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ABSTRACT 

An overview is given on the presence and changes over time of pesticide residues in 

groundwater from the Valencia region, one of the most important citrus cultivation sites of 

southern Europe. A multiresidue LC-MS/MS method was applied for the screening of around 50 

pesticides in 75 water samples collected during 2000. The herbicides simazine, terbuthylazine, 

bromacil, terbumeton, and diuron were the most frequently detected compounds. On the basis 

of compounds detected in these samples, another method that focused on 30 herbicides and 

relevant transformation products (TPs) was developed and applied to around 80 water samples 

collected during 2003. Simazine was the most frequently found compound followed by several 

triazine metabolites. Data for this paper show the vulnerability of groundwater in this area to 

herbicide applications and illustrate the importance of including pesticide TPs in environmental 

monitoring programmes, as four out of the five compounds most frequently detected were 

pesticide TPs. 
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1. INTRODUCTION 

In spite of a general decrease in pesticide use and the appearance of a new generation 

of pesticides with lower impact on the environment, the development of monitoring programmes 

to provide more information on surface and groundwater pollution is still needed. 

Pesticide concentration in groundwater depends on many factors such as crop and soil 

type, weather, season, degradation rates in the environment, physical and chemical 

characteristics of the pesticide, application rate and management practices [1]. There are 

generally fewer data available on the presence of pesticides in groundwater than for surface 

water. However, increasing interest in this topic in recent years, as well as the improvement in the 

methods of analysis, has produced more information about the quality of groundwater. In recent 

years several monitoring programmes have been applied in the USA [2-7] and in many European 

countries [8-15] to determine a large variety of pesticides and some transformation products (TPs) 

in groundwater. Although some data are available on pesticide residues in Spanish groundwater 

[16-20], there is a lack of monitoring programmes of sufficient scope to focus on the compounds 

that are most widely applied and, consequently, with the highest potential to contaminate 

groundwater. This is relevant, considering that Spain is one of the European countries with the 

highest pesticide usage (kg) per unit area (ha) [1]. Therefore, it seems very important that more 

data are obtained to provide better knowledge about European, and specifically Spanish, 

pollution of groundwater by pesticides. 

Although herbicides are normally less toxic than other pesticide families, their inclusion in 

priority lists of monitoring programmes is of great importance to obtain more comprehensive 

knowledge of groundwater pollution, as these compounds have been the main pesticide 

contaminants in this type of water sample. Triazines, fenoxyacids, or phenylureas are among the 

most frequently detected due to their higher mobility in the soil-water environment [21,22]. 

Once the contact between pesticides and the soil-water environment is made, they can 

be degraded in different ways to a variety of TPs. Although TPs are usually less active and 

harmless than their parents, they can still have a certain degree of toxicity [23,24]. As a 

consequence of their polarity, they normally have a higher mobility in the soil-water environment 

and can reach groundwater more easily than their parent compounds. Therefore, the inclusion of 

relevant TPs in analytical methodology applied in water monitoring programmes is necessary to 

provide a realistic overview of pesticide pollution. 
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In contrast to food analysis where the analytes are determined by the residue definition 

given in the MRL regulation, the EU regulation of residues in drinking-water does not contain 

detailed residue definitions and only gives a general reference to pesticide-related compounds 

[25]. In this case, metabolites or degradation products (in general, pesticide TPs) may be 

unknown, and their detection and identification become an important part of the analytical task 

[26]. Pesticide TPs are considered particularly relevant within the group of so-called emerging 

contaminants [27,28], and their determination is an analytical challenge, as has been recently 

pointed out by our own research group [29]. 

Until recently, most available data on pesticides in water have been obtained by 

application of multiresidue methods based on solid-phase extraction (SPE), solid-phase 

microextraction (SPME) or solvent extraction (ELL), followed by gas chromatography coupled to 

mass spectrometry (GC-MS) [30,31]. However, when polar pesticides and TPs have to be included 

in the analytical methodology, the application of liquid chromatography coupled to mass 

spectrometry (LC-MS) is required, and it has become the preferred technique for polar pesticide 

residues determinations [26,32-36]. 

