
Title Tooth Development Prediction Using a Generative
Machine Learning Approach

Author(s) Kokomoto, Kazuma; Okawa, Rena; Nakano, Kazuhiko
et al.

Citation IEEE Access. 2024, 12, p. 87645-87652

Version Type VoR

URL https://hdl.handle.net/11094/97272

rights
This article is licensed under a Creative
Commons Attribution-NonCommercial-NoDerivatives
4.0 International License.

Note

Osaka University Knowledge Archive : OUKAOsaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University



Received 3 June 2024, accepted 17 June 2024, date of publication 19 June 2024, date of current version 28 June 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3416748

Tooth Development Prediction
Using a Generative Machine
Learning Approach
KAZUMA KOKOMOTO1, RENA OKAWA 2, KAZUHIKO NAKANO 2,
AND KAZUNORI NOZAKI 1
1Division for Medical Informatics, Osaka University Dental Hospital, Suita, Osaka 565-0871, Japan
2Department of Pediatric Dentistry, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan

Corresponding author: Kazunori Nozaki (nozaki.kazunori.dent@osaka-u.ac.jp)

This work was supported in part by JSPS KAKENHI under Grant JP21K12725, and in part by the Social Smart Dental Hospital Project
(S2DH, https://s2dh.org).

ABSTRACT This study pioneers the use of generative deep learning in pediatric dentistry to predict
dental growth using panoramic radiography, going beyond numerical analysis and providing dynamic
representations of tooth development. We employed StyleGAN-XL, a state-of-the-art generative adversarial
network (GAN), to generate realistic images of dental development stages in children. Our dataset consisted
of 8,092 anonymized panoramic radiographs from Osaka University Dental Hospital containing various
dentition stages and conditions. By interpolating latent vectors from primary or mixed dentition images with
those from permanent dentition, we generated continuous transitioning images that visually represented
the progression of dental development. The performance of the StyleGAN-XL model was evaluated using
Fréchet inception distance scores. Pivotal tuning inversion was used to project real images onto the model’s
latent space, allowing us to effectively interpolate between current and future dental states. The resulting
images showed a smooth transition from primary to permanent dentition, closely resembling the actual stages
of dental development. This method represents a significant advancement in dental imaging and predictive
analytics, offering a novel approach for clinicians and patients to visualize and understand dental growth. Our
findings suggest broader applications for generativemodels inmedical imaging, extending beyond traditional
enhancement and modeling tasks. Our study highlights the transformative potential of GANs in medical
imaging and provides a foundation for future advancements in predictive dentistry.

INDEX TERMS Artificial intelligence, machine learning, medical informatics applications, pediatric
dentistry, orthodontics, dental informatics.

I. INTRODUCTION
In pediatric dentistry, assessment of growth and development
in children is essential for making appropriate diagnoses
and treatment decisions [1]. Traditionally, a child’s devel-
opment is monitored through physical attributes such as
height, weight, posture, skull development, and facial struc-
ture, as well as oral aspects such as soft tissues, periodontal
tissues, and occlusion of teeth [2]. Although dental age esti-
mation using panoramic radiography provides a snapshot
of the current developmental stage [3], it does not address
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a key challenge in dentistry: accurately predicting future
dental growth, even if machine learning approaches were
applied [4]. One possible area in dentistry that is focused
on predicting future outcomes is dental space analysis [5],
[6], [7]. Predicting dental caries in children is also promis-
ing research [8], [9], [10]. However, these methods merely
yield numerical estimates.Moreover, this numerical approach
cannot predict complex and dynamic dental changes, thereby
indicating a significant gap between treatment forecasting
and patient-specific outcome planning.

To fill this gap, it is important to develop an approach that
goes beyond static and numerical data and provides dynamic
and visual representations of tooth development. In this
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context, the use of deep learning is critical because it can
analyze complex patterns in images and has the potential to
generate predictive visualizations of dental development [11],
[12]. This innovation not only improves predictive accuracy
in pediatric dentistry but also represents a radical shift in how
dental professionals approach treatment planning and patient
education, moving towards more personalized and visually
informed clinical practice.

