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Abstract. Let X be a topological space and let C(X) be the ring of all real-valued
continuous functions defined on X. In this paper, we study the representation and
approximation of continuous functions by sums of infinite series. Among other
results, we give sufficient conditions in order to represent or approximate every
continuous function by infinite series of functions, belonging to a previously fixed
subfamily of C(X), when X is either a locally compact paracompact space or a
Lindelöf space.

1. Introduction

Given a topological space, X, we denote by C(X) the set of all real-valued conti-
nuous functions defined on X. The celebrated Stone-Weierstrass theorem yields very
simple and easily verifiable conditions for the approximation of continuous functions
defined on a compact space with respect to the uniform convergence topology. This
result has been extended in different ways in order to obtain sufficient conditions
for the approximation of bounded continuous functions spaces on general topological
spaces. It is natural to ask whether it is possible to obtain analog results on the
approximation of arbitrary, not necessarily bounded, continuous functions. Never-
theless, the approximation of unbounded continuous functions for the topology of
uniform convergence is a difficult goal and it seems essential to include some appro-
priate tool that allows one to pass from local properties, which are given in terms of
points and their neighborhoods, to global results, which concern the approximation of
unbounded functions. A way of attacking the problem consists in considering the in-
version operation of functions. Another possibility is to approximate through series of
continuous functions (see [10, 8, 9]), which is the direction we deal with here. Indeed,
the representation and approximation of continuous maps through infinite series of
functions belonging to a previously fixed subset of C(X) provides a method which
is based on relatively simple operations and extends the well known theory about
the approximation of continuous functions defined on subspaces of Rn by series of
polynomials. Along this line, and using mainly topological methods, we present here
some sufficient conditions in order to represent every continuous function as the sum
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of an infinite series of functions, belonging to a previously determined subfamily E of
C(X), when the topological space X is either locally compact and paracompact or a
Lindelöf space (recall that every separable metrizable space is Lindelöf). Our starting
point has been a version of the classical Stone-Weierstrass theorem, given in [3], where
it is made use of appropriately defined finite sums in order to obtain approximation
results. This approach is also considered in [10, 2, 5, 6, 7] where topological methods
are also applied.

2. Preliminaries

N (resp. R) denotes the set of all natural numbers (resp. real numbers). Through-
out X is a non void completely regular Hausdorff space. We denote by C(X) (resp.
C∗(X)) to the set of all real-valued continuous (resp. and bounded) functions defined
on X. If f ∈ C∗(X) we denote ‖f‖ = sup{|f(x)| : x ∈ X}. For A ⊆ X and f ∈ C(X)
we write f|A for the restriction of f to A. If E ⊂ C(X), then E|A = {f|A : f ∈ E}.
Finally ‖f‖A = sup{|f(x)| : x ∈ A}. Let f ∈ C(X), we denote by suppf the closure
in X of the set coz(f) = {x ∈ X : f(x) 6= 0}. A zero set in X is a set of the form
Z(f) = {x ∈ X : f(x) = 0} with f ∈ C(X). The symbol Z(X) denotes the family of
all zero sets in X. Let f be an element of C(X), then f+ = f ∨ 0 and f− = (−f)∨ 0.
If a is a real number, we denoted by La(f) (resp. La(f)) the set {x ∈ X : f(x) ≤ a}
(resp. {x ∈ X : f(x) ≥ a} ). We refer to La(f) and La(f) as the Lebesgue sets of f .
From [10] and [2] we take the following two definitions.

Suppose that E ⊆ C(X) and A and B are disjoint subsets of X, we say that E
separates A and B (cf. [10] ) in case there is f ∈ E such that 0 ≤ f ≤ 1, fA = 0
and fB = 1. We say that E S-separates A and B (cf. [2]) when for each δ > 0
there is f ∈ E such that 0 ≤ f ≤ 1, f(A) ⊆ [0, δ] and f(B) ⊆ [1 − δ, 1]. We
say that E separates f (resp. S-separarates f) if for every a ≤ b we have that E
separates (resp. S − separates) the Lebesgue sets La(f) and Lb(f). We need one
more definition in order to distinguish these two separation conditions from the one
used in the Stone Weierstrass theorem. We say that E weakly separates A and B
when there is f ∈ E such that f(A) = {0} and f(B) = {1}. Finally, here E∗ denotes
the set {f ∈ E : f is bounded} and E

u
denotes the uniform closure of E; i.e., the

closure of E in the topology of uniform convergence.
Given a series of continuous functions

∑
i∈I fi on X, we say that the series is locally

convergent when, for every x ∈ X, there is a neighborhood U of x such that the series∑
i∈I fi converges uniformly on U . Using an argument of compactness, it is readily

seen that local convergence implies convergence in the compact open topology and
that both definitions of convergence agree if X is locally compact. For E ⊆ C(X) we
denote by

∑
(E) the set of all f ∈ C(X) such that f =

∑
i∈I fi with fi ∈ E for every

i ∈ I and
∑

i∈I fi is a locally convergent series.