The use of LC in combination with tandem mass spectrometry (MS/MS) allows 

considerable improvement in sensitivity as well as selectivity, achieving limits of quantification 

(LOQ) low enough to satisfy the EU regulations in water, without even applying the common prior 

SPE step [37]. Although quantification requirements have been carefully considered in the 

scientific literature, not much attention has been paid to the confirmation of the identity of 

compounds detected in water, mainly when using LC-based methods. Thus, some methods have 

been based on the acquisition of only one transition, when using selected reaction monitoring 

(SRM) mode (LC-MS/MS methods), or even only on one ion measurement (LC-MS methods) for 

each target compound monitored. The acquisition of at least two MS2 transitions and the 

measurement of their ion abundance ratio has been proposed to minimise the possibility of 

reporting false positives or false negatives [32,35], providing a more reliable confirmation process 

[38,39]. 

The main objective of this work is to provide a wider knowledge of pesticides and TPs 

present, and changes in concentration over time, in groundwater from the Valencia 

Mediterranean Region (eastern Spain), where there is intensive agricultural activity. For this 

purpose, the SPE-LC-MS/MS methodology developed at our laboratory has been applied to the 

determination of pesticides widely used in this area, mainly herbicides. Several wells, representing 

the different types of aquifers present in this area, were monitored during two sampling periods of 
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a year (2000 and 2003). Around 50 pesticides and TPs were included in the 2000 monitoring, while 

2003's analyses were focused on the most frequently detected compounds in the previous 

monitoring, mainly herbicides, and their TPs. Special attention has been paid to the reliable 

confirmation of the identity of compounds detected in samples, which was based on acquisition 

of two MS/MS transitions, and also by applying LC-QTOF MS to selected positive samples. 

2. EXPERIMENTAL 

2.1. Reagents and chemicals 

Pesticides and TPs reference standards were purchased from Dr Ehrenstorfer (Augsburg, 

Germany), Riedel de Haën (Seelze, Germany) or Sigma (St. Louis, MO). Compounds investigated 

in this work are shown in Table 1. 

HPLC-grade acetonitrile and methanol were purchased from ScharLab (Barcelona). LC-

grade water was obtained by purification of demineralised water in a Nanopure II system 

(Barnstead Newton, MA). Formic and heptafluorobutyric acids were supplied by Fluka (Buchs, 

Switzerland). 

2.2 Description of the study area  

The coastal strip of the Valencia community is formed by a succession of coastal alluvial 

plains filled with materials of the Plioquaternary Age consisting of conglomerates, gravel, sands, 

lime, and clays, with frequent lateral changes of facies. From north to the south, the plains of 

Vinaroz-Benicarló, Oropesa-Torreblanca, Castellón, Sagunto and Valencia are distinguishable 

(Figure 1). 

From the hydrogeological point of view, each coastal plain constitutes a detritic 

unconfined aquifer, more or less complex, in which the natural recharge takes place by effective 

infiltration of rainwater (12%) and irrigation water (8%), as well as by lateral feeding from mesozoic 

aquifers. The natural discharge takes place by direct flow to the sea or through associated 

coastal wetland zones, some of them of great ecological interest. 

The thickness of the unsaturated zone increases from the coastline towards the interior. 

The minimum thickness is found in well 2 (Burriana) where it does not surpass 2 m, while in the rest 

of the area it is normally between 8 and 20 m. 
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Figure 1. Map of the study area and sampling points. 1: Carcaixent; 2: Burriana; 3: Benicassim; 4: 

Benicarló; 5: Almenara; 6: Nules; 7: Castellon; 8: Alboraia. 
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2.3 Sampling  

Groundwater samples were collected during 2000 and 2003. In each monitoring period, 

about 80 groundwater samples were collected from eight representative wells (Figure 1). 

Sampling points were chosen on the basis of agricultural relevance of the area and aquifer type. 

Sampling was carried out from April to December, at 2 week intervals from June to October, and 

monthly in the other months. Samples were collected in duplicate in high-density polyethylene 

containers (ca. 60 mL) and were stored in the dark at a temperature below -18°C until analysis. 

2.4 Instrumentation 

An HPLC system, based on a 233XL Gilson autosampler and two pumps, an Agilent 1100 

binary pump used to condition and wash the SPE on-line cartridge, and a Waters Alliance 2690 

quaternary pump used for the chromatographic separation, was interfaced to a Quattro LC 

triple quadrupole (QqQ) mass spectrometer with an orthogonal Z-spray-electrospray interface 

(Waters). The experimental setup can be found elsewhere [34,36]. 

