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Abstract. Images are generally represented in the RGB color space. This is the 

model commonly used for most cameras and for displaying on computer 

screens. Nevertheless, the representation of color images using this color space 

has some important drawbacks for image analysis. For example, it is a 

non-uniform space, that is, measured color differences are not proportional to 

the human perception of such differences. On the other hand, HSI color space is 

closer to the human color perception and CIE Lab color space has been defined 

to be approximately uniform. In this work, the influence of the color space for 

color texture characterization is studied by comparing Lab, HSI, and RGB color 

spaces. Their effectiveness is analyzed regarding their influence over two 

different texture characterization methods: DFT features and co-occurrence 

matrices. The results have shown that involving color information into texture 

analysis improves the characterization significantly. Moreover, Lab and HSI 

color spaces outperform RGB. 

Keywords: Texture analysis, Color Spaces, Discrete Fourier Transform, 

Co-occurrence Matrices. 

1 Introduction 

In the past years the few works that coped with color textures frequently did it by 

splitting the characterization process into two main steps: first, obtaining gray level 

texture features after changing the image into gray scale, and second, getting color 

features from the histogram of each color component [1]. Recently, some works have 

tried to face a global color texture characterization process [2]-[6]. 

Despite of being widely used, RGB space is not perceptually uniform in the sense 

that differences between colors do not match with human perception of color 

differences [7]. Color spaces such as Lab or HSI are less frequently used. Their main 

problem is their noise-sensitivity due to the non-linear transformations involved in the 

process of changing the space [8]. Even so, they have recently proved their 

effectiveness compared to RGB [9]. 

This work deals with the usage of different color spaces in the characterization of 

color textures and their influence over different texture characterization methods. 

Texture features will be extracted by means of two different methods and used to 

classify a limited database. We shall start considering features extracted from the 

Discrete Fourier Transform of the image. Leaving aside the frequency space, co-
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occurrence matrices [10] will next provide probability density information concerning 

the simultaneous occurrence of two values in the image at a certain relative position. 

2   DFT features 

As a discrete function, an image may be represented as a decomposition of Fourier 

components by the Discrete Fourier Transform (DFT). Besides, this transformation 

arranges the frequency space from lower to higher frequencies and regarding the 

direction these frequencies represent in the space domain. Thus, filters may be applied 

to select frequencies in bands (Fig. 1a) or with regard to their direction (Fig. 1b). In 

this way, we could split the whole Fourier space using ring or wedge filters and 

characterize the original image with the energy contained in each filter. However, in 

this way, directional information and band information are missed, respectively. 

 (a) (b) (c) 

Fig. 1. (a) Ring filter, (b) Wedge filter of 45º (c) Tessels obtained with the product of rings and 

wedge filters 

The product of a wedge by a ring provides with a small portion of the Fourier 

spectrum (Fig. 1c) which contains both directional and band information since it is 

located in a specific range of band frequencies and angles. A DFT tessellated in this 

way can also be characterized by the energies of these smaller parts (tessels). This 

should be a better characterization since it neither depends only on directional 

frequencies nor only on band frequencies but on both of them. 

Gabor filters have already introduced similar techniques to obtain information of 

the different areas of the Fourier transform [11]-[14]. Nevertheless they require the 

usage of Gaussian filters which makes them computationally complex. Furthermore, 

as it is usual in the frequency domain, low frequencies are given more importance 

than medium and high frequencies as each frequency band is double the size of the 

previous one. In this way, low frequencies are thoroughly analyzed whereas medium 

and high frequencies lose significance. However, it has been proven that, in texture 

analysis, medium and high frequencies could be as important as low frequencies [16]. 

Therefore, a detailed analysis of all frequencies should be carried out to characterize 

textures. This is done by designing filters that keep the ring width constant from low 

to high frequencies, giving the same importance to all frequency bands. As we only 

intend to characterize the textures, energies of the tessels obtained in the product 

tessellation, will be used as texture features. Furthemore, they will require less 

computational effort when compared to Gabor filters. 
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2.1   DFT for color images 

Color images have three gray scale components which all together give rise to color. 

A DFT generally deals with complex numbers but, when gray scale images are 

considered, the imaginary part is set to zero. In our proposal, the DFT of a color 

image will be a set of DFTs, each of them calculated from a pair of components in 

which the first one is the real part and the other one is the imaginary part. Therefore 

the color DFT will be composed by as many complex DFTs as combinations of two 

elements may be done with the components of the image. Unlike other methods that 

consider separately the luminance and the chromacity information, this approach 

could be easily extended to multispectral images just by considering all pairs of 

multispectral bands. As a color image has three components, there will be three 

combinations and so three complex DFTs will compose the color DFT of the original 

color image. Involving different components when calculating the DFT (complex 

planes) allows including color information in the characterization process. 