3. Basic results

Lebesgue sets provide a natural and powerful technique, introduced by Lebesgue
himself, in the approximation of functions, continuous or not. Next follows a basic
simple result along this direction.
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Proposition 3.1. Let X be a topological space and let E be a vector subspace of
C(X). If E S-separates f ∈ C(X), then f and |f | both belong to

∑
(E)

u
.

Proof. Take δ > 0 arbitrary and suppose that f ≥ 0. We define Fn = L(n−1)δ(f)
and Hn = Lnδ(f) for every n ∈ N. By hypothesis, there is αn ∈ E such that
0 ≤ αn ≤ 1, αn(Fn) ⊂ [0, δ/2n] and αn(Hn) ⊂ [1 − δ/2n, 1]. The series

∑
n∈N δαn is

locally convergent.
Indeed, take x ∈ X with nδ ≤ f(x) < (n + 1)δ and set U = X \ L(n+1)δ(f), which

is an open neighborhood of x. Then, for every y ∈ U , there is n0 ∈ N such that
y ∈ Fn for all n ≥ n0. So we have

∑
n∈N δαn(y) =

∑n0−1
j=1 δαj(y) +

∑∞
j=n0

δαj(y).

Since ‖δαj‖U ≤ δ2/2j for all j ≥ n0, we can apply the Weierstrass test in order to
obtain that the series converges uniformly on U .

Now, in order to evaluate |f(x)−
∑

n∈N δαn(x)|, suppose that nδ ≤ f(x) < (n+1)δ.
Then

n∑
j=1

δαj(x) ≥ δ

n∑
j=1

(1− δ/2j) ≥ nδ − δ2,

and
∞∑

j=n+2

δαj(x) ≤ δ2/2n+1.

So
|f(x)−

∑
n∈N

δαn(x)| ≤ δ + δ2

Taking δ = min(ε/2, 1), we have

‖f(x)−
∑
n∈N

δαn‖ < ε,

for any positive real number ε. Hence, we are done when f ≥ 0. If f is not necessarily
positive we have f = f+ − f− (resp. |f | = f+ + f−) and it is readily seen that E

S-separates f+ and f−. Therefore, f+ and f− belong to
∑

(E)
u
, which completes

the proof. �

Remark 3.2. The following assertions are consequence of Proposition 3.1:

(1) We can use the decomposition f = f+ − f− in order to approximate f by
functions g ∈

∑
(E) such that g =

∑
n∈Z gn, gn ∈ E for all n ∈ Z.

(2) Let A be a subset of C(X) and E a vector subspace of C(X) which S-separates

Lebesgue sets of A. Then the sublattice generated by A is contained in
∑

(E)
u
.

(3) If we assume that f is bounded and E is a subalgebra of C(X) in Proposition
3.1, then it follows easily that f ∈ E

u
(cf. [2]).

(4) If X is compact (or, even Lindelöf), then only countably indexed series are
relevant in the definition of

∑
(E).

Proof. Items (1), (2), and (3) are readily seen. As for item (4), consider f ∈
∑

(E),
then f =

∑
i∈I fi with fi ∈ E for all i ∈ I. Since the series is locally convergent,

for every x ∈ X there is a neighborhood, Ux, of x such that for a countable subset
Jx ⊂ I, we have fi|Ux = 0 if i /∈ Jx. By an argument of compactness, it is easy to see
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that there is a countable subset of J ⊂ I, such that fi = 0 if i /∈ J . That is to say,
only countably indexed series are relevant in the definition of

∑
(E). �

4. Locally compact paracompact spaces

In this section we present some results which relate local with global approximation
properties for locally compact paracompact spaces. Firstly, we present some prelimi-
naries results that will be needed in the sequel.

Lemma 4.1. Let X a be a topological space and let E be a vector sublattice of C(X)
which contains the constants. If A and B are two subsets of X that are S-separated
by E, then they are separated by E.

