:](https://doi.org/10.1039/C4TA01198H) Theoretical [Perspectives.](https://doi.org/10.1039/C4TA01198H) *J. Mater. Chem. A* 2014, *2*, 9091−9098.

(11) Lin, X.; Huang, T.; Huang, F.; Wang, W.; Shi, J. [Photocatalytic](https://doi.org/10.1039/b615903f) Activity of a Bi-Based [Oxychloride](https://doi.org/10.1039/b615903f) Bi₄NbO₈Cl. *J. Mater. Chem.* 2007, *17*, 2145−2150.

(12) Wei, X.; Akbar, M. U.; Raza, A.; Li, G. A Review on [Bismuth](https://doi.org/10.1039/D1NA00223F) Oxyhalide Based Materials for [Photocatalysis.](https://doi.org/10.1039/D1NA00223F) *Nanoscale Adv.* 2021, *3*, 3353−3372.

(13) Nakada, A.; Higashi, M.; Kimura, T.; Suzuki, H.; Kato, D.; Okajima, H.; Yamamoto, T.; Saeki, A.; Kageyama, H.; Abe, R. [Band](https://doi.org/10.1021/acs.chemmater.9b00567?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Engineering of [Double-Layered](https://doi.org/10.1021/acs.chemmater.9b00567?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Sillén-Aurivillius Perovskite Oxychlorides for [Visible-Light-Driven](https://doi.org/10.1021/acs.chemmater.9b00567?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Water Splitting. *Chem. Mater.* 2019, *31*, 3419−3429.

(14) Ozaki, D.; Suzuki, H.; Ogawa, K.; Sakamoto, R.; Inaguma, Y.; Nakashima, K.; Tomita, O.; Kageyama, H.; Abe, R. [Synthesis,](https://doi.org/10.1039/D0TA12550D) Band Structure and [Photocatalytic](https://doi.org/10.1039/D0TA12550D) Properties of Sillén-Aurivillius Oxychlorides BaBi₅Ti₃O₁₄Cl, Ba₂Bi₅Ti₄O₁₇Cl and Ba₃Bi₅Ti₅O₂₀Cl with Triple-, Quadruple- and [Quintuple-Perovskite](https://doi.org/10.1039/D0TA12550D) Layers. *J. Mater. Chem. A* 2021, *9*, 8332−8340.

(15) Shi, Y.; Li, J.; Mao, C.; Liu, S.; Wang, X.; Liu, X.; Zhao, S.; Liu, X.; Huang, Y.; Zhang, L. Van Der Waals [Gap-Rich](https://doi.org/10.1038/s41467-021-26219-6) BiOCl Atomic Layers Realizing Efficient, Pure-Water CO_2 -to-CO [Photocatalysis.](https://doi.org/10.1038/s41467-021-26219-6) *Nat. Commun.* 2021, *12*, No. 5923.

(16) Sillén, L. G. Ü ber eine Familie yon [Oxyhalogeniden.](https://doi.org/10.1007/BF01475709) *Naturwissenschaften 30*, 318 324. DOI: [10.1007/BF01475709.](https://doi.org/10.1007/BF01475709?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as)

(17) Dolgikh, V. A.; Kholodkovskaya, L. N. The Crystal Chemistry of Metal Oxide Halides and Oxides Chalcogenides. *Russ. J. Inorg. Chem.* 1992, *37*, 488.

(18) Aurivillius, B. Intergrowth Compounds between Members of Te Bismuth Titanate Family and Structures of the $LiBi₂O₄Cl₂$ Type an Architectural Approach. *Chem. Scr.* 1984, *23*, 143−156.

(19) Bainglass, E.; Walsh, A.; Huda, M. N. BiSbWO₆: Properties of a Mixed 5s/6s [Lone-Pair-Electron](https://doi.org/10.1016/j.chemphys.2021.111117) System. *Chem. Phys.* 2021, *544*, No. 111117.

(20) Takanabe, K. [Photocatalytic](https://doi.org/10.1021/acscatal.7b02662?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Water Splitting: Quantitative Approaches toward [Photocatalyst](https://doi.org/10.1021/acscatal.7b02662?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) by Design. *ACS Catal.* 2017, *7*, 8006−8022.

