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Abstract 

A method for scaling the muscle action is proposed and used to achieve a 3D inverse dynamic model of 

the human finger with all its components scalable. This method is based on scaling the PCSA 

(physiological cross-sectional area) in a Hill muscle model. Different anthropometric parameters and 

maximal grip force data have been measured and their correlations have been analysed and used for 

scaling the PCSA of each muscle. A linear relationship between the normalised PCSA and the product of 

the length and breadth of the hand has been finally used for scaling, with a slope of 0.01315 cm-2, with the 

length and breadth of the hand expressed in centimetres. The parametric muscle model has been included 

in a parametric finger model previously developed by the authors, and it has been validated reproducing 

the results of an experiment in which subjects from different population groups exerted maximal 

voluntary forces with their index finger in a controlled posture. 

 

Key terms 

maximal force prediction 
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1. Introduction 

Mathematical models of the hand are used to study different aspects of hand behaviour.1,3,6,8,10-13,15,16 For 

some purposes it is important to represent different population groups and percentiles, e.g., to aid 

therapists in the selection of the optimal handle diameter of personalised assistive devices for disabled 

people.  

 

Previously,11 the authors proposed a scalable 3D inverse dynamic model of the fingers based on data from 

literature, using the hand length and breath (HL and HB) as scaling parameters. Scalability of rotation 

axes location was achieved using the work of Buchholz,4 tendon action scalability by adapting the model 

proposed by An,1 and ligament action scalability by adapting the geometric model presented by 

Pagowski.9 

 

In the absence of data from literature with regard to modelling differences in the muscular power of hands 

from different population groups, the authors considered a simple model for scalability in previous 

works,11,12 using the same HL and HB parameters used for scaling the rest of the model components. In 

this work, an improved model is presented and experimentally validated once integrated into a completely 

scalable 3D finger model. 

 

2. Material and methods  

Firstly, a scalable model of the muscular action based on the Hill muscle model is proposed. A specific 

experiment is designed in order to propose that model. Finally, its validity to predict maximal forces is 

investigated by incorporating this muscle model into the previously developed 3D inverse dynamic finger 

model.10-12 A minimum number of parameters was used in the finger model: HB and HL. Its scalability 

was achieved as explained above, except for muscular action which we now go on to present. 
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2.1. Scalability of the muscular action 

The muscle model considered had been previously presented,10 and consisted of three elements: a 

contractile element (CE), which is the basic component that generates force, a parallel elastic element 

(PEE), which is responsible for the passive force exerted by the muscle when it is stretched, and a series 

elastic element (SEE), the muscle tendon unit which has been considered inextensible. The force 

delivered by a muscle for a given posture can be written as:10 

 ( )max
CE CE PEE

l v lF PCSA S F F Fα= ⋅ ⋅ ⋅ ⋅ +  (1) 

 
where PCSA is the muscle physiological cross-sectional area, Smax is the maximum stress the muscle can 

bear, which has been considered to be the same for each muscle,2 α is the muscle activation level, Fl
CE 

and Fv
CE are the CE non-dimensional force-length and force-velocity relationships, and Fl

PEE is the PEE 

force-length relationship (see previous work16 for more details).   

 

According to this model, the force delivered by a muscle for a given posture is proportional to its PCSA. 

To scale the muscular action, a scalability factor for the PCSA of each muscle should be considered. 

Holzbaur7 measured the muscle volume of upper limb muscles, observing that all muscles scaled by 

approximately the same ratio for each subject. Based on this observation, we propose a model that 

considers the same factor of scalability for the PCSA of all the muscles involved. 

 

In the absence of data from literature, the previously presented finger model11 considered the simple 

proposal of scaling the PCSA from a reference value measured for a given HLref and HBref in which a 

linear relationship with HL · HB was considered as both quantities have surface units:  

 ( , ) ( , )ref ref
ref ref

HL HBPCSA HL HB PCSA HL HB
HL HB

⋅
= ⋅

⋅
 (2) 

Significant errors occur with this model, when the hand size strays from the reference one. With this 

model, errors in the maximal force estimation are around 35% in some cases (see further on for details).  

 

The next section presents the improvement of this model by means of a specific parameterisation study.  

 



 5

2.2. PCSA parameterisation study 

An appropriate PCSA parameterisation in terms of hand dimensions, preferably HB and HL, was sought. 

An indirect estimation was made with data of maximal grip force (MGF) from many subjects.  