As a different approach, color components may also be treated separately by 

calculating the color DFT simply as the composition of individual DFTs provided by 

each individual gray component. 

3   Co-occurrence Matrices features 

Let G be the number of gray levels in a gray image. A rotationally invariant co-

occurrence matrix is a GxG matrix which contains the joint probability of pairs of 

pixels to appear at a fixed distance from each other, irrespective of the relative 

orientation the line that joins them forms with the reference direction of the image. In 

this case, a whole circle of pixels around a given pixel must be taken into account. 

When the orientation matters, so only one pixel could be separated a distance with 

certain orientation, the co-occurrence matrix is called directional [15][10]. There are 

certain statistical measures that portray a co-occurrence matrix which are used to 

characterize the texture where it was computed from. This is because they capture the 

relative abundance of certain image characteristics. Among the existing statistical 

measures energy, entropy, contrast and homogeneity have been used in this work for 

this purpose. 

Images generally have 256 gray values (in the range 0…255) so their 

co-occurrence matrices are 256x256 sized. If a smaller matrix is wished in order to 

obtain more robust statistics, the number of gray levels may be reduced in the image 

obtaining, consequently, a smaller matrix. This could be done by means of equation 

(4). 
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where G stands for the new number of gray level. 
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In either case, the result is a co-occurrence matrix from which the statistical 

features may be computed in order to characterize the corresponding texture. 

3.1   Cross-co-occurrence matrices 

A co-occurrence matrix of a color image should keep representing a set of joint 

probabilities but now the computation will involve two components at each time to 

make the resulting set color representative. Now, when considering a pair of 

components, the joint probabilities are computed crossing components, that is, one 

pixel is considered in the first component and the second pixels is considered in the 

second component. So, once again, the number of co-occurrence matrices for an 

image is the combinations of the components taken in pairs. 

No matter if the cross-co-occurrence matrix is rotationally invariant or directional, 

the change included ought to be the same. The methods applied regarding the 

distances between pixels remain. 

Once again individual planes may be used instead of pairs of components, 

calculating the co-occurrence matrices of each component separately. 

Lastly, the texture is portrayed by the statistical measures of the matrices 

calculated from its components, either using pairs of components, which we will call 

complex planes, or individual planes. 

4   Color spaces 

Images are originally represented in RGB color space. In this model, each color is 

represented as three values R,G and B which indicate the amounts of red, green and 

blue that make up the color. Nevertheless, other spaces should be taken into account 

as they may be convenient for texture characterization because of being perceptually 

uniform and/or closer to human color perception [7]. 

HSI (hue, saturation, and intensity) is an alternative color space. This is a more 

intuitive method of describing colors and, because the intensity is independent of the 

color information, it is a very useful model for image processing [9]. 

The International Commission on Illumination (CIE) defined three standard 

primaries (X, Y, and Z) to replace red, green, and blue, because all visible colors could 

not be specified with positive values of red, green and blue components. However, 

XYZ is not perceptually uniform. Perceptually uniform means that a change of the 

same amount in a color value should produce a change of about the same visual 

importance [7]. 

Lab space is derived from the master color space CIE XYZ. The intention of Lab 

color space is to create a space which can be computed from the XYZ space, but being 

perceptually uniform. Lab color space is a color-opponent space with dimension L for 

lightness and a and b for the color-opponent dimensions [7]. Therefore this color 

space represent the chromaticity with components a and b and the lightness L 

separately.  
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This division into chromaticity and lightness makes possible to study the impact 

of the lightness in the characterization. Chromaticity components may be treated as 

previously explained (creating complex planes) whereas L primary may be treated 

separately as an independent component (individual plane). 

4   Experimental setup 

Textures will be characterized using different methods. First, we use a tessellation of 

its color DFT so textures will have as many features as tessellated parts exists within 

their set of DFTs. The features that will portray textures in order to distinguish one 

another are the mean energies computed from the tessellated parts of the color  DFT 

of the texture. 

A study of the impact of the parameters used over the final classification rate 

obtained has been done over several texture databases. Performance increases when 

the size of the wedges used increases progressively from 5º to 45º and decreases 

afterwards. No increase or decrease of a 4 frequencies ring width obtains a gain. 

Therefore, experiments have been performed with a ring width of 4 frequencies and 

an angle of 45º for wedges. The particular parameters may depend on the properties 

of the images taken into account, but the chosen parameters performed well over a 

wide range of texture databases. 

The second and third texture characterization methods will be based on the 

rotationally invariant and directional cross-co-occurrence matrices, respectively. 