(21) Kato, D.; Hongo, K.; Maezono, R.; Higashi, M.; Kunioku, H.; Yabuuchi, M.; Suzuki, H.; Okajima, H.; Zhong, C.; Nakano, K.; Abe, R.; Kageyama, H. Valence Band [Engineering](https://doi.org/10.1021/jacs.7b11497?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) of Layered Bismuth Oxyhalides toward Stable [Visible-Light](https://doi.org/10.1021/jacs.7b11497?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Water Splitting: Madelung Site [Potential](https://doi.org/10.1021/jacs.7b11497?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Analysis. *J. Am. Chem. Soc.* 2017, *139*, 18725−18731.

(22) Ogawa, K.; Suzuki, H.; Zhong, C.; Sakamoto, R.; Tomita, O.; Saeki, A.; Kageyama, H.; Abe, R. Layered Perovskite [Oxyiodide](https://doi.org/10.1021/jacs.1c02763?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) with Narrow Band Gap and Long [Lifetime](https://doi.org/10.1021/jacs.1c02763?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Carriers for Water Splitting [Photocatalysis.](https://doi.org/10.1021/jacs.1c02763?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *J. Am. Chem. Soc.* 2021, *143*, 8446−8453.

(23) Bhat, S. S. M.; Swain, D.; Feygenson, M.; Neuefeind, J. C.; Mishra, A. K.; Hodala, J. L.; Narayana, C.; Shanbhag, G. V.; Sundaram, N. G. Bi 4 TaO 8 Cl [Nano-Photocatalyst:](https://doi.org/10.1021/acs.inorgchem.6b01970?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Influence of Local, Average, and Band [Structure.](https://doi.org/10.1021/acs.inorgchem.6b01970?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *Inorg. Chem.* 2017, *56*, 5525− 5536.

(24) Suzuki, H.; Kanno, S.; Hada, M.; Abe, R.; Saeki, A. [Exploring](https://doi.org/10.1021/acs.chemmater.9b05366?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) the Relationship between Effective Mass, Transient [Photoconductiv-](https://doi.org/10.1021/acs.chemmater.9b05366?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as)ity, and [Photocatalytic](https://doi.org/10.1021/acs.chemmater.9b05366?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Activity of $Sr_xPb_{1-x}BiO_2Cl(x = 0-1)$ [Oxyhalides.](https://doi.org/10.1021/acs.chemmater.9b05366?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *Chem. Mater.* 2020, *32*, 4166−4173.

(25) Nakada, A.; Kato, D.; Nelson, R.; Takahira, H.; Yabuuchi, M.; Higashi, M.; Suzuki, H.; Kirsanova, M.; Kakudou, N.; Tassel, C.; Yamamoto, T.; Brown, C. M.; Dronskowski, R.; Saeki, A.; Abakumov, A.; Kageyama, H.; Abe, R. [Conduction](https://doi.org/10.1021/jacs.0c10288?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Band Control of Oxyhalides with a [Triple-Fluorite](https://doi.org/10.1021/jacs.0c10288?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Layer for Visible Light Photocatalysis. *J. Am. Chem. Soc.* 2021, *143*, 2491−2499.

(26) Charkin, D. O.; Lebedev, D. N.; Kazakov, S. M. [Multiple](https://doi.org/10.1016/j.jallcom.2012.04.113) Cation and Anion [Substitutions](https://doi.org/10.1016/j.jallcom.2012.04.113) into the Structures of Bi_2WO_6 and [PbBi3WO8Cl.](https://doi.org/10.1016/j.jallcom.2012.04.113) *J. Alloys Compd.* 2012, *536*, 155−160.

(27) Charkin, D. O.; Akinfiev, V. S.; Alekseeva, A. M.; Batuk, M.; Abakumov, A. M.; Kazakov, S. M. Synthesis and Cation [Distribution](https://doi.org/10.1039/C5DT02620B) in the New Bismuth [Oxyhalides](https://doi.org/10.1039/C5DT02620B) with the Sillen–Aurivillius Intergrowth [Structures.](https://doi.org/10.1039/C5DT02620B) *Dalton Trans.* 2015, *44*, 20568−20576.

(28) Aguado, E.; Enjalbert, R.; Rojo, J. M.; Castro, A. Sintesis, caracterización estructural y medidas de conductividad de Bi₃NbO₇. *Bol. Soc. Esp. Ceram.* ́ *Vidrio* 1995, *34*, 417−420.

(29) Matsumoto, Y. Energy Positions of Oxide [Semiconductors](https://doi.org/10.1006/jssc.1996.0333) and [Photocatalysis](https://doi.org/10.1006/jssc.1996.0333) with Iron Complex Oxides. *J. Solid State Chem.* 1996, *126*, 227−234.

