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Abstract Object grasping is a typical human ability which
is widely studied from both a biological and an engineer-
ing point of view. This paper presents an approach to grasp
synthesis inspired by the human neurophysiology of action-
oriented vision. Our grasp synthesis method is built upon
an architecture which, taking into account the differences
between robotic and biological systems, proposes an adap-
tation of brain models to the peculiarities of robotic setups.
The architecture modularity allows for scalability and inte-
gration of complex robotic tasks. The grasp synthesis is de-
signed as integrated with the extraction of a 3D object des-
cription, so that the object visual analysis is actively driven
by the needs of the grasp synthesis: visual reconstruction is
performed incrementally and selectively on the regions of
the object that are considered more interesting for grasping.

Keywords biologically-inspired robots · models of
human manipulation · robot vision · grasping/dexterous
manipulation · active perception

1 Introduction

The ability to manipulate every kind of objects in a dexter-
ous way is one of the most distinctive in humans, and also
one of the fundamental skills pursued by robotic researchers.
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Nevertheless, despite the amount of research and techno-
logical efforts, there are still important differences between
humans and robots that influence the way robotic grasping
applications can be defined. First, human hands are charac-
terized for having five soft fingers with high dexterity and
compliance, whereas robotic hands feature a lower level of
dexterity and less elaborated contact surfaces. In addition,
the human brain has a degree of parallelism much higher
than any ordinary current computer. Finally, the action of
manipulating objects in humans involves the control of a
number of elements –hand, arm, eyes, head– that have, glob-
ally, many more degrees of freedom than current robotic se-
tups can manage. Therefore, models of the flow and process-
ing of information in the brain of humans and other primates
cannot be directly applied to a real robotic system, but have
to be adapted, or tailored, to it.

We know from neuroscience that the human visual sys-
tem is made out by two main information streams, a dorsal
pathway, more oriented toward action-based vision, and a
ventral pathway, more suitable to categorization and recog-
nition tasks [16]. Only a proper interaction between and wi-
thin both streams can lead to the complex and reliable hu-
man grasping skills in complex environments. Nevertheless,
the dorsal stream is more critical for the planning and ex-
ecution of grasping actions, to the extent that some of its
areas are especially dedicated to this task. In this work, we
present the adaptation of part of a model of information pro-
cessing for vision-based grasping in the human brain [10] to
a robotic system. An architecture is proposed for the deve-
lopment of such model following behavior-based guidelines.
This architecture supports the nesting and concatenation of
processing modules in a structured way. The implementa-
tion of the section of the model more specifically dedicated
to grasp synthesis is presented in this paper.

The grasp planning we propose is formulated through
the integration of object visual analysis and grasp search
procedures. In particular, the grasp synthesis method uses
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a multi-resolution representation of the object, in which the
3D visual analysis procedure depends on criteria for select-
ing, and thus analyzing more thoroughly, the object features
that appear more relevant for grasping purposes. Therefore,
the incremental, selective analysis of relevant object features
is obtained through action-oriented visual exploration.

This paper is organized as follows. Section 2 provides
a brief overall description of works related to the approach
considered in this paper. Section 3 includes the definition of
an architecture for supporting the adaptation of neuroscience
models to robotic setups, and the description of our model
for visual grasp search and execution. The implementation
of a grasp synthesis task based on visual search taken from
such model is given in Section 4, and the obtained results
are provided in Section 5.

2 Related work

This section provides a brief insight on the advances in dif-
ferent areas related to this paper. First, a description is given
regarding recent studies in the field of neuroscience about
the mechanisms of grasping in humans and other primates.
Next, works from an engineering point of view are consi-
dered, focusing on those related to grasp generation and the
extraction of action-related object descriptions. Some ref-
erences are also given regarding the use of behavior-based
architectures for the development of robotic applications.

