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Evaluation of the efficacy of Steinernema carpocapsae against the Red Palm Weevil, 1 

Rhynchophorus ferrugineus in Phoenix canariensis. 2 

 3 

Abstract 4 

The red palm weevil, Rhynchophorus ferrugineus (Olivier) (Coleoptera, Curculionidae), 5 

is an important pest of palms. It has recently colonized the Mediterranean Basin where 6 

it is a serious problem on ornamental Phoenix canariensis (Chabaud) palms. The 7 

efficacy of Steinernema carpocapsae (Weiser) (Nematoda: Steinernematidae) against 8 

this weevil in a semi-field trial including both preventative and curative assays has been 9 

studied. Our results prove the potential of this nematode to control R. ferrugineus. 10 

Efficacies around 80 % were obtained in the curative assay, and up to 98 % in the 11 

preventative treatment. Applications repeated every 2-3 weeks during the flight critical 12 

periods could prove effective to protect palms from this weevil in the Mediterranean 13 

Basin.   14 

 15 
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 3 

Introduction 1 

The red palm weevil, Rhynchophorus ferrugineus (Olivier) (Coleoptera, Curculionidae), 2 

is a phytophagous insect that feeds in soft succulent tissues of many palm species 3 

(Murphy and Briscoe, 1999). Females deposit their eggs in separate holes or injuries at 4 

the base of the fronds. Eggs hatch into legless larvae which bore into the interior of the 5 

palms. On completion of their development, larvae move back to the base of the fronds 6 

where they pupate in elongate oval, cylindrical cocoons made out of fibrous strands. 7 

The red palm weevil is a concealed tissue borer and can spend all of its life stages inside 8 

the palm. Adults often remain and reproduce within the same host until the apical 9 

growing area of the palm has been destroyed by the larvae causing the palm to die. The 10 

complete life cycle of the weevil, from egg to adult emergence, takes an average of 82 11 

days (OEPP/EPPO 2008).  12 

Nowadays R. ferrugineus is considered the main pest of palms in the Mediterranean 13 

Basin (OEPP/EPPO 2008). This pest, which is native of South and Southeast Asia 14 

(Faleiro 2006) was first detected in Egypt in date palms, Phoenix dactylifera L.,  in 15 

1992 (Cox 1993). In Spain R. ferrugineus was detected in 1995 (Barranco et al. 1995) 16 

but remained confined in a small area in Southern Spain until 2004, when the pest 17 

appeared in different foci along the Spanish Mediterranean coast. In 2006 it was 18 

reported in the Canary Islands and today it can be found in almost all Mediterranean 19 

countries. In all these areas, R. ferrugineus constitutes a severe pest of the Canary palm, 20 

Phoenix canariensis (Chabaud), which is an important ornamental plant in both public 21 

and private gardens. Furthermore, the original wild populations of this species located 22 

in the palm forests existing in the Canary Islands are presently at risk. 23 

The methods currently used to control R. ferrugineus are mainly based on the 24 

application of  large quantities of synthetic chemical insecticides although there are 25 
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deep concerns about the environmental pollution caused by these treatments (Faleiro 1 

2006). Insecticides are applied in a range of preventative and curative procedures 2 

designed to limit and contain the spread of an infestation. These procedures have been 3 

developed and refined since commencing in India in the 1970s (Murphy and Briscoe 4 

1999). Methods range from general dusting of the leaf axils after pruning, or spraying of 5 

the tree trunk, to localized direct injections of chemicals into the trunk (Faleiro 2006). 6 

Researchers have concluded that because of the cryptic habitat of the boring stages of 7 

this weevil, chemical insecticides have to be applied frequently and over a long period 8 

of time for effective management of established populations (Murphy and Briscoe 1999; 9 