 

MGF and anthropometric data of the hand and forearm were measured from a total of 106 subjects (55 

males, 51 females, 27 ± 7SD yr) with no history of permanent hand injury or dysfunction. The subjects 

exerted the MGF force with their predominant hand over a Biometrics© G100 dynamometer with a grasp 

distance that was adjusted in relation to the maximum grip diameter (MGD) of each subject to achieve a 

similar grasping posture for all subjects (Fig.1). Table 1 shows the three grasping distances and the 

number of subjects who used them. Two force measurements were conducted with a rest period of at least 

one minute between the two. The mean force of the maximum forces registered at each trial was used. 

 

----- Insert Figure 1 about here ----- 

----- Insert Table 1 about here ----- 

 

Ten anthropometric dimensions were collected for all subjects in a standard way (Fig. 2): hand length (1), 

palm length (2), hand breadth (metacarpal) (3), hand breadth across thumb (4), maximum grip diameter 

(5), maximum spread (6), wrist breadth (7), wrist thickness (8), wrist circumference (9) and forearm 

circumference (10). 

 

----- Insert Figure 2 about here ----- 

 

According to Valero-Cuevas,14 individual muscle forces are approximately linearly proportional to the 

magnitude of the external force. As a common scaling factor for all the PCSA of muscles is sought, it 

could be obtained from the scaling factor for the MGF. The correlation of the MGF with the 

anthropometric parameters and combinations of the best correlated ones was analysed. Once the 

anthropometric parameter(s) for scaling had been selected, the linear regression for the normalised MGF 

measured vs. this anthropometric parameter(s) was obtained. Furthermore, the slope from this regression 

was considered to be the same as the slope of the linear relationship for scaling the normalised PCSA. 
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2.3. Model validation 

Twenty students (10 males, 10 females) were selected according to their hand sizes in order to obtain a 

representative sample (mean and standard deviation for HL and HB were 176 (10) mm and 79 (7) mm, 

respectively). 

 

A special device was used to measure the maximal index finger force exerted in a controlled posture, with 

the same wrist posture for all participants, and the posture of the index finger visually controlled with a 

template so that it was similar among subjects (Fig. 3). A lateral photograph was taken to check this 

posture further. The subject was asked to increase the force until the maximal force and maintain it for 

approximately 3-4 seconds. After a rest period of several minutes, the whole process was repeated twice 

with a rest period in between. The mean force and posture of the three repetitions were used for each 

subject. Postures were checked to be the same for each subject in the three repetitions (SD less than 10º) 

using the technique defined in the work by Vergara.17  

 

----- Insert Figure 3 about here ----- 

 

The mean posture and hand size for each subject were inputted to the finger model to predict the force. 

The forces predicted with this improved model and the original one were compared with the mean 

measured forces. 

 

3. Results and discussion 

3.1. Results from the PCSA parameterisation study 

Table 2 shows the mean and standard deviation of the different anthropometric parameters considered and 

their correlations (Pearson correlation r coefficient) with the MGF measured. All correlations were 

statistically significant (p < 0.01). The best correlations for independent measurements were observed for 

HB, hand breadth across the thumb and forearm circumference.  

 

----- Insert Table 2 about here ----- 
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By taking into account that the PCSA is a surface, a parameter with surface units was sought for scaling. 

Table 2 shows also the correlation of the products of lengths and breadths and of the square of 

circumferences. Similar correlations were observed. The best one was found for the product of the palm 

length (PL) and HB slightly better than for the product of HL and HB.  As a parameterisation in terms of 

HB and HL is preferred, this second one was used for the parameterisation. The linear regression obtained 

was:  

 ( )359.69  5.0855MGF HB HL= − + ⋅ ⋅ , (3) 

where HB and HL were expressed in cm and MGF in N.  

 

Equation 3 yields an MGF of 381.57 N for the mean values of HL and HB ( HL = 18.22 cm, HB = 8.00 

cm). This force was selected to normalise the measured MGF: 

 0.9427  0.01333 ( )Normalized MGF HB HL= − + ⋅ ⋅ . (4) 

 

The slope from Eq. (4) was considered to be the same as the slope for the linear relationship between the 

normalised PCSA and the product HB·HL : 

 ( , ) 1 0.01333 ( )
( , )

PCSA HL HB HB HL HB HL
PCSA HL HB

= + ⋅ ⋅ − ⋅  (5) 

 

It is clear, however, that muscular power also depends on the subjects’ physical conditions, age, gender, 

etc. A more refined muscular model could include a correcting factor to account for these parameters. 

 

3.2. Results from model validation 

The mean posture and hand size for the subjects considered, used as input to the finger model, are 

presented in Table 3. Maximal force data estimated by the original model and the improved one for each 

subject, as well as the experimentally measured data, are presented in Fig. 4.  