Proof. Let g ∈ E with 0 ≤ g ≤ 1, g|A ≤ δ and g|B ≥ 1− δ where 0 < δ < 1
2
. Define

f = [ 1
1−2δ

· ((g − δ) ∨ 0))] ∧ 1. Then 0 ≤ f ≤ 1 , f|A = 0 and f|B = 1. �

Next, follows a variant of Proposition 1 which relaxes the conditions of S-separation
when we have partitions of the unity.

Lemma 4.2. Let X be a topological space and E a subalgebra of C(X). Let f ∈ C(X)
be such that there is a locally finite partition of the unity {αi}i∈I with αi ∈ E, i ∈ I,

and E|coz(αi) S-separates f|coz(αi) for all i ∈ I. Then f ∈
∑

(E)
u

Proof. Firstly, we set Ai = coz(αi) in order to simplify the notation. Given an
arbitrary but fixed ε > 0, since E|Ai

S-separates f|Ai
, for every δ > 0 there is gi ∈ E

such that 0 ≤ gi |Ai
≤ 1, gi|(La(f)

⋂
Ai) < δ and gi|(Lb(f)

⋂
Ai) > 1− δ. Now, the map

g =
∑
i∈I

αigi

satisfies the following three conditions:

(1) 0 ≤ g ≤ 1

(2) if x ∈ Lb(f) then

g(x) =
∑

αi(x)gi(x) >
∑

αi(x)(1− δ) = 1− δ

(3) If x ∈ La(f) then

g(x) =
∑

αi(x)gi(x) <
∑

αi(x)δ < δ.

This means that
∑

(E) is a vector subspace of C(X) that S-separates La(f) and
Lb(f) for all a < b. Therefore, by Proposition 1, for every ε > 0 there is a locally
convergent series

∑
n∈Z hn such that

hn =
∑
i∈I

αigin and ‖f −
∑
n∈Z

hn‖ < ε.

In order to finish the proof, it will suffice to prove that∑
hn =

∑
n∈Z, i∈I

αigin

is locally convergent.
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Now, let x be an arbitrary element of X. Since
∑

n∈Z hn is locally convergent, there
is a neighborhood U of x such that

∑
n∈Z hn|U is uniformly convergent. On the other

hand, the family {Ai : i ∈ I} is locally finite, therefore, there is another neighborhood
V of x and a finite subset J of I such that V ∩ Ai = ∅ for all i ∈ I \ J . So we have∑

n∈Z

hn|(U∩V ) =
∑

n∈Z, i∈J

(αigi)|U∩V =
∑

n∈Z, i∈I

(αigi)|U∩V

Since J is finite and
∑

n∈Z hn|U is uniformly convergent, it follows that
∑

n∈Z, i∈I αigin

converges uniformly on U ∩ V , which completes the proof. �

Next result is a variation of the Stone Weierstrass theorem for locally compact
Lindelöf spaces.

Lemma 4.3. Let X be a locally compact Lindelöf space and let E be a subalgebra of
C(X) which contains the constants and weakly separates points of X. Then

∑
(E) =

C(X).

Proof. Let {An : n ∈ N} be a sequence of compact sets in X such that An ⊆ intAn+1

for every n ∈ N and
⋃
{An : n ∈ N} = X. Given ε > 0, since E weakly separates

points in X, the Stone-Weierstrass theorem yields the existence of a map f1 ∈ E
such that ‖ f − f1 ‖< ε

2
. Let g1 = f − f1, repeating the same argument, there is a

f2 ∈ E such that ‖g1 − f2‖A2 < ε
22 or equivalently ‖f − (f1 + f2)‖A2 < ε

22 . In general,
let gn = f − (f1 + f2 + · · · + fn) with ‖gn‖An < ε

2n , then there is fn+1 ∈ E such
that ‖ gn − fn+1 ‖An+1<

ε
2n+1 or, equivalently, ‖ f − (f1 + · · · + fn+1) ‖An+1<

ε
2n+1 .

Reasoning by induction, we obtain a sequence {fn : n ∈ N} in E such that the series∑
n∈N fn is locally convergent and f(x) =

∑
n∈N fn for all x ∈ X. This completes the

proof. �

Corollary 4.4. Every real-valued continuous function defined on Rn can be expressed
as the sum of locally convergent series of polynomials.