2.5 Analytical procedure 

Water samples, previously centrifuged at 3500 rpm for 10 min if suspended particulate 

matter was present, were analysed by LC tandem MS. For samples collected in 2000, an SPE-LC-

MS/MS method [36] was applied to determine 37 pesticides widely used in the study area and 10 

TPs (see Method 1, Table 1). In these analyses, only one MS/MS transition was acquired. An 

additional injection, to acquire another transition per compound, was applied to confirm positive 

findings at concentrations higher than 0.1 µg L-1. For samples collected in 2003, on the basis of the 

first sampling period results, the monitoring was focused on 18 pesticides and nine TPs (belonging 

mainly to the triazine family). Two complementary SPE-LC-MS/MS methods [34] were applied to 

every water sample: one for acidic and neutral pesticides (Method 2b), and the other for basic 

and the remaining neutral analytes (Method 2a; see Table 1). For these analyses, two transitions 

were acquired for each compound, which allowed the simultaneous quantification and 

confirmation of positives in only one analytical run. 

All methods applied were previously validated and fulfilled the analytical characteristics 

typically required in the field of pesticide residue analysis. 
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3.RESULTS AND DISCUSSION 

3.1 2000 Monitoring programme 

The groundwater samples collected in the study area (75) were analysed by 

applying a method based on on-line trace enrichment coupled to tandem MS (SPE-LC-

MS/MS) [36]. Figure 2A shows the detection frequency for the compounds found (25 out of 

47 analysed). Herbicides were by far the most commonly detected compounds, making up 

about 90% of positive detections. As an example, among the 15 most frequently found 

compounds, 11 were herbicides, two were herbicide TPs, one was a fungicide, and one was 

an insecticide. Desisopropylatrazine (DIA), a triazine TP, was the most frequently found 

compound (72% of samples analysed), while the triazines simazine and terbuthylazine and 

the fungicide carbendazime were detected in around 50% of the samples. 

Several target compounds were often found at concentrations higher than 0.1 µg L-1 

(close to 40% of the compounds detected were quantified over this level). In the case of 

bromacil, MCPA and DIA, concentrations were over 0.1 µg L-1 in more than 50% of their 

positive findings (Figure 2A), with maximum concentrations of 4.5 µg L-1 for bromacil, 0.4 µg L-

1 for DIA, and 0.8 µg L-1 for MCPA (Table 2). Although less frequently, polar insecticides such 

as ethiofencarb, carbofuran, or methidation were also found in some samples but 

represented less than 5% of detections and always at levels below 0.1 µg L-1. 

The average pesticide concentrations at each sampling point are compared in 

Figure 3A. It can be observed that herbicides, especially triazines, were the group of 

pesticides most commonly detected. These results are in accordance with data previously 

reported in other areas [6,8,11,15,22]. The highest pesticide levels were found in sampling 

points 1 and 2. Well 1, located at Carcaixent, belongs to a karstic aquifer, and its 

piezometric level is situated at 60 m. The agricultural soil is predominantly sandy, with a 

thickness no greater than 80 cm and directly overlying high karstified limestones. Well 2, 

located at Burriana, belong to a coastal aquifer with an unsaturated zone thickness less than 

2 m, having a high hydraulic conductivity, due to the prevalence of gravel and sands. Both 

wells 1 and 2 are subject to extensive citrus crop activity. The sum of average concentrations 

of triazines plus DIA, and the sum for the rest of the herbicides (mainly bromacil), in wells 1 

and 2 were higher than 0.5 µg L-1. For the rest of the wells monitored, the average 

concentration levels normally did not exceed 0.1 µg L-1. Positives referred to as 'other 

pesticides' were mainly attributed to carbendazim and its TP, 2-aminobenzimidazole. No 

relevant variation of pesticides concentrations were observed during sampling performed in 

2000. 
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Figure 2. Detection frequency (%) of pesticides and transformation products (TPs) in groundwater 

samples collected at (A) 2000 and (B) 2003 monitoring periods. 
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Table 2. Summary of the results obtained during 2000 pesticide monitoring in 
groundwater (total number of samples analyzed 75) 

COMPOUND % POSITIVE 
SAMPLES 

% SAMPLES 
>0.1µg L-1 

MAXIMUM 
LEVEL (µg L-1) 

