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Abstract

The promise of future many-core processors, with hundreds of threads running concurrently, has lead
the developers of linear algebra libraries to rethink their design in order to extract more parallelism,
further exploit data locality, attain a better load balance, and pay careful attention to the critical path
of computation.

In this paper we describe how existing serial libraries like (C-)LAPACK and FLAME can be easily
parallelized using the SMPSs tools, consisting of a few OpenMP-like pragmas and a run-time system. In
the LAPACK case, this usually requires the development of blocked algorithms for simple BLAS-level
operations, which expose concurrency at a finer grain. For better performance, our experimental results
indicate that column-major order, as employed by this library, needs to be abandoned in benefit of a block
data layout. This will require a deeper rewrite of LAPACK or, alternatively, a dynamic conversion of the
storage pattern at run-time. The parallelization of FLAME routines using SMPSs is quite simple as this
library includes blocked algorithms (or algorithms-by-blocks in the FLAME argot) for most operations
and storage-by-blocks (or block data layout) is already in place.

Keywords: Linear algebra libraries, programmability, high performance, dynamic scheduling, multi-core
Processors.

1 Introduction

There is a general consensus that with the advent of the new multi-core processors and hardware acceler-
ators as, e.g., the Cell B.E., ClearSpeed boards, or NVIDIA and AMD/ATI GPUs, libraries for dense and
banded linear algebra like LAPACK [1], will undergo a complete rewrite to exploit the full potential of these
architectures. Optimizing the routines in these libraries is crucial: a vast number of complex scientific and
engineering applications can be decomposed into simpler dense and banded linear algebra operations, which
usually form the most time-consuming part in these applications. Besides, dense linear algebra has been a
traditional battlefield for the priests of high-performance computing and the hardware chip manufacturers,
as the LINPACK benchmark and the Top500 list still remind us twice per year.

Indeed, the redesign of high-performance libraries for dense linear algebra is already undergoing as part of
the PLASMA and FLAME projects [7, 6, 8, 10, 22, 23, 9, 24] with a similar approach proposed in both cases.
In particular, the two projects propose the use of a run-time system to conduct a two-stage execution: An
initial symbolic analysis of the code decomposes the computations into sub-operations, or tasks, identifying
the dependences among these. This is followed by the actual computation, with a dynamic scheduling
mechanism in charge of extracting as much task-parallelism as possible while fulfilling the data dependences
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among tasks. The ideas are thus similar to those proposed earlier in the Cilk and the StarSs (GRIDSs,
CellSs, SMPSs) projects [5, 2, 20, 18, 19] for problems more general than just dense linear algebra.

In this paper we describe and analyze the parallelization of dense and banded linear algebra libraries
using SMPSs (SMP Superscalar). The study involves not only the experimental evaluation of the paral-
lel performance but also an analysis of the programmability of the solution, an aspect which is receiving
considerable attention in the last years. Specifically, the main contributions of the paper are:

e A demonstration that the parallelization approach proposed in SMPSs is backward compatible with
legacy-like code in LAPACK as well as new disruptive approaches like FLAME.

e A presentation focused on both the programmability and the performance of the approach.

e A complete evaluation of the major dense matrix factorizations for the solution of linear systems,
including an analysis of the scalability.

e A demonstration that, provided the necessary numerical kernels are available, the same linear algebra
codes (with minor modifications) will carry over to platforms like the Cell B.E.

The rest of the paper is structured as follows. In Section 2 we illustrate how SMPSs can be applied to
both LAPACK and FLAME to easily produce parallel codes for the solution of linear systems and linear
least-squares problems [11]. Experimental results measuring the parallel performance and scalability of the
SMPSs codes are reported in Section 3, and a few concluding remarks follow in Section 4.

2 Parallelization of Linear Algebra Algorithms

Linear algebra libraries as LAPACK [1] and FLAME [12, 3, 4] provide numerical routines for the solution
of linear systems and linear least-squares problems, and the computation of eigenvalues and singular values
of dense (and, for linear systems, banded) matrices. Here we focus on the first two problems and the key
numerical methods for their solution: the Cholesky, LU and QR matrix factorizations. Assume the matrices
involved in all three problems are square and let n denote their dimension. Common to all three factor-
izations are their computational cost, O(n?) floating-point arithmetic operations (flops), and the amount of
data involved, O(n?) numbers. (When the matrix involved in the factorization presents a band structure,
the computational and storage costs are reduced, respectively, to O(k;k,n) flops and O((k; + k,)n) data,
where k; and k, represent, respectively, the dimensions of the lower and upper bandwidths.) It is the high
computational cost of these operations that makes them appealing candidates for parallelization, specially
when the matrix dimension is large.