2.1 Neuroscience

The study of the areas of the human brain involved in the
different stages of a manipulation task, and of the flow of
information through these areas, is an important and rapidly
developing field in neuroscience [8]. The exact nature of this
information and how it is elaborated is hot-topic and new
light is being shed especially regarding the role of the asso-
ciative cortex which makes use of visual and proprioceptual
data for action planning. The link between visual and asso-
ciative visuomotor cortex is the target of this work.

Visual data in primates flows from the retina to the tha-
lamus, and then mainly (but not exclusively) to the primary
visual cortex (V1) in the occipital lobe. There are two main
visual pathways going from the basic visual areas V1 and
V2 to different cortical association areas: the posterior pari-
etal cortex (dorsal direction) and the inferior temporal cortex
(ventral direction) (Figure 1).

Along the dorsal pathway, the caudal intraparietal area
(CIP) receives simple, 3D visual data regarding object edges
and surfaces from visual area V3A and selects object fea-
tures suitable for grasping. Object related visual information
then reaches the anterior intraparietal sulcus (AIP), which is
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Fig. 1 Brain areas involved in vision-based grasping actions.

dedicated to analyze and select between grasping related vi-
sual features of objects in order to plan, and monitor the ex-
ecution of, grasping actions [12]. Area AIP projects directly
to (and receives backprojections from) the ventral premo-
tor cortex PMv, which contains the motor primitives used to
compose grasping actions. Finally, the primary motor cortex
M1 is responsible for sending the proper activation signals to
the muscles. Visual information flowing through the ventral
pathway passes through V3 and V4 to reach the lateral oc-
cipital (LO) complex, the area of our cortex dedicated to ob-
ject recognition [19]. The products of the visual analysis are
thus, from the dorsal elaboration, precise information about
position and geometry of the object and, from the ventral
elaboration, data about expected weight, friction, and me-
mories of previous interactions with the target object [10].
The detailed parameters of an action are completely deter-
mined by processing in the dorsal stream, and theoretically
no contribution from the ventral stream is required. Never-
theless, it helps in the action selection process, providing
semantic information regarding characteristics of the object
and memories of past events [15].

When focusing on the use of visual information for ac-
tion purposes, a key aspect to consider is the tight intercon-
nection of primary visual with associative areas, which ap-
pears to interact through a series of feedforward and feed-
back connections. Indeed, visual perception is not a sequen-
tial process, but rather a distributed one, in which higher
areas drive the job of primary ones in order to improve their
visual knowledge in a goal-oriented way [7].

Intents to emulate the computation of the visual cor-
tex have been carried on, and models of grasping are also
available, as for example the FARS model [13], which fo-
cuses especially on the action-execution step. Nevertheless,
no robotic applications have been yet developed following
this path, and the integration between the two visual path-
ways is nearly unexplored. More details on the neuroscience
findings which inspired this work are found in [10], includ-
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ing hypothesis on how the two streams of visual processing
in our cortex coordinate and interact.

2.2 Robotics

In the engineering literature, the problem of selecting a set
of contacts –a grasp– on an object for grasping it with a
gripper is known as grasp synthesis, while the grasp anal-
ysis is the inverse problem, involving the evaluation of a
given grasp [3]. A grasp is considered as the set of loca-
tions (points/regions) on the object surface where the fin-
gers of the hand have to be placed for grasping the object.
The grasp stability has often been evaluated in terms of force
and form closure conditions, which ensure stability assum-
ing point contacts with friction [3].

Most robotics reserarchers use a model of the object for
the grasp search. For simplicity, some works have consi-
dered an object description that was restricted to lie on a
plane [29]. Nevertheless, this description is unrealistic, since
objects in the real world are intrinsically three-dimensional
and in most cases are not well described by a 2D simplifi-
cation. Works considering a 3D object description have nor-
mally used a model of the object, obtained or defined in an
off-line stage [1, 23]; in other works [25], a grasping axis
is computed using an octree-based reconstruction of the ob-
ject. Alternatively, some authors use heuristics to reduce the
number of candidates during the grasp synthesis and obtain
a good grasp in short time [4]; others approximate an ob-
ject model with a set of shape primitives –such as cylinders,
boxes, or cones– and use rules, based on those primitives, to
generate grasp pre-shapes and starting positions [26]. Qual-
ity measures for grasp analysis have been described in sev-
eral works [5, 11].