Azinphos-methyl 1 0 <0.025 
Bromacil 45 35 4.5 
Buprofezin 3 0 <0.025 
Carbendazim 51 3 0.12 
Carbofuran 8 0 <0.025 
Chlorpyrifos 0 0 n.d. 
Chlorpyrifos-methyl  0 0 n.d. 
Diazinon 0 0 n.d. 
Dimethoate 1 0 0.04 
Diuron 32 8 0.24 
Ethiofencarb 17 0 0.07 
Fluazifop 0 0 n.d. 
Fluroxypyr 0 0 n.d. 
Fomesafen 0 0 n.d. 
Hexythiazox 0 0 n.d. 
Imidacloprid 7 0 0.04 
Malathion 7 0 0.06 
MCPA 31 20 0.84 
Mecarbam 0 0 n.d. 
Methidation 7 0 <0.025 
Methiocarb 1 0 <0.025 
Methomyl 0 0 n.d. 
Molinate 7 0 0.03 
Oxamyl 0 0 n.d. 
Pendimetalin 0 0 n.d. 
Pirimiphos-methyl 0 0 n.d. 
Pyridaben 0 0 n.d. 
Pyridaphenthion 0 0 n.d. 
Pyrimicarb 4 0 <0.025 
Pyriproxyfen 0 0 n.d. 
Quinalphos 0 0 n.d. 
Simazine 57 0 0.09 
Tebufenpyrad 0 0 n.d. 
Terbacil 24 7 0.72 
Terbumeton 43 17 1.54 
Terbuthylazine 51 15 0.49 
Terbutryn 15 4 0.31 
Thiobencarb 0 0 n.d. 
2-Aminobenzimidazole a 37 0 0.03 
CBF-3-hydroxy a 0 0 n.d. 
CBF-7-PhOH-3CO a 3 0 0.06 
4-Chloroaniline a 0 0 n.d. 
6-Chloronicotinic acid a 0 0 n.d. 
DIA a 72 35 0.36 
3,4-dicloroaniline a 8 0 <0.025 
3-Me-p-NO2PhOH a 5 0 0.05 
TCPY a 0 0 n.d. 
a Transformation products    
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Figure 3. Comparison of pesticide concentrations found at every sampling point during (A) 2000 

and (B) 2003 (data correspond to the sum of the average concentration of each pesticide 

during the monitoring period). 
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3.2 2003 monitoring programme  
 

Results obtained during the first monitoring period were taken into account when 

selecting the list of target pesticides for the 2003 monitoring period (Table 1). Thus, seldom 

detected, less-polar analytes (mainly insecticides) were removed from the list, and emphasis was 

placed on polar analytes, mostly herbicides and their TPs, and other compounds, such as 

carbendazime and its TP 2-aminobenzimidazole, that were also widely detected in the previous 

monitoring. 

 

 

Table 3. Summary of the results obtained during 2003 pesticide monitoring in 
groundwater (total number of samples analyzed 85) 

COMPOUND % POSITIVE 
SAMPLES 

% SAMPLES 
>0.1µg L-1 

MAXIMUM 
LEVEL (µg L-1) 

Bentazone 0 0 n.d. 
Bromacil 45 28 0.57 
Carbendazim 26 1 0.37 
Dimethoate 1 0 <0.025 
Diuron 45 5 0.37 
Fluroxypyr 0 0 n.d. 
Imazalil 5 0 0.09 
MCPA 2 0 0.03 
Methidathion 0 0 0.03 
Molinate 0 0 n.d. 
Oxamyl 0 0 n.d. 
Propanil 0 0 n.d. 
Simazine 74 7 0.52 
Terbacil 12 1 0.13 
Terbumeton 36 9 1.07 
Terbuthylazine 39 8 0.46 
Terbutryn 18 0 <0.025 
Thiabendazole 5 0 0.03 
Thiobencarb 0 0 n.d. 
2-Aminobenzimidazole a 0 0 n.d. 
Desethyl-2-hydroxyterbuthylazine a 68 19 0.21 
Desethylterbumeton a 72 13 1.62 
Desethylterbuthylazine a 52 8 1.42 
Desisopropylatrazine a 35 8 0.25 
Desisopropyl-2-hydroxyatrazine a 5 0 0.04 
3,4-Dichloroaniline a 0 0 n.d. 
2-hydroxysimazine a 13 1 0.15 
2-hydroxyterbuthylazine a 69 13 0.15 
a Transformation products    
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A total of 85 groundwater samples were analysed by applying two complementary SPE-

LC-MS/MS methods [34], with the result that 20 out of the 28 compounds investigated were 

detected. Triazine herbicides were widely detected (Figure 2B), with simazine being the 

compound most frequently found in both sampling periods. The maximum triazine levels were 0.5 

µg L-1 for simazine and terbuthylazine, and 1.1 µg L-1 for terbumeton (Table 3). 