The blocked algorithms described next exploit the cubic cost of the method, and the difference of one
order of magnitude with the amount of data involved in the operation, to yield high-performance on current
desktop processors with hierarchical memory systems.

2.1 Cholesky factorization of dense matrices

Consider first the Cholesky factorization of a dense symmetric positive definite (SPD) matrix A € R™*",
defined as
A=1LL", (1)

where L € R™*" is a lower triangular matrix known as the Cholesky factor of A. (Alternatively, A can be
decomposed as A = UTU, with U € R"*" being upper triangular.)

Blocked algorithms for the Cholesky factorization consist of a single loop that traverses the matrix from
the top left corner to the bottom right one, processing several rows/columns of the matrix per iteration.
Inside the loop, operations are performed to compute a certain part of the triangular factor and/or update
other parts (blocks) of the matrix. In practice, the algorithm overwrites the lower triangular part of A with
the entries of L, while the strictly upper triangular part remains unmodified.

Figure 1 presents a fragment of a (C)LAPACK-like routine dpotrf, which implements a right-looking
algorithm for the Cholesky factorization of an n x n SPD matrix (with double-precision real entries), stored
in column-major order in an array A with leading dimension 1da. At each iteration of the loop, a jb x jb



int dpotrf(char *uplo, int n, double *A, int lda, int nb, int *info)
{
/* Blocked algorithm (right-looking variant) to compute the lower
triangular Cholesky factorization A = L*L"T, with algorithmic block size nb. */

static double done = 1.0;

OO UTE W

static double minus_done = -1.0;

/* .. %/
10 for (j = 1; j <= n; j += nb) {
11
12 /* Factorize the current diagonal block. */
13 jb = min(ab, n - j + 1);
14 dpotf2(uplo, &jb, &A_ref(j, j), &lda, info);
15 7+ 0w/
16
17 if(j + jb <= n) {
18
19  /« Compute the current block subdiagonal block. */
20 i_3=n-3j-jb+ 1;
21 dtrsm("Right", "Lower",
22 "Transpose", "Non-unit",
23 &i__3, &jb,
24 &done, &A_ref(j, j), &lda,
25 &A_ref(j + jb, j), &lda);
26
27 /x Update the bottom right block. */
28 dsyrk("Lower", "No transpose",
29 &i__3, &jb,
30 &minus_done, &A_ref(j + jb, j), &lda,
31 &done, &A_ref(j + jb, j + jb), &lda);
32 }
33 }
34 /% w/
35 %

Figure 1: (C)LAPACK-like blocked algorithm for computing the Cholesky factorization.

block on the diagonal of the matrix is factorized using an unblocked routine dpotf2, the corresponding k x jb
subdiagonal block of the Cholesky factor, with k =1i_3 =n— j — jb+ 1, is computed using the triangular
solver dtrsm in BLAS, and the k x k block to its right is updated using the BLAS kernel dsyrk for the
symmetric rank-k update.

Figure 2 shows an equivalent algorithm expressed using the object-oriented notation in FLAME (left) and
the corresponding routine encoded using the FLAME/C Application Programming Interface (right) [3, 4]. In
the algorithm, m(B) stands for the number of rows of B and A := {L\ A} denotes that the lower triangular
part of A is overwritten by L while the strictly upper triangular part remains unmodified. We believe the
rest of notation to be intuitive. Routines FLA_Chol unb_varl, FLA Trsm, and FLA_Syrk in the FLAME code
play analogous roles to dpotf2, dtrsm, and dsyrk in Figure 1, respectively.

2.2 Traditional parallelization

The conventional approach to extract parallelism from LAPACK and FLAME codes on shared-memory
multiprocessors (including SMPs, NUMA platforms, and multi-core processors) has been to pass all the
burden for the parallel execution to the BLAS so that the LAPACK/FLAME codes remain unchanged. While
the existence of efficient multi-threaded implementations of BLAS provides the means for a straight-forward,
transparent parallelization of these libraries, the performance delivered by this approach is suboptimal.
The fork-join model of execution of this strategy, where all threads synchronize at the beginning and the
completion of each BLAS call, introduces a non-negligible overhead and imposes artificial constraints on the
parallelism of the operation. Look-ahead techniques have been proposed in the past to increase the parallelism
and scalability of this solution, but they do so at the cost of a much more complicated coding [25].