Among vision-based works, in many cases there is a 2D
grasp synthesis in one image, followed of a 3D reconstruc-
tion and/or validation [18]. The 3D reconstruction of the
model of an object based of visual information is a relatively
complex task. Although the use of feature correspondences
between several images has been common in many works,
such correspondences are not always available, for instance,
when the objects have smooth surfaces, so procedures not
requiring them have also been developed [33]. In general,
the 3D reconstruction produces either a surface-based re-
presentation of the object [9] or a volumetric representa-
tion [24]. Nevertheless, the integration of this reconstruction
with some task-oriented processing, such as grasp synthesis,
has not been fully developed yet.

Pre-defined 3D object models have also been used in
many works for the synthesis of grasps. In [14, 26] the de-
composition of a 3D model into basic structural components
is considered to find grasps on parts of the object that could
be valid for the entire object. In other works, such as in [22],

the 3D object model is used to estimate the position and ori-
entation of the object, and to position the robot with respect
to the object, while the final grasp execution is guided by
tactile sensor data. In fact, many works dealing not only with
the synthesis but also with the execution of grasps make use
of force or tactile sensor on the fingers of the robot hand. For
instance, in [28], primitive force-based controllers are con-
currently used to find an appropriate placement of the fin-
gers on the object, and in [27] a robotic hand performs tac-
tile exploration of the object, based on a set of exploratory
primitives, in order to find a good grasp.

Finally, the development of a task such as the one con-
sidered in this paper has followed, in a classical approach,
a sense-plan-act paradigm. This has been criticized for be-
ing too computationally expensive for allowing control in
real time, and also for its lack of biological foundations.
Behavior-based systems [2, 6] have proved their effective-
ness in dealing with dynamic and complex environments,
and have been widely used in many fields of robotics. More-
over, although this paradigm has been more widely used in
other areas of robotics, it is being increasingly used in the
development of manipulation tasks [34].

3 The filter-based architecture and its application to
vision-based grasping

In this section, an architecture is proposed for the adapta-
tion of neuroscience models to a robotic setup. A framework
for the implementation of a model of vision-based grasping
based on the early separation and late integration of visual
analysis through the two visual streams is presented.

3.1 The filter-based architecture (FBA)

The proposed architecture, intended for its application on
artificial devices, has some intrinsic limitations with respect
to biological models, which influences aspects such as the
degree of parallelism and the flow of information. It uses
the basic types of components shown in Figure 2 [31]:

– Virtual sensors. Components that provide data acquired
from real sensors in the system (cameras, infrared cells,
etc.). They correspond to the primary sensory areas of
the human cortex (rather than to the sensory organs).

– Virtual actuators. These components receive commands
or data to be sent to physical/real actuators installed in
the system (robot arm, gripper, etc.). They model the pri-
mary motor areas.

– Virtual filters. These components process the data they
receive from virtual sensors and/or other filters, and pro-
duce some results, which are provided to other filters or
to virtual actuators. They handle operations such as fea-
ture extraction or a control law. Each filter can be seen as
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Fig. 2 Basic components of the FBA architecture.

a specific cortical area. In the brain, they are usually dis-
posed more as a continuous than as in a block diagram,
but technological constraints oblige to build a simpler
model, in which areas are separated from each others
and connected through a clear input-output flow.

– Data sets. They constitute groups of data produced and
processed by the above modules. They represent a sim-
plification of the information flow connecting brain areas.

Each output data set of a virtual sensor or filter can constitute
the input of a virtual actuator or another filter.

Virtual sensors, actuators and filters have interfaces, through
which they are interconnected. As shown in Figure 2, three
types of interfaces are considered:

– Input interface. It indicates the set of data that a given
component requires as input.

– Output interface. Specification of the set of data that a
given component provides as output.