Deep learning in computer vision has developed rapidly
in recent years. A generative adversarial network (GAN)
is an unsupervised deep-learning method that can generate
images [13]. A GAN consists of two neural networks: a
generator and a discriminator. In GANs, a latent vector that
represents certain data in a latent space is used to generate
new images; it is a compressed representation of the data
that captures the most important features. The latent space
is a high-dimensional space that contains the latent vectors
of all the data in a training dataset. The generator uses a
latent vector as input and produces a new image similar to
the training dataset. The discriminator attempts to distinguish
between real and generated images, whereas the generator is
trained to fool the discriminator network. Consequently, the
latent vector and latent space allow the generator to learn the
underlying distribution of the training data, and the generator
can output realistic and diverse images.

In previous studies using GANs in dentistry, modality
changes [14], artifact reduction [15], image denoising [16],
and prosthesis modeling [17] have been reported. Intraoral
image generation [12] and periapical image generation [18]
have been performed with reasonable visual quality and
a resolution of 512 × 512 pixels. In this study, building
on these advancements, we aim to leverage GANs to pio-
neer the field of dental growth prediction using panoramic
radiography in children, generating continuous transitioning
images that visually represented the progression of dental
development.

Our proposed system was built by first training a GAN
using panoramic radiographs as the training data. We then
determined the latent vectors from actual images of pri-
mary or mixed dentition. By linearly interpolating these
latent vectors with those derived from permanent dentition
images, we generated continuously transitioning images,
which is completely different from landmark-based mor-
phing algorithms [19], [20]. Our results may contribute
to the feasibility of creating panoramic radiographs that
represent the progression of dental development in chil-
dren, highlighting the potential of GANs as tools not
only for image generation but also for biological process
modeling.

II. MATERIALS AND METHODS
This study was retrospective and observational in nature
and is summarized in Figure 1. We performed our exper-
iments on a computer running the Ubuntu 20.04.6 LTS
operating system with four NVIDIA RTX A6000 GPUs
and 48 GB of VRAM. The NGC Docker container was

FIGURE 1. Our comprehensive pipeline for predicting dental growth in
children using StyleGAN-XL.

used to create the development environment, specifically
nvcr.io/nvidia/pytorch:21.06-py3 [21].

A. DATASET
A total of 8,092 panoramic radiographs were used in this
study. All imageswere obtained from patients who underwent
dental treatment at the Department of Pediatric Dentistry,
Osaka University Dental Hospital, Osaka, Japan.

For ethical reasons, all images were anonymized and
had no metadata such as patient name, chronological age,
sex, dentition, or disease. Therefore, the exact number
for each condition was unknown; however, roughly speak-
ing, the datasets contained a relatively high number of
images that showed healthy dentition. These images included
primary, mixed, and permanent dentitions. Various tooth
conditions were represented, such as healthy teeth, caries,
stains, composite resin restorations, metal inlays, stainless
steel crowns, space maintainers, orthodontic appliances, and
hypomineralization.

B. NETWORK ARCHITECTURE
In the field of image generation research, the StyleGAN
family is a popular GAN choice. For our image-generation
model, we utilized StyleGAN-XL [22], an enhanced version
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of StyleGAN3 [23] that has demonstrated state-of-the-art
performance in image synthesis task. StyleGAN-XL employs
progressively growing training to facilitate fast and sta-
ble training [24]. In our study, we increased the resolution
of the model from 16 × 16 to 512 × 512 pixels, dou-
bling the resolution at each training stage. As the resolution
increases, the StyleGAN-XL network needs to learn more
complex features and represent finer details. To achieve
high-resolution image generation, some layers containing
information from the previous resolution are discarded, and
new layers are added to enhance the network’s capability.
In this study, with each increase in resolution, two lay-
ers were discarded, and four new layers were added to
reduce the model parameters. Additionally, we halved the
following parameters of the generator network: number of
image synthesis layers, capacity multiplier, and maximum
number of feature maps. These modifications are based on
the recommendation settings of StyleGAN-XL to reduce
parameters when working with smaller and well-curated
datasets.