 

----- Insert Figure 4 about here ----- 

----- Insert Table 3 about here ----- 
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Both models predict an increase of maximal force with the product HB⋅HL as well as the experimental 

measurements predict. As a consequence of the differences in the subjects’ postures and individual factors 

(physical conditions, age or gender), this increase is not linear. The pattern obtained from the predictions 

with both models is similar to that measured experimentally, which means that the finger model properly 

reproduces the effect of the change of posture between subjects. Estimations from both models match the 

experimental values better as the hand size comes close to the 50th percentile. 

 

The results of the new scalable model show an important improvement of the predictions in relation to the 

original model. The mean value of the absolute errors (absolute difference from experimental to model 

prediction) is smaller for the improved model (3.78N) than for the original one (5.65N). Some specific 

errors were expected, such as a 50% overestimation for subject 8 because the MGF measured with the 

Biometrics© dynamometer with this subject was 149% lower than that expected from Eq. (3). In order to 

avoid the effect of a specific subject’s individual characteristics on the model errors, the experimental 

data have been lumped into five equidistant groups in terms of HB·HL. The mean of the experimentally 

measured maximal forces for each group, as well as the estimations for each group with the averaged data 

as inputs (HB, HL and posture), are presented in Fig. 5. It can be more clearly observed that the improved 

model provides a better match than the old one. Again, absolute errors are smaller as the hand size nears 

the 50th percentile. Both the original and improved models underpredict force for large hands and 

overpredict force for small hands, but nonetheless the improved one presents smaller differences in their 

predictions. Maximum differences with the experimental measurements for extreme hand sizes are lower 

than 20% for the new model compared to more than 35% for the old model. 

 

----- Insert Figure 5 about here ----- 

 

In the context of the present study, an error of 20% is considered reasonable if we take into account that 

the usual human force measurement presents a considerable scattering5 due to the different parameters 

that can affect the measurement, such as fatigue, measurement method, registration of maximum/mean, 

time that the force was endured, etc., apart from the individual parameters. 
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The model obtained is acceptable as a first approximation to the scalability of the muscular action in the 

index finger, and covers a wide range of percentile groups. The scalability of the model based only on 

two anthropometric measurements is practical but should be considered only as a first approximation: 

gender, age, physical conditions or body mass index, among other factors, could affect the accuracy of the 

model. Further research is needed to improve prediction of the model for extreme hand sizes. 

 

Conclusions 

A simple model has been presented to consider the scalability of the muscular action in a biomechanical 

model of the hand and has been validated for the index finger. This model is based on a Hill muscle 

model and is an improvement over a previous one which scales the PCSA of the muscles by means of a 

linear function in relation to the product of HB and HL. The coefficients of this function have been 

obtained from measurements taken with a dynamometer by adjusting the grasping size to the hand size of 

each subject from a group of 106 subjects. The new muscle model has been validated using data of a 

pinch experiment with 20 subjects. The predictions of the 3D inverse dynamic finger model incorporating 

the new muscle model are better than those from the old one since they present an error of less than 20% 

in relation to the experimental measurements. 
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Tables 
 
 

Table 1. Grasping distance and number of subjects that used each adjustable position of the dynamometer 

 Position 1 Position 2 Position 3 

Grasping distance (mm) 47 60 73 

Females 20 31 0 

Males 3 49 3 
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Table 2. Mean and standard deviation of the anthropometric parameters and their correlations with the 

mean MGF measured with the dynamometer 

Parameter 

Female 

Mean (SD) 

Male  

Mean (SD) 

Male & Female 

Mean (SD) 

Correlation 

with force 

(male & female)

HL (mm) 173.3 (7.6) 190.4 (8.5) 182.2 (11.8) 0.740 

PL (mm) 100.1 (4.8) 111.0 (5.4) 105.7 (7.5) 0.763 

Hand breadth across thumb (mm) 88.2 (4.7) 100.2 (4.8) 94.4 (7.7) 0.832 

HB (mm) 74.6 (3.4) 84.9 (4.6) 80.0 (6.6) 0.848 

Maximum grip diameter  (mm) 46.1 (3.5) 50.3 (3.9) 48.2 (4.2) 0.584 

Wrist breadth (mm) 51.8 (3.1) 58.8 (3.2) 55.3 (4.7) 0.788 

Wrist thickness (mm) 36.8 (2.4) 42.1 (2.7) 39.6 (3.7) 0.738 

Wrist circumference (mm) 147.6 (9.0) 169.4 (9.6) 158.9 (14.4) 0.784 

Maximum spread (mm) 198.0 (12.0) 219.1 (12.3) 208.9 (16.1) 0.721 

Forearm circumference (mm) 228.6 (17.6) 275.1 (16.7) 252.7 (28.9) 0.810 

HL · HB (cm2) 129.44 (10.30) 161.94 (14.41) 146.31 (20.58) 0.836 

PL · HB (cm2) 74.73 (5.91) 94.41 (8.60) 84.94 (12.34) 0.852 

(Forearm circumference)2 (cm2) 525.63 (88.00) 759.49 (93.74) 646.97 (148.29) 0.800 

(Wrist circumference)2 (cm2) 218.45 (27.05) 287.74 (32.61) 254.40 (45.89) 0.778 

Wrist breath · Wrist thickness (cm2) 19.08 (2.16) 24.77 (2.65) 22.03 (3.74) 0.796 
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Table 3. Mean postures and hand sizes of each subject participating in the validation experiment, and 

used as input to the model.  