– Parameter interface. Set of parameters that can be used
to configure a component.

In addition to its functionality, it is the set of interfaces of
a component what characterizes it. This allows to group a set
of components into a single unit that can be considered as a
higher level sensor, filter or actuator. Additionally, filters can
internally implement the different stages in the execution of
a task. Transitions between these stages may depend on the
input data, the filter output, or a combination of both.

A task will be the set of all connected virtual sensors,
filters and virtual actuators that are simultaneously active
within a system. The data sets constitute an internal, non-
centralized memory spread along the chain of components.

We believe that our architecture is especially suitable for
bridging the gap between neuroscience models and robotic
applications. On the one hand, it offers the modularity and
flexibility required for modeling brain functions and data-
streams. On the other hand, the rigorous and formal repre-
sentation of these data-streams allows for a further abstrac-
tion that is necessary in order to translate a computational
skill into a practical implementation of a real-world task. Fi-
gure 3, which is explained in more detail in the following

sections, shows how the components of this architecture can
be composed to form a relatively complex task framework,
in our case dedicated to vision-based grasp planning.

3.2 The vision-based grasping model

This section considers the development of a model which
includes the neuroscience findings described in Section 2
within the framework of the filter-based architecture. Ac-
cording to the FBA, the simplified model of the task per-
formed by the two cortical visual streams in the context of
vision-guided grasping actions is depicted in Figure 3, us-
ing the blocks of Figure 2. The data flow through the two
visual streams, as explained in 2.1, is shown. Along the dor-
sal stream, grasp relevant visual information is processed
and refined in order to generate and evaluate possible grasp
configurations. Perceptual visual elaboration, relying upon
more abstract features such as color and overall shape, is
performed along the ventral stream, which will aid the final
grasp selection through access to previous experience.

From a practical point of view, the main novelty of ap-
plying such a framework to a robotic setup would be the
parallel computation performable on the visual input, so that
different aspects are taken separately into account, and the
elaboration is carried on according to the purpose of each
pathway. The on-line data gathered and processed by the
dorsal stream is complemented and enriched by the pre-
viously stored knowledge recovered by the ventral stream.
Each pathway thus contributes to the final behavior with
the most important results of its elaboration. Moreover, both
streams interact with each other, the ventral helping the dor-
sal in action selection, and the dorsal providing spatial vi-
sual information that can be used to accelerate and improve
object classification and recognition.

Besides the separation of the two streams, a critical as-
pect is the recurrent connectivity between sensory and asso-
ciative areas. On the one hand, the link between visual areas
(V1, V2) and dorsal associative cortex (mainly CIP, AIP and
MT, not shown) represents the gradual enrichment of visual
information from basic features such as blobs or edges, to
the elaborated representation of different kind of surfaces
and complex shapes. On the other hand, such link serves
the function of providing additional details to current repre-
sentations, being the refinement driven by the needs of the
dorsal stream areas which select the object or object features
that deserve more attention.

In the next section, we provide a first implementation
of part of the described model. We start from the hypothe-
sis that the object to grasp is unknown, so that the on-line
visual analysis is prevailing. Thus, we dedicate most atten-
tion to the dorsal stream, which is likely to identify possibly
graspable features on target objects and through visual ex-
ploration we refine and complement the available data, until
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Fig. 3 Development of the vision-based grasping model using the FBA
architecture.

they are considered reliable enough to proceed to the syn-
thesis of an executable grasp.

Later on, we plan to include in the system the contribu-
tion of the ventral stream. The idea is that memory of previ-
ously executed grasping actions on given objects can be re-
called and facilitate the analysis/selection of grips. The input
of the recognition step is information on the shape, the color
and texture of an object. Identifying the object will trans-
late in a classification task, to categorize the target in one of
some known object classes. Outputs will thus be the object
identity, and its composition, which in turn allows to esti-
mate its weight distribution and the roughness of its surface,
that are valuable information at the moment of planning the
action. Recognition is not a true/false process, and a reliabil-
ity index of the extracted information needs to be provided,
as the classification could be more or less certain: if it is con-
sidered very unreliable, more importance will have the on-
line visual information gathered by the dorsal stream. Beside
the recovery of memorized object properties, the recognition
allows to access memories of previous grasping experiences.
These can be used to associate an object with basic natural
grips, to recall the outcome of old actions on that object, and
this information is used to bias the grasp selection.