For the batch size, we performed two types of training.
The first was based on the StyleGAN-XL settings. The batch
sizes were set to 2048 for 16 × 16 and 32 × 32 resolutions;
256 for 64 × 64, 128 × 128, and 256 × 256 resolutions;
and 128 for 512 × 512 resolutions. The second method was
based on the previous StyleGAN families. The batch size
was set to 32 for all resolutions. To quantitatively evaluate
our model performance, we measured the Fréchet inception
distance (FID) [25]. FID measures the similarity between
the distribution of real and generated images. A smaller
FID value indicates a better ability of the model to gener-
ate images. Therefore, the FID was continuously monitored
during the training process, and the model weights that pro-
duced the lowest FID values were used in this study. There
may be some limitations in applying FID to medical images.
When calculating the FID, an Inception V3 network was
used for image feature extraction, which was trained with
ImageNet but not with medical images [26]. An alterna-
tive encoder network such as RadImageNet is potentially
more appropriate [27]. However, the use of an alternative
is considered to affect consistency and comparability with
previous or future studies, and there are suggestions that
a pre-trained model is preferable to a randomly initialized
model for calculating the FID of medical images [28]. There-
fore, we retained the original FID implementation in this
study.

C. DENTAL GROWTH PREDICTION
Recently, image editing techniques based on latent space have
been proposed [29], [30]. Therefore, we must first invert the
image into the latent space of the generator to determine the
latent vector of the real images. In this study, pivotal tuning
inversion (PTI) was used to obtain the latent vector of a given
image from the latent space of our model [31]. To assess the
feasibility of reconstructing real images using PTI, we pro-
jected real images into the latent space, generated images

TABLE 1. Fréchet inception distance (FID) values at each resolution with
varying batch sizes. A lower FID value indicates superior image
generation performance. We conduct two types of training: the one
shown in the left three columns follows the StyleGAN-XL settings, and the
one shown in the right three columns adheres to the settings of previous
StyleGAN families. Our findings suggest that a constant batch size of
32 yields optimal results.

from the resulting latent vectors, and visually compared the
real and reconstructed images.

By interpolating two latent vectors, the generated images
gradually change between vectors [12], [29], [30]; this capa-
bility suggests the possibility of synthesizing growth images
from primary to permanent dentition by interpolating the
latent vectors of the current images with those of the perma-
nent dentition images. We derived latent vectors of current
images by inverting real images of primary or mixed den-
tition, denoted as Zcurr . To obtain the latent vectors of
future images, we used 100 latent vectors from 100 real
images of healthy permanent dentition and calculated their
mean, denoted as Zpermanent . To generate a series of future
predictions, we linearly interpolated multiple latent vectors
Zi (where i = 0, 1, 2, . . . 50). This process produced a
sequence of 50 latent vectors, smoothly transitioning between
the current-state latent vector Zcurr and the permanent-
dentition-state latent vector Zpermanent . The interpolation was
calculated as follows:

Zi =
i
50

× Zpermanent +
50 − i
50

× Zcurr (1)

where i = 0, 1, 2, . . . 50. These latent vectors Zi were then
input into StyleGAN-XL to output future predictions as a
series of 50 images. Because the generated images were
expected to gradually change from the current image to the
average permanent dentition image, we examined whether
the generated images could include images similar to the real
image of actual growth.

III. RESULTS
The FID values are listed in Table 1. A lower FID value
indicates better image generation quality. Our results indicate
that a constant batch size of 32 is optimal for achieving
superior image-generation performance compared to larger
batch size. We used the best weight of the 512 × 512 model
trainedwith a batch size of 32 for the subsequent experiments.

Examples of the generated images are presented in
Figure 2A. These images are considered visually realistic.
We observed a smooth transition when creating a video from
images generated by continuously changing various latent
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FIGURE 2. A: Examples of both real and generated images. Supplemental
image generation movie is available in the online version. B: Example of
image reconstruction. The top row shows the original images, and the
bottom row shows the reconstructed images generated using the inverted
latent vector.

variables. Supplemental image-generation videos are avail-
able online.

The reconstruction of real images using StyleGAN-XL
is shown in Figure 2B. Although minor variations were
observed in the tooth shape or arrangement, a high degree
of congruence was evident between the original and
reconstructed images, which is as same phenomenon as
StyleGAN-XL [22]. This observation demonstrates the effec-
tiveness of deriving appropriate latent vectors, denoted as
Zcurr , through the inversion of real images into the latent
space of StyleGAN-XL.

An example of growth prediction for children’s panoramic
radiographs is shown in Figure 3. Starting from the top-left
image of the primary dentition period, the images gradually
show growth and tooth exchange as we move to the ends of
the right and bottom rows. The starting image was generated
by Zcurr , and the final image by Zpermanent . The intermedi-
ate images were generated by Zi, which were derived from
Equation (1).

Visual comparisons between the real image of growth
and the generated image illustrating predicted growth are
illustrated in Figure 4. These comparisons reveal a gen-
eral similarity in the absorption of primary tooth roots,
eruption of permanent teeth, and formation of tooth
germs.