Ferry and Gómez 2002).  10 

The use of entomopathogenic nematodes (EPNs) could offer an interesting alternative to 11 

the chemical control of R. ferrugineus (Abbas et al. 2001a,b; Elawad et al. 2007; Saleh 12 

and Alheji 2003). EPNs are safe for non-target vertebrates and to the environment and 13 

since they are mass produced in liquid media, production costs have been significantly 14 

reduced in recent times (Ehlers 2003). Steinernematids are soil-inhabitating EPNs, and 15 

have free-living, parasitic and saprophytic stages (Mrácek 2003). The infective third 16 

juvenile stages (Dauer Juvenile, DJ) survive outside the insect and can either actively 17 

search for hosts (cruisers) or wait for host to pass by (ambushers). DJs enter the insect 18 

host through any opening (mouth, anus, spiracles) and grow into the parasitic stage. The 19 

death of the insect due to nematode parasitism is caused by Gram-negative bacteria 20 

which are carried within the gut of the DJs (Forst and Clarke 2002). Steinernema 21 

carpocapsae (Weiser) (Nematoda: Steinernematidae), which is mutualistically 22 

associated with the bacterium Xenorhabdus nematophila (Enterobacteraceae), is the 23 

most studied, available, and versatile of all EPN. This species is a typical ambusher, 24 

standing on its tail in an upright position near the soil surface (nictating) and attaching 25 
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to passing hosts. Consequently, S. carpocapsae tends to be most effective when applied 1 

against highly mobile surface-adapted insects (García del Pino 2006; Gaugler 2007).  2 

Cryptic habitats are considered as the most favorable, enhancing the infectivity, 3 

survival, and persistence of EPNs, because these environments minimize nematode 4 

death from ultraviolet radiation and desiccation (Mrácek 2003). Till present, field 5 

experiments in these habitats have provided mostly consistent and efficient results. 6 

Steinernema carpocapsae has proved successful in the control of geophilous insects, 7 

such as Capnodis tenebrionis (L.) (Coleoptera: Buprestidae) (Martínez de Altube et al. 8 

2007), Popilia japonica Newman (Coleoptera: Scarabaeidae) (Simões et al. 1993), 9 

Delia radicum (L.) (Diptera: Anthomyiidae) (Schroeder et al. 1996), as well as species 10 

with partially hidden life cycles, such as borers, Ostrinia nubilalis (Hübner) 11 

(Lepidoptera: Pyralidae) (Ben-Yakir et al. 1998), and leafminers, Liriomyza trifolii 12 

Burgess (Diptera: Agromyzidae) (Hara et al. 1993). Steinernema carpocapsae has 13 

already been used against R. ferrugineus. In the laboratory, results were good, but 14 

inconsistent in the field when used in date palms (Abbas et al., 2001b). The objective of 15 

this study was to test the efficacy of S. carpocapsae against R.  ferrugineus in a semi-16 

field trial including preventative and curative assays. 17 

 18 

 Materials and methods  19 

The assays reported in this study were carried out at the Institut Valencià 20 

d’Investigacions Agràries (IVIA) during the months of June, July and August 2007. 21 

Trials were performed in a double mesh security enclosure containing 24 independent 22 

cages (4 * 3 * 3 m) under natural light and temperature conditions. Mean temperature 23 

during the assays was 28.2ºC (max: 34.2ºC; min: 22.3ºC). A plastic roof protected the 24 

enclosure from the rain. 25 
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Plant material. Trials were performed on 48 4-year old potted P. canariensis. The stipe 1 

of these palms was 0.35 to 0.55 m high and 0.3 to 0.5 m wide. Plants were watered 2 

twice a week. 3 

Experimental insects. Adult weevils used to infest the palms in the preventative tests 4 

were captured in the province of Valencia in traps baited with ferrugineol (male RPW 5 

aggregation pheromone) and plant kairomones (ethyl acetate, pieces of palm leaves). 6 

Before release, adults were kept for 3 d in a plastic lunchbox with a perforated lid where 7 

thin apple slices were provided as food source.  8 

Immature stages used in curative tests were obtained from an artificial rearing 9 

maintained at IVIA. Eggs were obtained from wild specimens kept in plastic boxes as 10 

above and offered thin apple slices both as food and oviposition substrate as described 11 

by Martín and Cabello (2006). Eggs were subsequently transferred to an artificial 12 

complex diet (Martín and Cabello 2006) until they reached the desired age.  13 

Nematode application. The commercial product Biorend R Palmeras
®
 consisting of S. 14 

carpocapsae with a chitosan adjuvant was used. Chitosan is an organic biodegradable 15 