2.3 Dynamic parallelization with SMPSs

As an alternative to the parallelization strategy based on the use of multi-threaded BLAS and the look-
ahead techniques, Cilk and SMPSs in general, and LAPACK/PLASMA and FLAME/SuperMatrix for dense



1 FLA_Error FLA_Chol_blk_varl( FLA_Obj A, int nb_alg )
2 {
3 FLA_Obj ATL, ATR, A00, AO1, AO2,
4 ABL, ABR, A10, A11, A12,
5 A20, A21, A22;
6 int b;
Algorithm: A := CHOL_BLK_VAR1(A) 7
) A 8 FLA_Part_2x2( A, YATL, &ATR,
Partition A — (iﬂ 9 %ABL, %ABR, 0, 0, FLA_TL );
ABL|ABR 10
where Arpp is0x0 11 while ( FLA_Obj_length( ATL ) < FLA_Obj_length( A ) ) {
while m(Arr) < m(A) do 12 b = min( FLA_Obj_length(ABR), nb_alg );
Determine block size b 13 FLA_Repart_2x2_to_3x3(
s 14 ATL, /**/ ATR, &A00, /**/ &AO1, &AO2,
Repartition 15
A A Ao /% krkokkkokkokkokkk ok / /* */
Arp | Arr Q04- ol 16 &A10, /*%/ EA11, &A12,
) Y — | Ao A11]|A12 17 ABL, /*x/ ABR, &A20, /**/ EA21, &A22,
BLI4BR Ao (A1 | Azs 18 b, b, FLA_BR );
where Apqisbx b 19 /* */
20 FLA_Chol_unb_vari( A1l );
21 FLA_Trsm( FLA_RIGHT, FLA_LOWER_TRIANGULAR,
A1 = {L\A}11 = CHOL_UNB(A11) 22 FLA_TRANSPOSE, FLA_NONUNIT_DIAG,
Agy i= Loy = Aoy LT.F 23 FLA_ONE, A11, A21 );
+ T 24 FLA_Syrk( FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,
Ao = Ago — La1Li, = Aza — A21 Ay, 25 FLA_MINUS_ONE, A21, FLA_ONE, 422 );
26 / /
Continue with 27 FLA_Cont_with_3x3_to_2x2(
A A Aoo | Ao1 | Aoz 28 &ATL, /*%/ &ATR, A00, AO1, /*%/ AO2,
ITLI TR | A9 Arr [ Ar2 29 A10, A11, /xx/ A12,
ABL ABR ) yy ) 30 /% kokkskskokkkkkokkkkk k/ /% sokokokskskokokkkkokokkkkokk ok /
. 20421 ] 422 31 &ABL, /**/ &ABR, A20, A21, /**/ A22,
endwhile 32 FLA_TL );
33 }
34 return FLA_SUCCESS;
35 3}

Figure 2: FLAME blocked algorithm for computing the Cholesky factorization (left) and the corresponding
FLAME/C implementation (right).

linear algebra, propose to (semi-)automatically decompose the problem into tasks, identify dependencies
among these, and dynamically issue ready tasks to be executed on the processors (or cores) of the system.
When applied to dense linear algebra, this strategy has demonstrated a clear advantage over the traditional
approach in terms of performance. Combined with the high-level approach of FLAME, it also offers an elegant
solution for the programmability problem, overcoming the difficulties posed by look-ahead techniques.

In this subsection we describe how SMPSs can be used to parallelize traditional codes in LAPACK as
well as object-oriented FLAME codes. The result is a library of parallel codes that employs the SMPSs
run-time system, replacing similar mechanisms being developed as part of the PLASMA (for LAPACK) and
SuperMatrix (for FLAME) extensions.

The basic components of SMPSs are an OpenMP-like directive to identify units of execution, or tasks,
and the run-time system tailored for multi-core environments. The task construct directive:

# pragma css task [clause [clause] ...]

function-definition | function-declaration

inserted before a C function, declares it as a task, candidate to be executed in one of the processors (or cores)
of the system concurrently with tasks running in other processors. The programmer implicitly exposes data
dependencies in the operation to the run-time system by passing additional information via the task construct
clauses:

input (parameter-list)

output (parameter-list)

inout (parameter-list)
which serve to indicate which parameters to the function are only read, only written, or read and written
by the task. Then, during the execution, the run-time system analyzes data dependencies among the tasks
to determine which can be issued to execution.

Armed with this directive, we can proceed to parallelize the LAPACK and FLAME codes for the Cholesky
factorization as described in the next subsections.



2.3.1 LAPACK

Let us start with the (C)LAPACK-like code in Figure 1. We could naively assume that including task
construct directives with the appropriate clauses before the header definition for dpotf2, dtrsm, and dsyrk
suffices. However, given the data dependencies between the operations in one iteration of the loop (dsyrk
depends on the result of dtrsm, which in turn depends on the factorization performed in dpotf2), this
results in a full serial execution. Therefore, we need to identify a finer-grain parallelism. We can do so by
decomposing the triangular system solve and the symmetric rank-k update into sub-operations (finer-grain
tasks) which can proceed in parallel. Now, these two operations belong to BLAS, not to LAPACK, so that
we need to design blocked algorithms for them. Figure 3 shows blocked algorithms dtrsm by blocks and
dsyrk_by_blocks for the particular shapes of the triangular system solve and the symmetric rank-k update,
respectively, appearing in the Cholesky factorization. Arguments mb and nb correspond to the algorithmic
block size, and determine the granularity of the decomposition of the operation into tasks of finer grain.
Routines dtrsm_tile, dsyrk_tile, and dgemm_tile are simple wrappers to the corresponding routines from
BLAS. For instance, the code for dtrsm_tile is as follows:
void dtrsm_tile(int m, int n,
double alpha, double *A, int 1da,
double *B, int 1db)