FIGURE 3. Examples of generated dental development images. Starting
from the top left image of the primary dentition period, the images
gradually show growth and tooth replacement as we move to the right
and bottom rows. The images are generated using specific latent vectors:
Z4, Z8, Z12 and Z16 for the top row, Z20, Z24, Z28, and Z32 for the middle
row, and Z36, Z40, Z44, and Z48 for the bottom row. This visual
representation effectively illustrates the stages of dental development.

FIGURE 4. Two examples of growth prediction, with comparisons
between the real image of actual growth and the prediction images
generated by our model. The prediction images are generated using latent
vector Z12 for the left column and Z18 for the right column. This
side-by-side display highlights the model’s ability to accurately simulate
the progression of dental development.

IV. DISCUSSION
In this study, we developed a method to predict dental growth
using StyleGAN-XL, a generative machine-learning model.
Our method involved training the model with panoramic
radiographs of children and subsequently generating images
that visually represented the progression from primary to
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permanent dentition. The results showed that our model could
generate images that closely resembled real images, indi-
cating its potential for predicting dental growth. This study
offers an overview of the future of dental imaging and growth
prediction for clinicians, potentially supporting treatment
planning and patient education. Patients may benefit from
more informed discussions regarding dental development and
treatment options.

Our StyleGAN-XL has been trained with many kinds of
images of diverse patients from a university hospital, so the
average latent vector Zpermanent could reflect general growth
patterns. This high generalization performance is necessary
for the application of this study to a variety of children. Since
one of the goals of pediatric dentistry is to perform dental
treatment on children’s teeth in order to grow healthy perma-
nent teeth, the use of the average latent vector is considered
to be reasonable. As shown in Figure 4, the use of the average
latent vector can predict the dental growth reasonably, indi-
cating that our method might be suitable for use in pediatric
dentistry.

This study is unique in its pioneering approach to dental
growth prediction using a GAN. Previous dental applica-
tions of GANs focused on tasks such as image enhancement
and prosthesis modeling [14], [15], [16], [17], [18]. Our
study extends this application to the dynamic process of
dental development, offering a novel tool for visualizing
and understanding dental growth. The successful genera-
tion of realistic images of the dental growth phase suggests
that StyleGAN-XL effectively captures and replicates the
complex process of dental development. This capability
highlights the potential of GANs as a tool not only for
image generation but also for modeling biological processes,
indicating that the methodology of this study holds the
potential for broad application in medical images. For exam-
ple, in elderly patients, tooth loss might be predicted using
panoramic radiographs; in the case of carpal bone X-ray
images, bone age development could be predicted. Its utility
can be explored in oncology for tracking tumor progression
or regression in response to treatment. The flexibility and
adaptability of this method render it a promising tool for a
wide array of medical imaging scenarios with gradually and
continuously changing characteristics.

The predictive capabilities demonstrated by our gener-
ative machine learning approach can be extended beyond
visualizing dental development to several other applications
in predictive dentistry. One significant potential application
is in the early prediction and monitoring of orthodontic
treatment outcomes. By simulating the progression of den-
tal growth, clinicians can forecast the future alignment of
teeth and make more informed decisions about the timing
and type of orthodontic interventions needed. Additionally,
our approach can be leveraged to predict the development
of dental pathologies, such as caries or periodontal disease,
by integrating it with other diagnostic data like micro-
biome analysis or patient health records. This can lead to
early interventions and personalized treatment plans, thereby

improving patient outcomes. Furthermore, the dynamic and
visual nature of the predictions can enhance patient education
and compliance by providing clear and comprehensible visu-
alizations of potential dental changes, making complex dental
growth processes more understandable for patients and their
families.

The image generator’s latent vector samplingmethod in the
latent space, utilizing PTI adopted in this study, has shown
potential as an effective feature extraction method to indicate
the transition state from primary to permanent teeth from a
total of 8,092 panoramic radiographs. In the section onDental
Growth Prediction, the presence of a distance space was
confirmed from the two extracted latent vectors (permanent
tooth image group and primary tooth image group). As a
result, mapping to the latent space using PTI is considered
a universal method that can likely be applied not only to the
panoramic radiographs targeted in this study but also to facial
and intraoral photographs. Furthermore, the prediction of rare
diseases, which are events with undetermined variance due
to their occurrence frequency distribution, is challenging to
model mathematically and statistically. Therefore, a predic-
tion method that does not predefine the probability density
function, like this method, is anticipated. It is highly probable
that latent vectors fitting rare diseases can be found, mak-
ing it easier to generate similar cases. This approach could
potentially solve the significant issue of dataset imbalance
when constructing AI for distinguishing rare diseases. These
broader applications underline the transformative potential of
generative models in enhancing predictive analytics in den-
tistry and paving the way for more personalized and proactive
dental care strategies.