product with the active ingredient N-acetyl-glucosamine. The use of nematodes with 16 

chitosan is patented and has already been used in other systems (Martínez de Altube et 17 

al. 2007). Product was applied with a manually operated backpack compact sprayer at a 18 

dose of 1.8 * 10
6
 DJs + 18 ml chitosan per liter of water. Approximately 2 l of this 19 

solution were applied on the trunk and the bases of the fronds of each palm until run-20 

off.  21 

Curative tests. Twenty four palms were infested with nine larvae of R. ferrugineus  22 

each. A hole 3 cm deep and 1 cm in diameter was drilled on one side of the palm. 23 

Subsequently, an open vial containing the insects’s artificial diet and four 7-d old larvae 24 

was introduced into the hole. Two days later the vial was removed and checked under 25 
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microscope for evidence of larval exit. Ten days later, a new hole was drilled on the 1 

other side of the palm trunk and five 15-d old larvae were similarly introduced in each 2 

palm. One month after the first infestation, twelve palms were treated with S. 3 

carpocapsae, and the remaining 12 were used as control. Fourteen days after the 4 

treatment 4 control and 4 treated palms were carefully dissected and checked for the 5 

presence of R. ferrugineus. The remaining 16 plants were similarly dissected two weeks 6 

later. All R. ferrugineus specimens found, either dead or alive, were counted. To 7 

ascertain whether the nematode was the cause of  the death, dead immature stages were 8 

observed under microscope and streaked on NBTA (Nutrient agar supplemented with 9 

bromothymol blue and triphenyl-tetrazolium chloride) plates (Akhurst 1980) to verify 10 

the presence of X. nematophila phase I which absorbs bromothymol blue, producing 11 

dark blue colonies (Chavarría-Hernández et al. 2007). 12 

Preventative tests. Twelve uninfested palms were treated with S. carpocapsae as 13 

described above and 12 additional palms constituted the control treatment. Immediately 14 

after the treatment, four control palms and four treated palms were infested with R. 15 

ferrugineus by releasing 4 adult presumably-mated females per plant. To evaluate 16 

product persistence the same procedure was repeated 15 and 30 days after the treatment. 17 

One week after their release, when found, females were removed from the cage. One 18 

month after the release, palms were carefully dissected and checked for the presence of 19 

R. ferrugineus larvae. All specimens found, either dead or alive, were counted and 20 

checked for presence of X. nematophila as above.  21 

Data analysis. Results (percentage mortality and number of immature stages found 22 

alive for the curative and preventative tests, respectively) were subjected to a two-way-23 

analysis of variance (ANOVA, P > 0.05). The two factors were time and treatment. The 24 

efficacy of treatments was evaluated according to Abbott (1925). 25 
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 1 

Results  2 

Both the treatment and the time until palm dissection significantly affected the mortality 3 

caused by S. carpocapsae in R. ferrugineus when used as a curative treatment (Table 1). 4 

The longer the time elapsed since EPN application, the higher the mortality observed 5 

and hence the efficacy of the treatment. A high percentage (77.1%) of the grubs found 6 

dead in treated palms 14 d after treatment proved positive for the presence of either 7 

nematodes or the symbiotic bacterium X. nematophila. However, this figure dropped to 8 

just 30.2 % 14 d later. One difficulty encountered during the execution of this assay was 9 

the impossibility of recovering the nine larvae inoculated at the beginning of the assay 10 

in the treated palms. Only one to four individuals could be identified 28 d after the 11 

treatment. Around 40% of the immature stages found dead in this assay corresponded to 12 

pupae and the remaining 60% were larvae.  13 

In the case of the preventative treatment, both the application of S. carpocapsae and the 14 

timing of this application in relation to infestation significantly affected the number of 15 

immature stages found alive in the palms. The interaction between these factors was 16 

significant and the number of living immature stages per palm remained low and did not 17 

significantly change from 0 to 15 d, but increased at 30 d. As a consequence efficacy 18 

decreased at the end of the assay (Table 2). Females of R. ferrugineus released for 19 

oviposition at the beginning of this assay were able to cause infestation in all control 20 