{
dtrsm("Right", "Lower",
"Transpose", "Non-unit",
&m, &n,
&alpha, A, &lda,
B, &1db) ;
}

Given these two blocked algorithms, we need to substitute the calls to dtrsm and dsyrk in Figure 1
by dtrsm by blocks and dsyrk_by_blocks, respectively, as well as replace the call to dpotf2 by a call to
a wrapper routine dpotrf_tile which simply invokes routine dpotrf. (In our experiments we found out
that, for the optimal task size, it is convenient to invoke the BLLAS-3 routine to factorize the diagonal blocks
instead of the BLAS-2 routine.) We will finally need to add the following SMPSs directives to the header
declaration of the wrapper routines:

#pragma css task input (uplo, n, 1lda)\
inout (A[1], info[1])
void dpotrf_tile(int n, double *A, int lda, int *info);

#pragma css task input (m, n, alpha, A[1], 1lda, 1db)\
inout (B[1])
void dtrsm_tile(int m, int n,
double alpha, double *A, int 1lda,
double *B, int 1db);

#pragma css task input (n, k, alpha, A[1], 1lda, beta, 1ldc)\
inout (C[1])
void dsyrk_tile(int n, int k,
double alpha, double *A, int lda,
double beta, double *C, int 1ldc);

#pragma css task input (m, n, k, alpha, A[1], 1lda, B[1], 1ldb, beta, 1ldc)\
inout (C[1])
void dgemm_tile(int m, int n, int k,
double alpha, double *A, int lda,
double *B, int 1db,
double beta, double *C, int 1dc);

With these declarations, at execution the run-time system identifies each call to one of the previous
routines as a single task, with the granularity of the tasks being determined by the algorithmic block size.
The directionality of the operands (input, input/output, or output) and the actual values of these parameters
determine the dependencies among the tasks. For the Cholesky factorization, as well as for many other



void dsyrk_by_blocks(int n, int k,
double alpha, double *A, int lda,
double beta, double *C, int ldc,

void dtrsm_by_blocks(int m, int n, int nb)

double alpha, double *A, int lda,

OISO WNO

1
2
3 double *B, int 1ldb {
4 int b) ’ ’ /* Blocked algorithm to compute a (lower) symmetric rank-k
5 g * update C := C + A*A"T, with algorithmic block size nb.
6  /* Blocked algorithm to solve a lower triangular linear Assumptlon:.
- . . . . A consists of a column of blocks. */
7 system X = B*A"-T, with algorithmic block size mb. 10 /% */
8 Assumptions: U
: 11
§ Bomemetmeremt 1 e tenicn e
11 ’ 13 /* Update current diagonal block. */
12 static double done = 1.0; 14 ib = mlr}(nbf noiti);
13/« / 15 dsyrk_tile(ib, k,
14 16 alpha, &A_ref(i, 1), 1da,
15 for (1 =1; i <=m; i +=mb) { %g beta, &C_ref( i, i ), 1ldc );
16
i o= 1; 9 <= i-1; § +=
17 /* Solve triangular system for current block. */ 19 for (j =15 j i-1; j M ) {
) . X 20 /x Update blocks to the right. */
18 - - ;
ib = min(mb, m - i + 1); . . L
N 21 jb = min(nb, i-j);
19 dtrsm_tile(ib, n, N ? X
20 aloha. A lda 22 dgemm_tile(ib, jb, k,
21 pha, &é ref(i, 1) ldb)’~ 23 alpha, &A_ref( i, 1 ), 1lda,
59 ) - > ’ 24 &A_ref( j, 1), lda,
25 beta, &C_ref( i, j ), ldc );
J
23 /x ... %/ 2 }
24 3
27 }
28 /% .ox/
29 13

Figure 3: CLAPACK-like blocked algorithms for the triangular system solve (left) and the symmetric rank-k
update (right).

dense and banded linear algebra operations, blocks do not overlap. This is extremely useful as it allows us
to determine data dependencies based solely on the initial address of each block. Thus, e.g., the run-time
system can detect a Read-After-Write (RAW) dependency between the Cholesky factorization of a diagonal
block (call to dpotrf_tile) and the triangular system solves for each one of the corresponding subdiagonal
blocks by just comparing the address of the (1,1) element in the diagonal block (&A_ref (j,j) for iteration
j) with that of the first matrix argument of the call to dtrsm_tile.