Regarding the rotationally invariant mode of creating a co-occurrence matrix, we 

have used four different distances for each image so four different matrices result with 

their four features each (energy, entropy, contrast and homogeneity). Turning to the 

directional ones, four different directions have been involved by using four fixed 

movements: (x=1,y=0) for representing the 0º direction, (x=1,y=1) 45º direction, 

(x=0,y=1) 90º and (x=-1,y=1) for 135º. Besides, within every direction the value of 

the distance changes four times starting from two and adding two units each time. 

Briefly, for each sample one co-occurrence matrix and its features are calculated for 

each distance belonging to the four directions, that is, 16 matrices are computed each 

time. 

The characterization taking into account several components can be performed by 

complex planes which are a combination of the components giving rise to a complex 

pair or by individual ones, which make no combination among them. 

The database used to test the quality of the characterization by classifying textures 

is shown in Fig. 2 which is originally a twenty-four 512x512 sized color image 

database. Images have also been converted to gray scale for gray characterization 

purposes. This database comes from the well-known VisTex bigger database [17]. 

Each texture will represent a class. The incoming image will be equally divided 

into 64 samples, each one with 64x64 pixels size. Every sample obtained will be 

subjected to the same process, giving rise to features of a certain class. Consequently, 

there will be as many samples as parts the image is divided into. 

For building the classifier, samples belonging to the same class are split into 

training and test sets, 25% and 75% of the samples, respectively. The division within 
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the same class is made at random among the samples obtained in the computation of 

features. Classifier built for this purpose has used the k-nearest-neighbours (knn) rule 

with k=3. The test samples are used with the classifier and a classification rate is 

obtained. The whole process is repeated one hundred times and the mean of the error 

rates of these attempts is taken as the final performance of the classifier. 

 

 
 

Fig. 2. Images which composed the texture database scaled down for displaying 

purposes (originally 512x512 pixels).  
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5   Experimental results 

Each method used to characterize an image result in a different set of textural 

features. For the sake of validating these characterizations the classifier is used over 

the features obtained. The better a characterization portrays textures the higher rate of 

classification is obtained, as characteristics of samples belonging to the same class 

will be similar enough to make the classifier match samples with their class. 

To evaluate all methods described, a brief summary of their performance is 

presented in Table 1. Characterization has been checked for each color space. The 

advantage of using color images can be also observed comparing gray level 

characterization which is included as well. 

Table 1.  Classification rates (in percentage) with characterization using DFT features, 

rotationally invariant and directional co-occurrence matrices features in different color spaces 

with 64x64 pixels sized samples using KNN classifier (K=3). 

Image model 
DFT 

characterization 

Rotationally Invariant 

Co-occurrence 

Directional 

Co-occurrence 

Gray level 69.96 64.02 74.07 

Complex planes 85.30 80.52 85.10 
RGB 

Individual planes 86.52 77.59 83.25 

Complex planes 88.30 89.67 90.54 
HSI 

Individual planes 83.57 87.49 90.01 

Complex planes 91.85 89.14 89.01 
LAB 

Individual planes 92.23 87.49 90.43 

 

From Table 1 we can note that no matter the characterization method considered, 

the introduction of color information in any color space improves significantly the 

characterization of the textures and consequently the classification rates of the 

samples in the database, as it could be expected.  

Turning to color spaces, we can notice that RGB is not an adequate color space for 

characterizing textures. Any alternative color space tested outperforms its 

classification rates, no matter the characterization method used. While co-occurrence 

matrices methods perform similarly under either HSI or Lab spaces, DFT features 

method enhance significantly under Lab color space, supplying the highest 

classification rates. 

In general, complex planes provide a better characterization of the texture than 

individual planes, but the differences are not as important as expected. In fact, in 

several cases, the classification rates obtained using individual planes are a little bit 

better than using complex planes. These small differences between complex planes 

and individual planes may be due to the high correlation of the information that 

appear in the different color planes. Perhaps some sort of data transformation, like 

PCA, may improve the characterization using complex planes 
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6   Conclusions 

Analysis of textures has been tackled going through gray level textures and RGB color 

textures. To analyze the incidence of the color space over the characterization process 

several characterization methods have been tested. A decomposition of the DFT keeps 

involving color information in the features provided and is computationally 

inexpensive, though. On the other hand, well-known co-occurrence matrices have also 

been used. 

As it was expected, the increase of components provides a better characterization 

of the textures and, consequently, better classification rates, so it seems that the use of 

color images is always convenient in the search of a better characterization.  

Different color spaces were used to deal with different texture characterization 

methods. Results show the better performance of the approximately uniform color 

spaces over the traditional RGB space (not perceptually uniform) no matter the 

characterization method used. Thus, the evidence presented in this paper suggests that 

approximately uniform spaces could be superior spaces compared to non-uniform 

ones. 

We still have to analyze if any data transformation could lead to an improvement 

of the results provided using complex planes when compared to the results obtained 

using individual planes. Also, the influence of the classifier used will be taken into 

account. 
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