4 Modeling grasp-synthesis

Considering the model described in Section 3.2, we have fo-
cused on one specific task, the on-line grasp visual synthesis
performed by the dorsal stream in conjunction with the vi-
sual areas, through visual exploration of target objects.

4.1 The grasp-synthesis task

We develop the grasp-synthesis strategy so that it is based
on the visual exploration of the object. The proposed explo-
ration is guided by the need of searching or computing spe-
cific data that are required for the grasp synthesis. This stra-
tegy constitutes a general framework within which different
grasp synthesis and analysis criteria could also be tested.

The experimental setup considered in this work, shown
in Figure 4, consists of a robot arm equipped with a camera
mounted in an eye-in-hand configuration. A three-fingered
hand has been considered for the synthesis and execution of
grasps. The objects should be of a graspable size and shape
for this hand, and with a convenient texture, so that their
contour can be extracted by the vision system in each ac-
quired image. The robot arm is intended to perform a move-
ment around the selected object during which images are
acquired. However, other configurations could also be valid,
as long as the exploratory movement can be performed.

Figure 5 provides a general description of this task, which
is composed of the following stages:
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Fig. 4 Experimental setup for the visual object exploration.
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– Action-oriented visual analysis. Initial stage in charge
of gathering the visual data necessary to start the grasp
synthesis and the object exploration.

– Grasp synthesis. This is a deliberative stage, in which
the actual grasp synthesis is performed, based on the ini-
tial data set and, mainly, the data collected during the
exploratory movements. If additional information is re-
quired to perform the grasp synthesis, a plan is made for
a new exploratory movement.

– Exploration movement. In this stage, the system performs
some planned exploratory movement in order to extract
new information about the object to improve the data
available to the grasp synthesis process.

The stages are iteratively executed until the grasp synthesis
algorithm is able to select a grasp or it decides to cancel

the grasp search because of a failure. In any case, the grasp-
synthesis can be preceded or followed by other tasks.

Due to the inherent complexity of the task and our spe-
cial interest in visual elaboration, we focus in the following
sections on the vision analysis issues from Figure 5 associ-
ated to the grasp synthesis only, rather than on the control
and planning of the exploratory movement.

4.2 Action-oriented visual analysis

This stage roughly corresponds to the tasks performed by
the advanced visual areas V3-V3A and the first associative
parietal areas, as CIP. The goal is to extract the visual infor-
mation required to identify and evaluate object features use-
ful for grasping and start planning exploratory movements
that may help in the grasp synthesis. This stage is left when
either the initial data extraction is finished (and the dorsal-
premotor loop comes into action) or it has not been possible
to perform it (for example for a sudden occlusion).

Our system builds at this stage a rough 3D object repre-
sentation, which will be refined in the Grasp Synthesis stage
to identify possible grasp zones. The object representation
is based on the use of an octree structure, which allows to
control the degree of detail of the representation. An octree
structure is based on a node (voxel) that can be recursively
decomposed in eight children, where each node represents a
cube in physical space and each child an octant of its parent.
The octree can be carved in order to remove nodes corres-
ponding to space not belonging to the object [32].

The setup data required at this stage is some estima-
tion of the volumetric size of the object, in order to ini-
tialize the root voxel of the octree. This information can
be previously known or estimated using some fast point-
reconstruction method.