palms. On the contrary, the S. carpocapsae treatment prevented infestation in 75% of 21 

the palms for releases made either 0 or 15 d after nematode application. This result 22 

could be explained by the fact that around 50% of ovipositing females released for 23 

infestation on treated palms were found dead at the base of the fronds when the palms 24 

were dissected at the end of the assay. These fronds showed feeding holes made by 25 
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these females, but no evidence of larval galleries. However, because of the long time 1 

elapsed since their death, it was not possible to prove the involvement of S. 2 

carpocapsae. This was not the case of 60% of the females recovered from treated palms 3 

one week after their release which proved infected by S. carpocapsae when examined 4 

under binocular microscope.  5 

Discussion 6 

Our results prove the potential of S. carpocapsae to control R. ferrugineus infestations 7 

in palms. The dose used in our assays  (3.6* 10
6
 DJs per palm) is higher than the dose  8 

used by Abbas et al. (2001b) in a field assay in date palms (approximately 0.9 * 10
6
 DJs 9 

per palm) and this may partly explain the lack of effect reported by these authors. 10 

Contrarily, our dose is similar to that used by Dillon et al. (2006) against Hylobius 11 

abietis (L.) (Coleoptera: Curculionidae) on pine stumps (Pinus contorta Dougl. ex Loud 12 

and Pinus sylvestris L.) (3.5 * 10
6
 DJs/tree), where efficacies of up to  47 % were 13 

reported. 14 

Efficacies around 80 % were obtained in the curative assay, and up to 98 % in the 15 

preventative treatment. These efficacies are very high, especially when compared to 16 

chemical pesticides used against this pest (Azam and Razvi 2001; Hernández-Marante 17 

et al. 2003; El-Sabaey 2004; Kaakeh 2006). Furthermore, our results demonstrate the 18 

ability of S. carpocapsae to infect and kill not only larvae but also more robust stages of 19 

this weevil, such as the pupa and the adult. Whether infected adults could contribute to 20 

the natural spreading of this EPN within palm groves or gardens deserves further 21 

investigation. 22 

The results from the curative assay are indicative that S. carpocapsae does not stay on 23 

the outside of the palm waiting for its host, but rather penetrates in the palm crown 24 

actively looking for and infecting R. ferrugineus larvae. These results differ from the 25 
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general consensus that this species is a classic ambusher (García del Pino 2006; Gaugler 1 

2007), but are in agreement with results on similar cryptic systems (Dillon et al. 2006). 2 

These authors presented evidence that S. carpocapsae did not simply remain on the 3 

treated surface and behaved in the same way as other EPN with different foraging 4 

strategies. Similarly to our results, these authors also found that the percentage of 5 

insects parasitized by S. carpocapsae increased between the 2 and 4 weeks and they 6 

attributed this fact both to the time taken by the nematodes to find the insects and that 7 

taken by the insects to die after EPN infection.  8 

The percentage of grubs found dead in treated palms which proved positive for the 9 

presence of either nematodes or the symbiotic bacterium decreased from 14 to 28 d. 10 

This result is in agreement with the hypothesis that EPNs leave their hosts once they are 11 

dead and thus contribute to the natural spread of the disease (Ehlers 2001). The same 12 

hypothesis could explain why it was not possible to isolate S. carpocapsae from the 13 

females found dead when the palms from the preventative treatment were dissected at 14 

the end of the assay. Besides, the ability of EPNs to decompose their hosts (Chavarría-15 

Hernández et al. 2007) could account for the results obtained in treated palms whereby 16 

on completion of its infectious cycle, host larvae could no longer be recognized.  17 

Rhynchophorus ferrugineus presents in the Mediterranean two main flight periods: 18 

around April-May and in September-October. Open field applications of EPN timed 19 

slightly before these months could protect the palms by affecting (1) immature stages 20 

from the old generation within the palm, (2) adults before oviposition and (3) young 21 

larvae from the new generation. Because the results obtained in the preventative assay 22 

prove that S. carpocapsae can survive in the palm for at least two weeks without 23 

loosing its efficacy, applications repeated every 2-3 weeks during these critical periods 24 

could prove effective to protect palms from this weevil.  25 
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