We discovered that a batch size of 32 optimizes the FID
values for our study, as summarized in Table 1. Original
StyleGAN-XL gives better results using large batch size to
train with ImageNet, which is different from our medical
images. Our results suggest that batch size could be one of
the hyperparameters to be tuned based on the training dataset.
On the other hand, we must consider that the generative
models that yield the best FID scores may not always gener-
ate high-quality images, suggesting the importance of visual
inspection. To advance our research, a visual Turing test could
be a beneficial evaluation in the future to validate the quality
of the generated images [12], [18].

In addition to visual assessments, quantitative metrics
are necessary for further research to compare actual and
predicted growth. Some simple comparison metrics, such
as the root-mean-square error, do not fully capture the
two-dimensional nature of the images. A promising approach
involves contrastive representation learning to develop
domain-specific models [32], [33]. These models can extract
image features after training, and we can calculate the cosine
similarity of the embedding vectors to evaluate the image
similarity. In particular, self-supervised learning approaches
such as SimCLR [34] or Barlow Twins [35], which do not
require extensive labeling, could be particularly useful in
medical image training, where annotation is often costly.

VOLUME 12, 2024 87649



K. Kokomoto et al.: Tooth Development Prediction Using a Generative Machine Learning Approach

Those approaches are promising methods to evaluate medical
image similarity. However, due to their high computational
requirements, these methods should be investigated as sepa-
rate research from our study.

Another limitation is the small size of the training dataset
used. The original StyleGAN-XL model was extensively
trained on ImageNet, which is a large dataset. In contrast,
our study used a training dataset of only approximately 8,000
images. This may have limited our ability to take full advan-
tage of the capabilities of StyleGAN-XL. Furthermore, our
dataset was biased towards healthy dentition. Consequently,
the quality of the generated images was diminished for certain
dental materials, such as composite fillings, metal inlays,
stainless-steel crowns, space maintainers, and orthodontic
appliances. For a more comprehensive understanding and
visual details, please refer to the online supplementary video;
this resource provides an in-depth visual representation of the
findings of the study and offers a clearer perspective on the
limitations and capabilities of our generativemodels. To over-
come the small and imbalanced datasets, one solution could
be to add public datasets, such as Tufts Dental Database [36].
Federated learning across multiple medical institutions may
also be another solution to be consider [37].

This tendency to generate images of healthy dentition
is similar to that observed in our growth prediction mod-
els. Our method involves linear interpolation with the latent
vector Zpermanent , which is based on the average latent
vector of permanent dentition. By replacing the latent vec-
tor Zpermanent with alternative vectors, we can generate
various growth patterns that differ from those observed
in this study. This flexibility allows our model to simu-
late challenging conditions, including congenitally missing
teeth, supernumerary teeth, tumors, malalignments, and var-
ious syndromes. In addition, beyond linear interpolation,
other interpolation methods like polynomial interpolation or
spline interpolation can be applied to enhance the predic-
tive capabilities of the model. If a large amount of paired
data of primary and permanent teeth becomes available,
it may be possible to create a neural network that pre-
dicts the latent vector of permanent teeth from the latent
vector of primary teeth, leading to personalized predictive
healthcare using our method. Advanced techniques of latent
space analysis, such as StyleSpace [38] and StyleMC [39]
may also be useful for improving predictive performance.
Future research in these areas has considerable value and
could be the key to advancing personalized predictive dental
care.

V. CONCLUSION
Our study demonstrates the groundbreaking application of
StyleGAN-XL in pediatric dentistry and offers a new method
for predicting dental growth using panoramic radiography
beyond numerical approaches. Our findings have the poten-
tial to revolutionize predictive diagnostics, extending their
impact beyond dentistry to various fields of medical imaging.
The application of our method may improve the ability to

predict and plan for medical conditions, thereby providing a
transformative approach in healthcare diagnostics.
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