Also, the only dependencies that appear during the Cholesky factorization are of type RAW, and the
runtime does not employ renaming to eliminate false dependencies.

While, in principle, one could annotate directly the interfaces of the LAPACK routine dpotf2 and BLAS
dtrsm, dsyrk, and dgemm, using the wrappers is a simple safeguard against unexpected tasks being created
due to other calls to these routines encountered in the code.

2.3.2 FLAME

The strategy to follow with the FLAME code is similar. We first need to decompose FLA_Trsm and
FLA_Syrk into smaller sub-operations by invoking instead blocked algorithms for these, FLA_Trsm by _blocks
and FLA Syrk by_blocks, respectively. Figure 4 provides an algorithm-by-blocks and the corresponding
FLAME/C code for the former while the latter presents a similar structure.

The fragment of code in Figure 5 illustrates what happens inside FLA_Trsm_tile: object properties as
the size and leading dimension are first extracted via functions/macros which is followed by the invocation of
BLAS routine dtrsm; we note here that FLA_Obj_buffer is just a function/macro that extracts the address of
the first element of data block encapsulated in the object. The figure thus shows that, in order to parallelize
the FLAME code, we only need to replace the calls to dpotf2, dtrsm, dsyrk and dgemm by calls to the
appropriate wrapper routines (dpotrf_tile, dtrsm tile,...), and insert the same SMPSs directives to the
header declarations of the wrappers as were specified for LAPACK in the previous subsection.

Note that encapsulation/abstraction at the level employed in FLAME plays a major role in keeping code
and data storage independent as, e.g., nothing prevents the data involved in the problem from being stored
in column-major order or following more advanced (and also convenient) patterns like storage-by-blocks.
This is all transparent to the code and it is only determined by the manner in which data is initially inserted



void FLA_Trsm_by_blocks( FLA_Obj alpha, FLA_Obj L,
FLA_Obj B,
int mb_alg )
/* Blocked algorithm to solve a lower triangular linear
system X := B*A"-T, with algorithmic block size mb.
Assumptions:

OO UTERWN

n A consists of one block and
Algorithm: [B] := ZLA_TRSM_BY_BLOCKS(A,B) B consists of a column of blocks. +/
eps T {
Partition B — (BB ) 10 FLA_Obj BT, B0,
where Br has 0 rows %% BB, g;j
while m(Br) < m(B) do 13 int b ’
Determine block size b 14
Repartition 15 FLA_Part_2x1( B, 4BT,
0 16 4BB, 0, FLA_TOP );
o) o (B 17
Bp et 18 while ( FLA_Obj_length( BT ) < FLA_Obj_length( B ) ) {
B> 19 b = min( FLA_Obj_length( BB ), mb_alg );
where B has b rows 20 FLA_Repart_2x1_to_3x1( BT, &BO,
21 /* k% x/ /* k% x/
By =B AT 22 &B1,
23 BB, ¥B2, 1, FLA_BOTTOM );
R . 24 / /
Continue Wltl}g 25 FLA_Trsm_tile( alpha, A,
0
Br 20 26 Bl );
3)- (2 »
B Bs 28 FLA_Cont_with_3x1_to_2x1( &BT, BO,
endwhile 29 BL,
30 /* k% x/ /* x%x x/
31 &BB, B2, FLA_TOP );
32 }
33 3}

Figure 4: FLAME algorithm-by-blocks for the solution of a triangular system (left) and the corresponding
FLAME/C implementation (right).

1  void FLA_Trsm_tile( FLA_Obj alpha, FLA_Obj A,

2 FLA_Obj B )

3 {

4 /x ...ox/

5 m_A = FLA_Obj_length ( A );

6 n_A = FLA_Obj_width ( A );

g 1dim_A = FLA_Obj_ldim (A);

9 m_B = FLA_Obj_length ( B );

10 n_B = FLA_Obj_width ( B );

11 1dim_B = FLA_Obj_ldim (B);

12

13 /% ... %/

14 dtrsm( "Right", "Lower",

15 "Tranpose", "Non-unit",

16 &m_B, &n_B,

17 ( ( double * ) FLA_Obj_buffer( alpha ) ), ( ( double * ) FLA_Obj_buffer( A ) ), &ldim_A,
18 ( ( double * ) FLA_Obj_buffer( B ) ), &ldim_B );
19 /% ... %/
20 3

Figure 5: Inside the FLAME/C implementation of routine FLA_Trsm_tile for the solution of a triangular
linear system.

in the data structure.
Results in section 3 will report the practical parallel performance attained by SMPSs.