The results obtained in this work support the interest for including TPs in monitoring 

programmes. Thus, DIA was the compound most commonly detected in 2000, and when the 

number of target TPs was increased in 2003, the result was that four out of the five compounds 

most frequently detected were desethylterbumeton, 2-hydroxyterbuthylazine (2-hydroxyTbze), 

desethyl-2-hydroxyterbuthylazine (desethyl-2-OH-Tbze) and desethylterbuthylazine (desethylTbze), 

all of them triazine TPs (Figure 2B). It should be emphasised that these compounds were also the 

most frequently found at concentrations higher than 0.1 µg L-1, reaching maximum values of 1.6 

µg L-1 for desethylterbumeton, 0.7 µg L-1 for desethylTbze, and 0.2 µg L-1 for 2-hydroxyTbze and 

desethyl-2-OH-Tbze (Table 3). 

The relevance of TPs inclusion is also proven when comparing the average concentration 

of a parent compound and its TPs. The case of terbuthylazine is illustrated in Figure 4, where it can 

be seen that TP concentrations were generally higher than that of the parent compound. TPs 

levels exceeded 0.1 µg L-1 in several wells, even in those where the terbuthylazine average 

concentration was lower than 0.025 µg L-1, as in sampling points 2 and 5. In some cases, TPs were 

detected in spite of the fact that parent terbuthylazine was absent (wells 3 and 4). 

A similar pattern was observed for other triazines (simazine, terbumeton) and their TPs (2-

hydroxysimazine and desisopropyl-2hydroxyatrazine; DIA and desethylterbumeton, respectively). 

Thus, average simazine concentration in well 1 was 0.07 µg L-1, while for DIA it was 0.14 µg L-1. With 

regard to terbumeton, its degradation product desethylterbumeton was always found at higher 

concentration than the parent compound. Also, this TP was detected in wells 3 and 4 where 

terbumeton was not found. 

In relation to other compounds also detected in 2000, DIA and bromacil were also found 

at relevant concentrations during 2003, while MCPA detections were minimised. Bromacil, due to 

its high water solubility and propensity to leaching, can be found in groundwater overtime [40]. 

Our data show that positive findings of bromacil exceeded 0.1 µg L-1 in around 30% of samples, in 

both 2000 and 2003, with maximum values of 4.5 µg L-1 and 0.6 µg L-1, respectively (Table 2). 
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Figure 4. Average concentrations of terbuthylazine and some of its transformation products at 

every sampling points during 2003. 

 

Wells 1 (Carcaixent) and 2 (Burriana) were again the most polluted sites (Figure 3B). The 

sum of triazine average concentrations in well 1 was higher than 0.5 µg L-1. Positives referred to as 

'other herbicides' corresponded to bromacil findings in both wells, close to 0.5 µg L-1. As in 2000, 

no pesticides were detected in well 8, and the sum of parent pesticides concentrations did not 

exceed 0.1 µg L-1 in the rest of the sampling points. The relevance of the TP findings is illustrated in 

Figure 3B, where it can be seen that the 'total pesticide concentration' came mainly from 

pesticide TPs. No significant variation of pesticide and TP concentrations in any well was observed 

during the 2003 sampling period. 

A more detailed study of data obtained for the 18 common compounds included in 

both monitoring periods for wells 1 and 2 (the most polluted) shows that the herbicides simazine, 

terbumeton, terbutryn, diuron, terbacil, and bromacil, and a triazine TP (DIA) were the most 

commonly detected compounds. In both wells, all these herbicides, except simazine, were found 

at lower concentrations in 2003. In some cases, a significantly lower average concentration level 

was observed in 2003, for example from 0.26 µg L-1 in 2000 to <0.025 µg L-1 in 2003 for terbutryn 

(well 2), or from 0.12 µg L-1 to 0.04 µg L-1 for terbacil (well 1). A similar result occurred for bromacil 

(both wells), terbuthylazine, terbumeton, and DIA (well 1), where considerable concentration 

decreases were observed, although levels higher than 0.1 µg L-1 were still found. Average 
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simazine and diuron concentrations were always lower than 0.1 µg L-1 in both wells in both years. 

A summary is shown in Figure 5 where the concentration decrease over time is observed for both 

wells, especially well 2, where most of compounds were found at levels lower than 0.1 µg L-1 in 

2003. This decrease in pesticide pollution might be explained by a reduction in the application of 

these pesticides, an improvement in agricultural practices, or pesticide degradation to non-

target metabolites. 
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Figure 5. Evolution, over a 3-year period, of the total pesticide concentration in the two most 

polluted sites. Data correspond to the 18 common compounds monitored in both 2000 and 2003. 