The carving of the octree, in order to build an object
model, is performed following algorithm 1 using the con-
tours of the selected object, extracted by the modules in
charge of basic image processing (corresponding to the pri-
mary visual cortex). The octree is projected onto the im-
ages provided by the vision system and then compared with
the contours of the selected object. This is used to remove
(carve) voxels that, based on this projection, are outside the
space occupied by the object. The images correspond to dif-
ferent views of the object, obtained during an initial ex-
ploratory movement of the robot around it. They are bina-
rized and contours extracted from them. The selection of
the contours corresponding to the target object is based on
generic criteria, such as the size and the position in the image.

The above algorithm is applied to each input contour-
based object description. The level of detail of this recons-
truction is controlled by limiting the number of levels in the
octree and the size of the octree nodes. The decision in algo-
rithm 1 on whether the carving of an octree node is required
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or not is determined by algorithm 2. This algorithm is de-
signed to use for this purpose generic criteria related to the
overlapping between the object and the octree node, as well
as grasp-specific criteria. At the visual analysis stage, only
the generic criterion, which considers as a non-null occu-
pancy of the projection of a voxel on the object, is used.

Algorithm 1 Carve octree
for each level in the octree do

if addition of a new octree level is allowed then
for each node at this level do

if carving of this node is required then
Create child nodes

else if node projection is outside the object then
Mark node as empty

end if
end for

end if
end for

Algorithm 2 Get node carving requirement
Project node points on the image
voxel occupancy←% projected points inside obj. contour
carving required← false
if voxel size ≥ threshold then

if overlapping between object and node projection then
if voxel occupancy ≥ threshold then

carving required← true
else if carving required based on grasping criteria then

carving required← true
end if

end if
end if

The octree-based representation obtained at this stage is
used as just a rough description of the object, which will be
later, at following stages, refined with higher level of detail
in order to highlight the zones more interesting for grasping.

4.3 Grasp synthesis

This is the stage in which the generation of the grasp to exe-
cute is actually performed, using data coming from the vi-
sual analysis stage during the object exploration process. In
this deliberative stage, the object data are analyzed in order
to select positions for placing the fingers of the robot arm. If
the available information is considered enough for the grasp
synthesis, it is checked if a reliable grip can be produced; if
so, the control passes to the motor areas in charge of orga-
nizing the target movements; otherwise, a new exploratory
movement is performed and new visual data gathered and
added to that already available.

Once the rough, initial octree-based object description
has been obtained, a refinement of this octree is performed

in order to highlight, through a more detailed modelization,
the regions more interesting for grasping.

Algorithm 3 provides an outline of the behavior at this
stage. Essentially, it analyzes the object description stored
and produced during its exploration. In case more informa-
tion about the object is required for the evaluation of all the
criteria considered for the grasp synthesis, a new exploratory
movement is planned accordingly, based on the available ob-
ject data [30], taking into account the object regions more in-
teresting for grasping and in order to provide more detailed
information about them.

If the available information is enough to perform the
above evaluation, we use a number of heuristic criteria that
we have previously defined and validated experimentally [11]
to decide if a reliable grip can be extracted from it. Some of
the criteria are related to the hand kinematics, but in this
case we want to keep the process purely visual, and as flex-
ible as possible. Thus, only those criteria directly related
to the shape, size, and disposition of the grasp regions are
taken into account. More exactly, the ones that are consi-
dered more useful and easily adaptable to the new situation
are: the symmetry in the distribution of the grasp regions
(criterion S1 in the original publication); the safety mar-
gin provided by a given set of graspable features (criterion
S3); and the curvature of the regions (slight concavities usu-
ally guarantee more stable grips, criterion S4). Possible sets
of regions representing a grip are thus evaluated using the
normalized versions of the criteria, and if a candidate grip
reaches a given reliability threshold, then the exploration can
terminate. Future work will also consider the selection of a
corresponding motor action, out of a basic vocabulary of ac-
tions, and a grasp preshape for the hand [20], which is now
manually defined by the operator.