2.4 Other dense matrix factorizations: LU and QR

The elaboration in the previous subsection has shown how easy is to parallelize the code for the Cholesky
factorization in the (C)LAPACK or FLAME libraries using SMPSs. The same approach carries over to
more complex matrix operations for the solution of linear systems as the LU and QR factorizations. By
simply creating wrappers to the underlying LAPACK/BLAS calls, and annotating these with the appropriate
SMPSs directives, we would obtain a parallel execution orchestrated by the SMPSs run-time system. A key
difference between these two decompositions and the Cholesky factorization, the presence of WAR/WAW
(write-after-read /write-after-write), is addressed by the run-time system employing a renaming technique
transparent to the programmer.



A major obstacle to the efficient parallelization of the traditional LU and QR factorization remains: the
need to factorize a complete block of columns before the corresponding transformations can be applied to the
remaining part of the matrix, serializes the execution of the algorithm and drastically reduces the amount
of parallelism. For the LU factorization, this requisite is imposed by the use of partial pivoting as, for each
column, the diagonal element may be swapped with any of the subdiagonal entries of the entire column. For
the QR factorization, this is due to the use of Householder transformations which involve the diagonal and
all subdiagonal elements in each column.

The introduction of an out-of-core (OOC) algorithm in [13] for the computation and updating of the
QR factorization of large-scale problems provided a more scalable solution for this operation. The basic
idea is to compute a “tiled” QR factorization, where the matrix is decomposed into small square blocks, or
tiles, and each subdiagonal block is factorized with respect to the diagonal block independently from others.
This variant exhibits more parallelism as, e.g., once the (k + 1, k) block is factorized, the updates of those
blocks to the right can be updated in parallel with the factorization of blocks (k + 2,k), (k + 3,k), etc.
and the corresponding updates of the blocks to their right. The application of this technique to multi-core
systems was first proposed in [7], but incurred in a non-negligible computational overhead. In [23] a second
variant which mimicked the two levels of blocking in [13], reduced the cost of the tiled QR factorization
on multi-core processors to that of the traditional one, making it a practical approach. The traditional
and tiled algorithms only employ orthogonal transformations and, therefore, the numerical stability of all
implementations is equivalent.

The pursuit of a tiled LU factorization with pivoting for OOC computations has been a long quest as
the need to preserve pivoting stands in the way of performance. This was solved in [15, 21] by proposing
a modified pivoting scheme, named as incremental pivoting, which enabled high performance while main-
taining a numerical stability close to that of partial pivoting. The idea here is analogous to that of the QR
factorization: factorize each subdiagonal block independently so that the updates of the blocks to the right
can proceed concurrently with the factorization of other subdiagonal blocks. Here partial pivoting is applied
between pairs of blocks leading to a blocked version of pairwise pivoting. Again, the algorithm was initially
designed for OOC and as a solution to the problem of updating an LU factorization, but its extension to the
multi-core arena is straight-forward. Both PLASMA and FLAME have recently evaluated the parallelism of
the tiled LU factorization for multi-core systems [6, 22].

Let us elaborate to some extent the parallelization of the tiled QR factorization using SMPSs. Assume
we are given a serial C code for the computation of the tiled QR factorization of an n X n matrix stored in an
array A like that in Figure 6. (This code is not part of the standard distributions of LAPACK or 1ibflame,
but experimental implementations have been developed as part of the extensions of the two projects for
multi-core processors. For simplicity, many of the arguments have been hidden in the code.) In order to
parallelize this code with SMPSs, we would only need to create wrappers for dgeqrf, dormqr, dgeqrf _2x1,
dormqr _2x1, and add the corresponding pragmas to identify the calls to these wrappers as the unit of com-
putation (tasks) specifying the directionality of the arguments. For example, for routine dgeqrf, the header
for the corresponding wrapper could be declared as follows:

#pragma css task input (m, n, 1lda)\
inout (A[1], tau[1], info[1])
void dgeqrf_tile(int m, int n, double *A, &lda, double *tau, int *info);

while the other routines would present similar declarations. Again, this example shows how straight-forward
is to translate an existing sequential implementation into a parallel one using the SMPSs infrastructure. The
algorithm for the tiled LU factorization presents a much similar structure and can be annotated with SMPSs
directives in an analogous manner.

The experimental results in section 3 will demonstrate the superior parallelism and scalability inherent to
the tiled algorithms for the LU and QR factorization, and the efficacy of SMPSs in identifying and exploiting
these properties.