 HL 

(mm) 

 

HB 

(mm) 

 

MCP 

flexion (º) 

Mean (SD) 

PIP 

flexion (º) 

Mean (SD) 

DIP 

flexion (º) 

Mean (SD) 

Distal phalanx-

plate angle (º) 

Mean (SD) 

Subject 1 161 69 14 (4) 35 (4) 20 (5) 48 (3) 

Subject 2 166 70 35 (3) 22 (6) 9 (4) 39 (7) 

Subject 3 164 72 15 (2) 48 (4) 15 (0) 54 (2) 

Subject 4 162 74 22 (8) 32 (6) 31 (2) 57 (3) 

Subject 5 170 72 17 (4) 34 (2) 17 (3) 46 (3) 

Subject 6 167 74 25 (2) 44 (2) 12 (3) 54 (2) 

Subject 7 175 73 22 (5) 41 (5) 19 (5) 55 (3) 

Subject 8 176 76 26 (3) 39 (1) 17 (1) 53 (1) 

Subject 9 174 79 23 (2) 32 (3) 31 (2) 57 (2) 

Subject 10 177 78 17 (1) 35 (3) 11 (1) 37 (2) 

Subject 11 179 78 19 (2) 36 (2) 18 (2) 51 (1) 

Subject 12 170 84 26 (3) 39 (2) 26 (3) 55 (2) 

Subject 13 183 82 16 (4) 42 (3) 29 (4) 59 (3) 

Subject 14 178 85 11 (2) 40 (2) 16 (2) 49 (2) 

Subject 15 185 83 14 (2) 32 (3) 14 (0) 41 (1) 

Subject 16 182 85 23 (3) 35 (3) 15 (2) 44 (2) 

Subject 17 191 86 21 (10) 32 (7) 21 (4) 51 (2) 

Subject 18 183 92 17 (8) 31 (5) 11 (1) 39 (3) 

Subject 19 195 91 29 (5) 28 (5) 16 (1) 42 (2) 

 

Subjects have been ordered from lower to greater HL·HB. Data corresponding to one subject were 

discarded because his hands were very large (HB = 108 mm; HL = 230 mm). The postures of the three 

repetitions for all subjects were within 10º of SD variations in all cases, so no other datum was discarded. 
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Figure legends 
 
 
Figure 1. Hand dynamometer with the three grasping adjustments used in the study. Subjects were asked 

to exert the maximal voluntary grip force with their predominant hand while maintaining a standardised 

posture: standing with the shoulder relaxed, the arm stretched alongside the body, and the wrist in a 

neutral posture of flexion and lateral deviation. Only three of the five discrete grasping positions of the 

dynamometer were used for grasping comfort. Grasping was adjusted to the position nearest to 

1.35xMGD for each subject.  

 

Figure 2. Eight of the ten anthropometric dimensions measured in the experiment: 1) hand length, 2) palm 

length, 3) hand breadth (metacarpal), 4) hand breadth across thumb, 5) maximum grip diameter, 6) 

maximum spread, 7) wrist breadth, 8) wrist thickness. 

 
 

Figure 3. Photos taken of a large (a) and small (b) hand to control the finger posture before asking 

subjects to exert the maximal force. The device was calibrated to measure the compressive force exerted 

over the gripping area. The same wrist posture was adopted by all the participants: the forearm resting on 

a horizontal plane, the wrist in a neutral posture and the hand resting on the plane with all fingers grouped 

except the index finger. The posture of the index finger was visually controlled so that it was similar 

among subjects: metacarpophalangeal (MCP) and proximal and distal interphalangeal (PIP and DIP) 

joints slightly flexed, and the MCP joint in neutral abduction. To achieve this posture, the distance of the 

hand and height of the horizontal plane were adjusted for each subject.  

 

Figure 4. Mean maximal forces experimentally measured for each subject participating in the validation 

experiment and estimated by the original and improved models. 

 

Figure 5. Mean maximal forces experimentally measured and estimated by the original and improved 

models. The data have been lumped into five equidistant groups in terms of HB·HL. 
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Figure 5.  
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