 

Data presented in this paper are limited, as only eight sampling points have been 

included in monitoring, which obviously do not represent the whole area understudy. However, 

data obtained from the analysis of around 150 samples illustrate how some pesticides and TPs 

can reach groundwater in areas of intensive agricultural activity. A more complete monitoring 
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selecting a higher number of wells would be required to have a full overview of the Valencian 

area. 

 

3.3 Confirmation  

In the analysis of samples collected in 2000, only one transition was acquired for both 

quantification and qualification. The acquisition of an additional transition for confirmation 

purposes would have required the use of a higher number of channels, requiring longer 

chromatographic runs to decrease the data points available per peak and considerably 

decreasing the sample throughput. Confirmation of positives was performed only in those cases 

where analyte concentration exceeded 0.1 µg L-1 by re-injecting the samples into the LC-MS/MS 

system and acquiring one additional transition per analyte. 

Samples collected in 2003 were analysed by applying two different SPE-LC-MS/MS 

methods, in this case acquiring two transitions per compound, which allowed simultaneous 

quantification and reliable identification of positive findings. The most sensitive transition was used 

for quantification (Q) and the additional one for confirmation (q). This methodology was feasible 

due to the reduction in the number of compounds monitored. As an example, Figure 6 shows the 

SRM chromatograms corresponding to two water samples where two parent herbicides and 

several of their TPs were detected. All findings were confirmed with compliance of both retention 

time and Q/q ratio, with those of a reference standard. 

In order to compare and confirm several selected findings, around 20 positive samples 

collected in 2003, with analyte concentrations higher than 0.1 µg L-1, were re-analysed using an 

SPE system coupled on-line with an LC-QTOF instrument. This additional confirmation was carried 

out by recording the product ion spectra of the selected compound. All positives detected and 

identified by QqQ-MS were also confirmed with QTOF, in this way verifying that the use of two 

specific transitions in QqQ was a satisfactory approach for reliable identification. The lower 

sensitivity of our QTOF instrument compared with triple quadrupole working in SRM mode made 

the confirmation of positives samples at lower concentration levels difficult. 
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Figure 6. Selected LC-MS/MS chromatograms for positive groundwater samples. (A) Sample 

collected on 28 October 2003 at well 2 containing simazine at 0.52 µg L-1, 2-hydroxysimazine (2-

OHsimazine) at 0.15 µg L-1, desisopropyl-2-hydroxyatrazine (2-OH-DIA) at 0.04 µg L-1 and 

desisopropylatrazine (DIA) at 0.19 µg L-1. (B) Sample collected on 17 December 2003 at well 1 

containing terbuthylazine (Tbze) at 0.12 µg L-1, 2-hydroxyterbuthylazine (2-OHtbze) at 0.03 µg L-1, 

desethyl-2-hydroxyterbuthylazine (DE-2-OHtbze) at 0.12 µg L-1 and desethylterbuthylazine 

(DEtbze) at 0.43 µg L-1. (Q) quantification transition; (q) confirmation transition. 
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4.CONCLUSIONS 

Several herbicides have been widely detected in groundwater from the Spanish 

Mediterranean Region, an important agricultural area with a predominance of citrus crops. 

Triazines, such as simazine, terbuthylazine, terbumeton, and terbutryn, and other herbicides such 

as bromacil, diuron, or MCPA were frequently found at concentrations around 0.1 µg L-1 or higher 

in most of the samples collected during the year (both 2000 and 2003). 

The relevance of pesticide TPs inclusion in groundwater monitoring programmes has 

been demonstrated, as several TPs were found at concentrations higher than that of their parent 

compounds. Hence, in future works the inclusion of other TPs of widely detected pesticides, such 

as bromacil, will also be considered. 

Although a decrease in pesticide concentrations has been observed from 2000 to 2003, 

groundwater pollution in the wells tested is still notable. Therefore, good agricultural practices 

that are sustainable and that respect the environment are required together with intensive 

monitoring programs that increase our understanding of pesticide interactions in the environment 

and as a means of regulation. Furthermore, special attention must be paid to those areas where 

the most contaminated wells are located. A detailed hydrogeological study should be carried 

out to better understand the high vulnerability of these aquifers to agricultural practices. 

Both accurate quantification at low analyte levels and reliable identification of positives 

findings have been carried out using LC with tandem mass spectrometry and the acquisition of 

two specific MS/MS transitions. The use of LC-QTOF allowed an additional, unequivocal 

confirmation of positives in those cases where the analyte concentration exceeded 0.1 µg L-1. 
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