2.5 Storage-by-blocks

Storing the elements of matrices by blocks (also known as block data layout, storage-by-blocks, or hierarchical
storage) has been experimentally demonstrated to increase data locality and reduce the number of TLB
misses; see, e.g., [17]. The basic idea is to lay the elements in a block in consecutive positions of the memory



void dgeqrf_by_blocks(int n, double *A, double *tau, int lda, int nb, int *info)

/* Tiled algorithm (right-looking variant) to compute the
QR factorization A = Q*R, with algorithmic block size nb. */

/¥ ... %/

for (k = 1; k <= n; k += nb) {

OO UTE W

10 /* Factorize the current diagonal block. */

11 kb = min(nb, n - k + 1);

12 dgeqrf (&kb, &kb, &A_ref(k, k), &lda, &tau(k), info);

13 7« .o/

14

15 /* Update blocks to the right of the diagonal block. */

16 for (j = k+kb; k <= n; k += nb) {

17 jb = min(ab, n - j + 1);

18 dormqr ("Left", "Transpose",

19 kb, &jb, &kb, &A_ref(k, k), &lda, /* ... */
20 &A_ref(k, j), &lda, /* ... */);
21 ¥

22

23 for( i = k+kb; i <= n; i +=1nb ) {

24/« Compute the current subdiagonal block. */

25 ib = kb+min(nb, n - i + 1);

26 dgeqrf_2x1(&ib, &kb, &A_ref(k, k), &lda,

27 &A_ref(i, k), &lda, /* ... %/ );
28

29 for (j = k+kb; k <= n; k += nb) {

30 jb = min(nb, n - j + 1);

31 /* Update the blocks to the right of the diagonal and
32 current subdiagonal blocks. */

33 dormgr_2x1("Left", "Transpose",

34 &ib, &jb, &kb, &A_ref(i, k), &lda, /* ... */
35 &A_ref(k, j), &lda, /* ... */
36 &A_ref(i, j), &lda, /* ... */);
37 }

38 }

39 }

40  /* ...o*/

41 3

Figure 6: (C)LAPACK-like tiled algorithm for computing the QR factorization.

in column- or row-major order to improve data locality. Storage-by-blocks also favors the use of micro-kernels
to perform BLAS operations on small blocks, which can increase the performance by reducing the number
of times blocks are packed and unpacked [14].

Reconsider now the code for the tiled QR factorization in Figure 6. While we assumed there that the
matrix was stored columnwise, as it is usual in LAPACK and Fortran codes, nothing really prevented the
matrix from being stored block-wise. To provide correct access to the data though, one would need to define
C macros which translate references of the form A _ref (i, j) into the appropriate address of the memory
and replace the leading dimension of the matrix, 1da, by the leading dimension of the block.

Although simple, this solution shifts the burden of filling the data for the matrix to the user. One approach
around this problem would be to perform the transformation from columnwise storage to block-wise inside
the routine, before the computation starts, and undo the transformation at the end. While possible, this
solution presents a certain overhead (non-negligible for small matrices), and can be specially inefficient if the
matrix is employed in several consecutive operations. Furthermore, for non-square matrices, performing this
transformation in-place is not trivial. A second possibility is implicit in the high-level approach provided by
FLAME application programming interfaces (APIs). Here, the matrix is viewed as a matrix of matrices so
that the user can easily manipulate matrices stored by blocks [16].

2.6 Banded matrix factorizations

Consider now the factorization of a matrix which presents a wide bandwidth. (For narrow band matrices,
the computational burden is so small that it is probably worthless to use a parallel computer.) A simple
idea will allow us to employ the dense codes to compute the factorization of this matrix incurring only in
negligible computational and storage costs overheads compared with the traditional band codes. Let us
come back to the code for the dense QR factorization in Figure 6, where we will consider now that A is



Platform Architecture Frequency L2 cache L3 cache RAM per CPUs per
(GHz) (KBytes) (MBytes) node node (GBytes)

saI-1 Intel Itanium?2 1.5 256 4096 4 2
SGI-2 Intel Itanium?2 1.6 256 4096 16 2 dual core
Platform Linux O.S. Compiler  Optimization BLAS

kernel flags
saI-1 2.6.5-7.244-sn2 gee 3.3.3 -03 MKL 8.1
SGI-2 2.6.16.46-0.12-default  gcc 4.1.2 -03 MKL 9.1

Table 1: Architecture (top) and software (bottom) employed in the evaluation.

laid out block-wise, with only those blocks of the matrix which contain one or more nonzero elements being
actually stored. Thus, a reference A_ref (i, j) will point into the appropriate direction of the memory if
this block contains a nonzero value while it will be a pointer to NULL otherwise. Finally, we only need to add
a simple sentinel code in the wrapper routines which checks all blocks involved in the operation, immediately
returning control in case any of these pointers is void. For example, the wrapper for dgeqrf_2x1 would be
as follows:
void dgeqrf_2x1_tile(int m, int n,
double *A, int lda,

double *B, int 1db, /* ... *x/)
{
if (A == NULL) || (B == NULL) return O;
dgeqrf_2x1(&m, &n,
A, &lda,
B, &1db, /x ... */);
}

2.7 Other architectures: Cell B.E.

SMPSs is just but a case of the StarSs programming model. This approach has been successfully applied
from very large systems like the Grid, in GRIDSs, to much smaller ones like the Cell B.E., as part of CellSs.
In the latter case, given efficient (vectorized) kernels to perform the basic LAPACK and BLAS operations
defined as tasks on a single SPU, the same annotated codes (with minor modifications) combined with the
CellSs run-time provide a parallel solution for the Cell B.E.