(30) Suzuki, H.; Higashi, M.; Tomita, O.; Ishii, Y.; Yamamoto, T.; Kato, D.; Kotani, T.; Ozaki, D.; Nozawa, S.; Nakashima, K.; Fujita, K.; Saeki, A.; Kageyama, H.; Abe, R. PbBi₃O₄X₃ (X = Cl, Br) with Single/ Double Halogen Layers as a Photocatalyst for [Visible-Light-Driven](https://doi.org/10.1021/acs.chemmater.1c02876?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Water Splitting: Impact of a Halogen Layer on the Band [Structure](https://doi.org/10.1021/acs.chemmater.1c02876?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) and [Stability.](https://doi.org/10.1021/acs.chemmater.1c02876?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *Chem. Mater.* 2021, *33*, 9580−9587.

(31) Zhou, W.; Umezawa, N. Band Gap [Engineering](https://doi.org/10.1039/C5CP02255J) of Bulk and [Nanosheet](https://doi.org/10.1039/C5CP02255J) SnO: Insight into the Interlayer Sn-Sn Lone Pair [Interactions.](https://doi.org/10.1039/C5CP02255J) *Phys. Chem. Chem. Phys.* 2015, *17*, 17816−17820.

(32) Kusainova, A. M.; Stefanovich, S. Yu.; Dolgikh, V. A.; Mosunov, A. V.; Hervoches, C. H.; Lightfoot, P. Dielectric [Properties](https://doi.org/10.1039/b008492l) and Structure of Bi₄NbO₈Cl and Bi₄TaO₈Cl. *J. Mater. Chem.* 2001, 11, 1141−1145.

(33) Zhong, C.; Kato, D.; Takeiri, F.; Fujii, K.; Yashima, M.; Nishiwaki, E.; Fujii, Y.; Koreeda, A.; Tassel, C.; Abe, R.; Kageyama, H. Single Crystal Growth of Sillén-Aurivillius Perovskite [Oxyhalides](https://doi.org/10.3390/inorganics6020041) [Bi4NbO8X](https://doi.org/10.3390/inorganics6020041) (X = Cl, Br). *Inorganics* 2018, *6*, No. 41.

(34) Zhao, X.-G.; Wang, Z.; Malyi, O. I.; Zunger, A. [Effect](https://doi.org/10.1016/j.mattod.2021.05.021) of Static Local [Distortions](https://doi.org/10.1016/j.mattod.2021.05.021) vs. Dynamic Motions on the Stability and Band Gaps of Cubic Oxide and Halide [Perovskites.](https://doi.org/10.1016/j.mattod.2021.05.021) *Mater. Today* 2021, *49*, 107−122.

(35) Ogawa, K.; Sakamoto, R.; Zhong, C.; Suzuki, H.; Kato, K.; Tomita, O.; Nakashima, K.; Yamakata, A.; Tachikawa, T.; Saeki, A.; Kageyama, H.; Abe, R. [Manipulation](https://doi.org/10.1039/D1SC06054F) of Charge Carrier Flow in Bi4NbO8Cl Nanoplate [Photocatalyst](https://doi.org/10.1039/D1SC06054F) with Metal Loading. *Chem. Sci.* 2022, *13*, 3118−3128.

(36) Zhu, X.-Y.; Podzorov, V. Charge Carriers in Hybrid [Organic](https://doi.org/10.1021/acs.jpclett.5b02462?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as)− Inorganic Lead Halide [Perovskites](https://doi.org/10.1021/acs.jpclett.5b02462?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Might Be Protected as Large [Polarons.](https://doi.org/10.1021/acs.jpclett.5b02462?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *J. Phys. Chem. Lett.* 2015, *6*, 4758−4761.

(37) Wang, X.; Ganose, A. M.; Kavanagh, S. R.; Walsh, A. [Band](https://doi.org/10.1021/acsenergylett.2c01464?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) versus Polaron: Charge Transport in Antimony [Chalcogenides.](https://doi.org/10.1021/acsenergylett.2c01464?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *ACS Energy Lett.* 2022, *7*, 2954−2960.