Corollary 4.5. Let X be a Tychonoff space and let E be a subalgebra os C(X)
such that E contains the constants and E∗ weakly separates zero-sets in X. Then∑

(E) = C(X).

Proof. Let f ∈ C(X) be arbitrarily chosen. By the universal property of the Stone-
Čech compactification βX, the map f can be extended to a continuous function

f̃ : βX −→ R ∪∞. Let Y = βX\f−1(∞) and f̂ = f̃|Y . We have that Y is a locally

compact Lindelöf space and f̂ ∈ C(Y ). Define Ê = {ĝ : g ∈ E and g̃|Y is real valued}.
Since E∗ weakly separates Z(X), we deduce that Ê weakly separates points in Y . By
Lemma 4.3, there is a locally convergent series,

∑
n∈N ĝn with gn ∈ E for all n ∈ N,

such that f̂ =
∑

n∈N ĝn . Therefore f =
∑

n∈N gn and we are done. �

Corollary 4.6. Let X and Y be two topological spaces such that X × Y is locally
compact and Lindelöf. Then, for every f ∈ C(X × Y ), there are sequences {fi : i ∈
N} ⊆ C(X), {gi : i ∈ N} ⊆ C(Y ), and {nk : k ∈ N} ⊆ N such that

f(x, y) =
∑
k∈N

[ ∑
nk≤i<nk+1

fi(x)gi(y)
]

for all (x, y) ∈ X × Y , and the series is locally convergent.
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Proof. Let C(X) ⊗ C(Y ) = {
∑n

i=1 figi : fi ∈ C(X), gi ∈ C(Y ), n ∈ N}. Then
C(X)⊗ C(Y ) separates points in X × Y and it suffices to apply Lemma 4.3. �

We now prove the principal approximation result for locally compact paracompact
spaces.

Theorem 4.7. Let X be a locally compact paracompact space and let E be a subalgebra
of C(X) which is a lattice, contains the constants, and weakly separates points of X.
Then

∑
(E) = C(X).

Proof. By [4, Th. 5.1.27], it follows that there exists a family {Xi : i ∈ I} of pairwise
disjoint clopen Lindelöf subspaces of X such that X = ∪i∈IXi. For each i ∈ I, let
{An,i : n ∈ N} be a sequence of compact subsets of X such that ∪n∈NAn,i = Xi and
An,i ⊂ intXA(n+1),i for any n ∈ N, i ∈ I. We shall inductively define a partition of
the unity {αn,i : n ∈ N, i ∈ I} ⊂ E such that

(1) ‖1−
n∑

k=1

αk,i‖An,i
≤ 1

2n
and coz(αn,i) ⊂ Xi.

Indeed, by the Stone-Weierstrass theorem, there are g1,i ∈ E such that ‖1−g1,i‖A1,i
≤

1
2
. Applying the argument of Lemma 4.1, there exists r1,i ∈ E such that r1,i(A1,i) =
{1} and coz(r1,i) ⊂ Xi. Put α1,i = r1,ig1,i. Suppose that, for any i ∈ I, we
have already defined functions {α1,i, ..., αn,i} having property (1). Using the Stone-
Weierstrass theorem and Lemma 4.1 again, we obtain that there exist functions gn+1,i

and rn+1,i in E such that

‖(1−
n∑

k=1

αk,i)− gn+1,i‖An+1,i
≤ 1

2n+1
, rn+1,i(An+1,i) = {1} and coz(rn+1,i) ⊂ Xi.

Define αn+1,i = rn+1,i · gn+1,i. The family {αn,i} is a partition of the unity such that
coz(αn,i) is locally compact and Lindelöf for all pair n, i. Applying Lemma 4.3, we
have that ∑

(E)|coz(αn,i) = C(X)|coz(αn,i)

Reasoning as in the proof of Lemma 4.2, it follows that f ∈
∑

(E), which completes
the proof. �

As a consequence we obtain the representation of every continuous map in a product
space as the sum of a series formed by finite sums of products of functions which
depend of only one variable. Here, given an arbitrary set S, we denote by

[
S

]< ω
the

collection of all finite subsets of S.