Algorithm 3 Exploration-based grasp synthesis
Analyze the object information
if more information is required then

Plan a new exploratory movement
Trigger event Planning performed

else
Attempt grasp selection from available object information
if grasp selection has been successful then

Select a motor action and a pregrasp
Trigger event Grasp selected

else
Trigger event Grasp synthesis failed

end if
end if

4.4 Exploration movement

The activity in this stage is oriented to the extraction of ob-
ject information during the execution of a planned explo-
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ration movement. This information is used to incrementally
update the object description produced by the visual analy-
sis stage. Algorithms 1 and 2 are used also at this stage for
the refinement of the octree. Both the generic and the grasp-
specific criteria are considered in the exploration movement
stage for deciding on the carving of the voxels; as the grasp-
specific criterion, we consider the curvature of the object
contour below a given threshold.

The sequence of activities in this case can be briefly des-
cribed as follows:

– Visual assessment of available feature data. The system,
in its aim of generating possible grips, assesses the qual-
ity of the available data through the use of visual crite-
ria [11]; based on these data, it parameterizes the further
exploration of areas that are considered interesting for
grasping but not reliably covered by the visual analysis.
Therefore, the decision on whether to carve a voxel or
not in algorithm 2 is related not only to the voxel occu-
pancy, but also to the fulfillment of the grasping criteria.

– Movement control. The movement planned in the grasp
synthesis stage is executed. In the human cortex, such a
movement could only be obtained by the integration of
parietal and vestibular information, as it requires control
of the head and various different transformations of the
reference frame. In our case, the visual system is joined
and controlled together with the hand, so that we only
control a hypothetical motor cortex responsible for the
joint movement of sensor and effector.

– Enrichment of visual knowledge. Further 3D visual data,
regarding those portions of the object surface assessed
as more appropriate for grasping, is gathered and added
to the information already available in the dorsal areas
(CIP-AIP), which can repeat the synthesis-exploration
cycle until a reliable grasp configuration is found.

5 Results

This section shows the results of the visual analysis descri-
bed in Section 4 using the experimental setup introduced in
Section 4.1. They correspond to the visual processing per-
formed in the action-oriented visual analysis, grasp synthe-
sis and exploration movement stages shown in Figure 5. As
indicated in this figure, the first of these stages uses as input
the relevant features extracted from the images acquired by
the camera mounted on the robot arm during its initial and
exploratory movements around the object; in particular, we
have considered as relevant feature the contour of the object.

The images acquired during the exploratory movement
of the robot arm are processed according to the procedures
described in Section 4. Figure 6 shows the results of the vi-
sual analysis stage based on the initial views of a selected
object. Using an octree structure, a rough modeling is per-

Fig. 6 Initial data extraction. Sequence of object views, with extraction
of relevant features, followed (bottom-right image) with a rough object
reconstruction.

formed that will be used afterward for the grasp-based ob-
ject exploration. The generated octree has a maximum of
four levels of depth. Three images from different viewpoints
have been used. They are just slightly different, taken only
from a few centimeters away, but enough for providing a
stereoscopic effect. The size of the root voxel of the octree
has been estimated from a set of reconstructed points.

A refinement of the above octree is performed in the ex-
ploration movement stage during a movement of the vision
system around the object, in which the object is observed
from different views. Some of these views for a sample ob-
ject are provided in figure 7; external views corresponding
to this exploratory movement can be observed in figure 8.
As indicated in section 4, a generic refinement is performed
first in order to better define the shape of the object. Then,
more specific criteria intervene so that the analysis focuses
on those areas of the object that are more interesting for
grasping. The regions of the object that, based on the above
criteria, are considered less suitable are ignored or observed
with less detail. Figure 9 shows the process of applying this
refinement to the rough modeling given in figure 6, with fi-
gure 9d corresponding to the final refinement. Further exam-
ples of this process are provided in figure 10.

The grasp is selected according to visual criteria [11] on
the regions of the object that have received more attention
during the reconstruction process. Figure 11 shows some ex-
amples of grasps executed on these regions.

6 Conclusions

The first goal of this paper is that of providing a framework
for the development of robotic applications on the synthesis
and execution of grasps, taking inspiration from the compu-
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Fig. 7 Different views of an object during the exploration movement.