3 Experiments

All experiments in this section were performed using double-precision floating-point arithmetic on two SGI
Altix multiprocessors. Details on the platforms that were employed in the experimental evaluation are given
in Table 1. These systems present a CC-NUMA architecture, with a local RAM being shared by the CPUs
in each node, and a SGI NUMAlink interconnection ring. sGi-1 has 16 CPUs running at 1.5 GHz, for a
peak performance of 96 GFLOPS (96 x 10° flops per second), while SGI-2 consists of 16 dual core CPUs
at 1.6 GHz and the peak performance is 204.8 GFLOPS. Performance was measured in the experiments by
linking to the BLAS in Intel Math Kernel Library (MKL). A varied range of block sizes were evaluated in
each experiment, but only the results corresponding to the best block size are reported.

The first experiment reports the performance of the (C)LAPACK-like and FLAME routines for the (com-
putation of the lower triangular factor of the) Cholesky factorization, parallelized using SMPSs as described
in subsections 2.3.1 and 2.3.2, respectively. Figure 7 reports that the FLAME routine yields superior perfor-
mance and scalability on SGI-1. This is mainly due to the use of a block data layout in the FLAME routines
vs the traditional columnwise employed by the (C)LAPACK-like code. Further experimentation showed that
both codes attain basically the same performance if the two codes are modified to use the same data layout.
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Cholesky factorization on 16 CPUs Cholesky factorization of a 6000 x 6000 matrix
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Figure 7: Parallel performance (left) and scalability (right) of the (C)LAPACK-like and FLAME Cholesky
factorization routines parallelized with SMPSs.

Our second experiment illustrates the performance of tiled routines combined with storage-by-blocks
written in a (C)LAPACK-like style for all three major factorizations. The codes are parallelized and executed
using SMPSs on sGI-2. To asses the performance, we include in the results the performance of Intel MKL 9.1
routine for the corresponding factorization: Cholesky (computation of the lower triangular factor), LU with
partial pivoting, and traditional QR. Figure 8 reports the parallelism and scalability of these codes. In all
three cases, the parallel codes obtained with SMPSs deliver performances much higher than those obtained
with the MKL routines. For the LU factorization, we also include the performance of the algorithm with
partial pivoting parallelized with SMPSs. The results for the LU and QR factorizations confirm that much of
the benefit of the SMPSs parallelizations of these codes comes from the higher degree of parallelism intrinsic
to the tiled algorithms. The plots on the right also show a decrease of the scalability of the algorithms as
more processors are added. This is partially due to the matrix being created by a single node so that all
data remain local to a single node. A “distributed” creation of the matrix would have rendered a higher
degree of scalability for all solutions.

4 Conclusions

We are living an explosion in the number of “solutions” (in the form of parallelizing compilers, parallel
libraries and languages) to program current multi-core processors and hardware accelerators, and get ready
for the future many-core processors. The situation resembles much that of the 90s, with the spread of
clusters of workstations among the scientific community, and the arise of a multitude of parallel solutions to
program distributed-memory (message-passing) architectures. From what we have experienced in the past,
programmability (in terms of flexibility and ease of use) will be the key that determines which among these
solutions will last.

In this paper, we have described the use of the SMPSs infrastructure to parallelize existing standard
numerical linear algebra libraries like LAPACK and FLAME. The SMPSs tools free the library developer
(usually an engineer or a numerical analyst) from the burden of parallelizing a complex code, so that he can
focus on developing new algorithms with better numerical properties, lower computational cost, or higher
implicit degree of parallelism. In particular, the programmer only needs to provide simple annotations to
the sequential code, which give the SMPSs run-time system hints on the granularity of the tasks and the
basic information to detect data dependencies at execution.

For dense linear algebra, we have demonstrated that SMPSs efficiently exploits task parallelism, yielding
high productivity (in terms of fast parallelization of the codes) and performance for the major factorizations
involved in the solution of linear systems. The results carry over to all level 3 BLAS, and likely to those two-
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Figure 8: Parallel performance (left) and scalability (right)
(bottom) factorization routines parallelized with SMPSs.

of the Cholesky (top) LU (middle) and QR
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sided reductions to condensed forms for the eigenvalue and singular values problems which can be formulated
in terms of level 3 BLAS.
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