Corollary 4.8. Let X and Y be two topological spaces such that X × Y is locally
compact and paracompact. Then, for every f ∈ C(X × Y ), there are {fi : i ∈ I} ⊆
C(X), {gj : j ∈ J} ⊆ C(Y ), and a directed subset D of

[
I × J

]< ω
such that

f(x, y) =
∑
D∈D

[ ∑
(i,j)∈D

fi(x) · gj(y)
]

for all (x, y) ∈ X × Y , and the series is locally convergent.
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Proof. Let C(X) ⊗ C(Y ) = {
∑n

i=1 figi : fi ∈ C(X), gi ∈ C(Y ), n ∈ N}. Obviously
C(X)⊗ C(Y ) is a subalgebra of C(X × Y ) which separates points in X × Y .

Let {Xi : i ∈ I} and {Yj : i ∈ J} be families of pairwise disjoint clopen Lindelöf
subspaces of X and Y respectively such that X = ∪i∈IXi and Y = ∪j∈JYj. For each
i ∈ I and j ∈ J) let {An,i : n ∈ N} and {Bn,j : n ∈ N} be sequences of compact
subsets of X and Y respectively such that ∪n∈NAn,i = Xi, An,i ⊂ intXA(n+1),i for any
n ∈ N, i ∈ I and ∪n∈NBn,j = Yj, Bn,j ⊂ intY B(n+1),j for any n ∈ N, j ∈ J . We shall
inductively define a partition of the unity {αn,i,j : n ∈ N, i ∈ I, j ∈ J} ⊂ C(X)⊗C(Y )
such that

(2) ‖1−
n∑

k=1

αk,i,j‖An,i×Bn,j
≤ 1

2n
and coz(αn,i,j) ⊂ Xi × Yj.

Indeed, by the Stone-Weierstrass theorem, there is g1,i,j ∈ C(X) ⊗ C(Y ) such that
‖1 − g1,i,j‖A1,i×B1,j

≤ 1
2
. Clearly, there exist r1,i ∈ C(X) and s1,j ∈ C(Y ) such that

r1,i(A1,i) = {1}, coz(r1,i) ⊂ Xi and s1,j(B1,j) = {1}, coz(s1,j) ⊂ Yj. Set α1,i,j =
r1,i s1,j g1,i,j ∈ C(X) ⊗ C(Y ). Suppose that, for any (i, j) ∈ I × J , we have already
defined functions {α1,i,j, ..., αn,i,j} having property (2). Using the Stone-Weierstrass
theorem again, we obtain that there exist functions

gn+1,i,j ∈ C(X)⊗ C(Y ), rn+1,i ∈ C(X), sn+1,j ∈ C(Y )

such that

‖(1−
n∑

k=1

αk,i,j)− gn+1,i,j‖An+1,i×Bn+1,j
≤ 1

2n+1
,

rn+1,i(An+1,i) = {1}, sn+1,j(Bn+1,j) = {1}
and

coz(rn+1,i) ⊂ Xi, coz(sn+1,j) ⊂ Yj.

Define αn+1,i,j = rn+1,i sn+1,j gn+1,i,j ∈ C(X)⊗C(Y ). The family {αn,i,j} is a partition
of the unity such that coz(αn,i,j) is locally compact and Lindelöf for all triple (n, i, j).
Applying Lemma 4.3, we have that∑

(C(X)⊗ C(Y ))|coz(αn,i,j) = C(X × Y )|coz(αn,i,j)

Reasoning as in the proof of Lemma 4.2, it follows that f ∈
∑

(C(X)⊗C(Y )), which
completes the proof. �

Obviously, this result can be extended to any finite product. On the other hand,
we have been informed by Professor Bierstedt that Corollaries 4.6 and 4.8 can also
be obtained using the fact that, when X and Y are kR spaces, the ε-completion of
the space C(X)

⊗
C(Y ) coincides with C(X × Y ) (see [1, Cor. 35]).

5. Approximation in Lindelöf spaces

We are concerned in this Section with spaces which are not necessarily locally
compact. In the absence of local compactness, the techniques, which we have used
so far, do not work even for spaces with very nice properties. In this Section, using
more involved arguments, we present some results on the approximation of continuous
functions for Lindelöf spaces. The proofs could be modified in order to get some more
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general achievements but we have opted for a weaker version in order to simplify the
technicalities.

Let E be a vector subspace of C(X), we say that E locally S-separates zero sets
when E satisfies two properties:

(1) for every pair Z1, Z2 ∈ Z(X) with Z1 ∩ Z2 = ∅ and every x ∈ X there exists
a neighborhood U of x such that E S-separates Z1 ∩ U and Z2 ∩ U ; and

(2) for every pair of subsets C and V such that C ⊂ V ⊂ U , with C closed and V
open in X, there is a ∈ E such that 0 ≤ a ≤ 1, a(C) > 1−δ, and a(X\V ) < δ.