Fig. 8 External views of the exploration movement around an object.

tations performed by our brain when performing this kind
of actions. The proposed grasp synthesis can be extended
within this framework to obtain a more detailed develop-
ment of brain models. In addition, since it is based on a
grasp-driven multi-resolution visual analysis of the object,
future work will have to consider the cases in which it is
difficult to extract relevant information from low-resolution
data in the earlier stages of the grasp search. As a first, ma-
jor improvement, we plan to extend the grasp-oriented vi-
sual analysis to the case in which experience of previous
grasping actions and object knowledge is available (contri-
bution of the ventral stream). This should not be done in a
dichotomic way, but rather as a modulation of the influence
of the two streams: a higher confidence in the object recog-
nition/classification process reflects in a stronger influence
of past grasping experiences, whilst a more uncertain recog-
nition leads to a more exploratory behavior, giving more im-
portance to actual observation.

(a) (b)

(c) (d)

Fig. 9 Exploration movement for grasp synthesis. View after the initial
object reconstruction (a), which triggers a generic reconstruction (b)-
(c), followed by a grasp-specific reconstruction (d).

Fig. 10 Other results of object reconstruction for grasp synthesis.

A second important development of our work is toward
a safer and more efficient action execution. It is long known
that visual information alone is hardly enough to provide
stability to real world grips [21], and recent findings [17]
show that the parietal cortex, and namely AIP, is involved
in a cross-modal analysis of object features which involves
tactile information. The practical goal to pursue is thus to
integrate in the analysis of graspable features data regarding
the contact between object and effector.
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Fig. 11 Examples of grasp execution on the objects from Figure 10.

Finally, the framework described in this paper is oriented
to be used in a relatively autonomous system, which would
have to handle on its own the execution of specified tasks
with a certain degree of complexity. Such a system would
be able to act as an assistant, requiring only high-level indi-
cations from a user.
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31. G. Recatalá, P.J. Sanz, E. Cervera, and A.P. del Pobil. Visual ser-
voing for the tool-to-object positioning with respect to welding
points. In P. Drews, editor, Mechatronics & Robotics’04, volume
III, pages 1241–1246, Aachen, Germany, September 2004. Sascha
Eysoldt Verlag.

32. M.A. Yerry, and M.S. Shepard. A modified quadtree approach
to finite element mesh generation. IEEE Computer Graphics and
Applications, 3(1):39–46, January 1983.

33. G. Zeng, S. Paris, M. Lhuillier, and L. Quan. Study of volumetric
methods for face reconstruction. In IEEE Intelligent Automation
Conference, 2003.
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Gabriel Recatalá holds a B.Sc. degree (1996) and

a Ph.D. (2003) in Computer Science Engineering from the “Jaume

I” University (Spain). He has been appointed as Visiting Scientist at

the Department of Computer Science of the University of Minnesota

(1998, USA), the Institute for Real-Time Computer Systems of the

Technical University of Munich (1999, 2000, 2001, Germany), and the

LASMEA laboratory of the “Blaise Pascal” University in Clermont-

Ferrand (2002, France). He is teaching assistant at the “Jaume I” Uni-

versity since 1999. His current research interests include robotics, com-

puter vision, visually-guided grasping, visual servoing, and behavior-

based architectures.

Eris Chinellato received his MSc in Artificial In-

telligence, together with the Best Student Prize, from the University of

Edinburgh (UK) in 2002, and his Industrial Engineering Degree from

the Universit degli Studi di Padova (Italy) in 1999. He is now pursu-

ing his PhD in the Robotic Intelligence Lab of the Jaume I University

(Spain). His interdisciplinary research is mainly focused, but not re-

stricted to, the use of visual information for grasping actions in natural

and artificial systems. He has published in influential journals and pro-

ceedings in robotics, neuroscience, and computational neuroscience.

He has served as reviewer and program committee member for inter-

national journals and conferences, and collaborated with renowned sci-

entists such as M.A. Goodale and R.B. Fisher.
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