(38) Sasaki, Y.; Iwase, A.; Kato, H.; Kudo, A. The [Effect](https://doi.org/10.1016/j.jcat.2008.07.017) of Co-Catalyst for Z-Scheme [Photocatalysis](https://doi.org/10.1016/j.jcat.2008.07.017) Systems with an Fe^{3+}/Fe^{2+} Electron [Mediator](https://doi.org/10.1016/j.jcat.2008.07.017) on Overall Water Splitting under Visible Light [Irradiation.](https://doi.org/10.1016/j.jcat.2008.07.017) *J. Catal.* 2008, *259*, 133−137.

(39) Shannon, R. D.; Waring, R. K. Synthesis and [Characterization](https://doi.org/10.1016/0022-3697(85)90174-X) of a New Series of BiOI1‑x‑yBrxCly, [Pigment.](https://doi.org/10.1016/0022-3697(85)90174-X) *J. Phys. Chem. Solids* 1985, *46*, 325−330.

(40) Blake, S. M.; Falconer, M. J.; Mark, M.; Lightfoot, P. [Cation](https://doi.org/10.1039/a608059f) Disorder in [Ferroelectric](https://doi.org/10.1039/a608059f) Aurivillius Phases of the Type $Bi_2AND_2O_9$ [\(A=Ba,](https://doi.org/10.1039/a608059f) Sr, Ca). *J. Mater. Chem.* 1997, *7*, 1609−1613.

(41) Konta, R.; Ishii, T.; Kato, H.; Kudo, A. [Photocatalytic](https://doi.org/10.1021/jp049556p?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Activities of Noble Metal Ion Doped SrTiO₃ under Visible Light [Irradiation.](https://doi.org/10.1021/jp049556p?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *J*. *Phys. Chem. B* 2004, *108*, 8992−8995.

(42) Kresse, G.; Furthmüller, J. Efficient Iterative [Schemes](https://doi.org/10.1103/PhysRevB.54.11169) for *Ab Initio* [Total-Energy](https://doi.org/10.1103/PhysRevB.54.11169) Calculations Using a Plane-Wave Basis Set. *Phys. Rev. B* 1996, *54*, 11169−11186.

(43) Perdew, J. P.; Burke, K.; Ernzerhof, M. [Generalized](https://doi.org/10.1103/PhysRevLett.77.3865) Gradient [Approximation](https://doi.org/10.1103/PhysRevLett.77.3865) Made Simple. *Phys. Rev. Lett.* 1996, *77*, 3865−3868.

(44) Dronskowski, R.; Bloechl, P. E. Crystal Orbital [Hamilton](https://doi.org/10.1021/j100135a014?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Populations (COHP): [Energy-Resolved](https://doi.org/10.1021/j100135a014?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Visualization of Chemical Bonding in Solids Based on [Density-Functional](https://doi.org/10.1021/j100135a014?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Calculations. *J. Phys. Chem. A* 1993, *97*, 8617−8624.

(45) Ganose, A. M.; Park, J.; Faghaninia, A.; Woods-Robinson, R.; Persson, K. A.; Jain, A. Efficient [Calculation](https://doi.org/10.1038/s41467-021-22440-5) of Carrier Scattering Rates from First [Principles.](https://doi.org/10.1038/s41467-021-22440-5) *Nat. Commun.* 2021, *12*, No. 2222.

(46) M Ganose, A.; J Jackson, A.; O Scanlon, D. Sumo: [Command-](https://doi.org/10.21105/joss.00717)Line Tools for Plotting and Analysis of [Periodic](https://doi.org/10.21105/joss.00717) Ab Initio [Calculations.](https://doi.org/10.21105/joss.00717) *J. Open Source Software* 2018, *3*, No. 717.

(47) Frost, J. M. Calculating Polaron Mobility in Halide [Perovskites.](https://doi.org/10.1103/PhysRevB.96.195202) *Phys. Rev. B* 2017, *96*, No. 195202.

(48) Izumi, F.; Momma, K. [Three-Dimensional](https://doi.org/10.4028/www.scientific.net/SSP.130.15) Visualization in Powder [Diffraction.](https://doi.org/10.4028/www.scientific.net/SSP.130.15) *Solid State Phenom.* 2007, *130*, 15−20.

(49) Oishi, R.; Yonemura, M.; Nishimaki, Y.; Torii, S.; Hoshikawa, A.; Ishigaki, T.; Morishima, T.; Mori, K.; Kamiyama, T. [Rietveld](https://doi.org/10.1016/j.nima.2008.11.056) Analysis [Software](https://doi.org/10.1016/j.nima.2008.11.056) for J-PARC. *Nucl. Instrum. Methods Phys. Res., Sect. A* 2009, *600*, 94−96.