Theorem 5.1. Let X be a Lindelöf space and let E be a subalgebra of C(X), which

contains the constants and locally separates zero sets. Then C(X) =
∑

(E)
u
.

Proof. Let f ∈ C(X) and ε > 0. If La(f) and Lb(f) are two disjoint Lebesgue sets
of f , for every x ∈ X there is Ux ∈ N (x) such that E separates La(f) ∩ Ux and
Lb(f) ∩ Ux. Consider the family {Ux : x ∈ X} and let {Ai : i ∈ I} be a family of
open subsets which is a locally finite open refinement of {Ux : x ∈ X}. Since X is a
Lindelöf space, we can assume that the family {Ai : i ∈ I} is star-finite. That is to
say, every Aj intersects finitely many elements, say nj, of the family {Ai : i ∈ I} (see
[11, V.4 B)]). Now, since E|Ai

S-separates La(f)∩Ai and Lb(f)∩Ai, there is hi ∈ E
such that hi(La(f) ∩ Ai) ⊂ [0, ε), hi(L

b(f) ∩ Ai) ⊂ (1 − ε, 1] and 0 ≤ hi ≤ 1. Let
{αi : i ∈ I} be a partition of the unity subordinated to the cover {Ai : i ∈ I} and let
j ∈ I be arbitrarily chosen. As E S-separates Z(X) ∩ Ai and every αj is bounded,
applying Proposition 3.1, it follows that αj can be approximated by functions of E|Aj

.
Therefore, there is βj ∈ E such that 0 ≤ βj ≤ 1 and ‖αj − βj‖Aj

< ε/nj. In like
manner, using item (2) in the definition of local S-separation, there is rj ∈ E such
that 0 ≤ rj ≤ 1, rj(supp αj) ⊂ (1− ε/nj, 1] and rj(X \Aj) ⊂ [0, ε/nj). We define the
function

φ =
1

1 + ε

∑
i∈I

βirihi.

It is clear that φ ≥ 0. On the other hand, suppose that x is an arbitrary element of
Aj, then Aj intersects a finite subfamily, say {Ai1 , ..., Ainj

}. Then

φ(x) ≤ 1

1 + ε

∑
1≤k≤nj

βik(x) ≤ 1

1 + ε

∑
1≤k≤nj

(αik(x) +
ε

nj

) = 1.

Therefore, 0 ≤ φ ≤ 1. Finally, suppose that x is a point in Aj ∩ Lb(f), then

φ(x) =
1

1 + ε

∑
1≤k≤nj

(βikrikhik)(x) ≥

1

1 + ε

∑
1≤k≤nj

{(αikrikhik)(x)− ε

nj

(rikhik)(x)} ≥

1

1 + ε

∑
1≤k≤nj

{αik(x)(1− ε)2 − ε

nj

} ≥

(1− ε)2 − ε

1 + ε
= l1(ε).
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In the same way, if x belongs to Aj ∩ La(f)

φ(x) ≤ 1

1 + ε

∑
1≤k≤nj

{(αikrikhik)(x) +
ε

nj

(rikhik)(x)} ≤

1

1 + ε

∑
1≤k≤nj

{(αikrik)(x)ε +
ε

nj

rik(x)ε} ≤

ε + ε2

1 + ε
= l2(ε).

Since lim ε→0 l1(ε) = 1 and lim ε→0 l2(ε) = 0, we have proved that, for every ρ > 0
there is a map

φ(a,b,ρ) =
∑
i∈I

gi

such that gi ∈ E for all i ∈ I such that 0 ≤ φ(a,b,ρ) ≤ 1, φ(a,b,ρ)(La(f)) ⊂ [0, ρ), and
φ(a,b,ρ)(L

b(f)) ⊂ (1− ρ, 1]. Furthermore, the map φ(a,b,ρ) is defined by a finite sum on
every Aj, j ∈ I. Now, for every ε with 0 < ε < 1 and n ∈ N, set

an =
(n− 1)ε

2
, bn =

nε

2
and ρn =

ε

2n+1

We obtain a sequence of maps

φ(an,bn,ρn) =
∑
i∈I

gni, n ∈ N

Now, it suffices to observe that the function

φ =
∑

i∈I,n∈N

ε

2
gni

belongs to E and ‖f − φ‖ < ε. This completes the proof. �
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