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Power-Level-Design-aware Scalable Framework for
Throughput Analysis of GF-NOMA in mMTC

Takeshi Hirai, Member, IEEE, Rei Oda, Naoki Wakamiya, Member, IEEE

Abstract—This paper proposes a scalable framework to an-
alyze the throughput of the grant-free power-domain non-
orthogonal multiple access (GF-NOMA) and presents the achiev-
able performance in the optimized offered load at each power
level (called per-level offered load) by using our framework.
Our analytical model reflects packet errors caused by power
collisions, characterized by GF-NOMA, based on the power level
design guaranteeing the required signal-to-interference-and-noise
ratio (SINR). This key idea enables analyzing the throughput
of a large-scale GF-NOMA system more accurately than the
existing analytical models. Also, this key idea enables optimizing
the per-level offered load rather than a uniform one in typical
optimization problems related to the throughput: the throughput
maximization or energy minimization problem with a throughput
condition. Our analytical results highlight some key insights into
designing future access control methods in GF-NOMA. First,
our analytical model achieves an approximation error of only
0.4% for the exact throughput obtained by the exhaustive search
at five power levels; the existing analytical model provides an
approximation error of 25%. Next, our proposed framework
highlights that the optimal per-level offered load restrictively
improves the throughput above the optimally uniform per-level
offered load. Finally, our proposed framework discovers a 27%
more energy-efficient per-level offered load than the existing
framework at five power levels while providing higher throughput
than the optimally uniform per-level offered load.

Index Terms—mMTC, grant-free, power-domain NOMA, SIC,
channel inversion, power collision, per-level offered load

I. INTRODUCTION

5G/6G uplink cellular networks require the massive
machine-type communications (mMTC) [1]–[3]. A typical

mMTC scenario has the following three characteristics. First,
in mMTC, a huge number of users connect to a base station
(BS), although each user sporadically transmits small packets.
This characteristic requires achieving enough high system
throughput (simply called throughput) to accommodate such
users. Second, mMTC requires such users to access resources
in a distributed manner to reduce signaling overheads for the
connected BS. Such an access protocol is called a grant-
free (GF) access protocol, like ALOHA. Third, such users
are typically battery-powered sensors. Based on the above
characteristics, mMTC needs enough high throughput while
suppressing enough energy consumption in a GF manner.

To increase the throughput in mMTC, the GF access
meets the power-domain non-orthogonal multiple access with
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channel inversion (channel-inverted NOMA), called GF-
NOMA [4]–[21]. In GF-NOMA, each user selects a pre-
designed power level and calculates its transmission power
by the target-received power value associated with its selected
level by channel inversion. The BS uses the successive inter-
ference cancellation (SIC) technique to decode a superposed
signal made by arriving packets transmitted by several users at
each power level. Each power level is designed to guarantee a
required signal-to-interference-and-noise ratio (SINR) at each
SIC iteration at no power collisions where multiple packets
arrive at a power level.

The throughput of GF-NOMA suffers from three types of
packet errors (named collision errors, lower-power-level errors,
and higher-power-level errors) due to power collisions. A
power collision occurs at a power level arrived by multiple
packets, called a collided level. A power collision involves
collision errors at the collided level. Then, this power collision
necessarily causes packet errors at lower power levels than the
collided level due to unsuccessful SIC; this type of the packet
errors are named lower-power-level errors. Also, such a power
collision may destroy the balance of the SINR guaranteed by
the pre-designed power level, and thus, packet errors occur
at higher power levels than the collided level; this type of the
packet errors are named higher-power-level errors. Thus, these
packet errors depend on the packet arrival or offered load at
each power level (called the per-level offered load).

The throughput has been actively analyzed in some related
works [4]–[21] to design GF-NOMA systems. Some related
works [4]–[12] analyzed the throughput in small-scale GF-
NOMA systems. These works focused on two or three lev-
els, and thus, the analytical models counted all the type of
packet errors, analyzing the exact throughput. Other related
works [13]–[18], i.e., state-of-the-art works, built the through-
put analytical model in the large-scale GF-NOMA systems,
supporting the general number of power levels. These works
mainly supported collision errors and/or lower-power-level
errors with packet arrivals at each power level to simplify
the analytical models. In particular, References [17] [18] have
roughly modeled higher-power-level errors in analytical mod-
els in addition to collision errors and lower-power-level errors.
Some of these works [15] [16] optimized the offered load by
using analytical models. The other related works [20] [21]
evaluated the throughput through Monte Calro simulations.

However, these related works [4]–[21] have been unsuitable
for analyzing the throughput in large-scale GF-NOMA systems
by a trade-off between the scalability and analysis accuracy.
The related works [4]–[12] have supported only small-scale
GF-NOMA systems and thus limited the scalability for the
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number of power levels. The related works [13]–[18] have
unsuitably reflected higher-power-level errors in the analytical
models to overlook the characteristics of the power level de-
sign, even in related works [17] [18], especially in large-scale
GF-NOMA systems. As a result, these related works [13]–[18]
underestimated or overestimated the throughput and thus in-
volved underestimating or overestimating the optimal offered
load. The related works [20] [21] have consumed much time
to obtain the throughput without the impacts of the random-
ness, especially in large-scale GF-NOMA systems.

To overcome the limitations in these related works [4]–[21],
this paper proposes a scalable and accurate analytical frame-
work for the throughput of GF-NOMA and presents the
achievable performance based on this proposed framework
in mMTC. Our key idea for the proposed analytical model
is to suitably approximate the event probability of higher-
power-level errors focusing on the power level design in
general per-level offered loads, extended from our previous
work [19]. This idea enables analyzing the throughput of
a large-scale GF-NOMA system more accurately than the
existing analytical models [4]–[19] and optimizing the design
of GF-NOMA. Also, this paper optimizes the per-level offered
load as examples of using our analytical framework: the
throughput optimization problem and the energy minimization
problem under satisfying the required throughput. To solve
these complex optimization problems, this paper builds an
optimization framework based on a meta-heuristic particle
swarm optimization (PSO) technique. In summary, this paper
provides the following contributions and findings:

• This paper proposes a scalable and accurate analytical
throughput model based on the power level design re-
flecting higher-power-level errors more suitably than the
existing analytical models in Section IV.

• This paper presents that the proposed analytical model
follows throughput trends more accurately than the ex-
isting analytical models, even in large-scale GF-NOMA
systems, in Section V-B.

• This paper highlights that a non-uniform per-level offered
load maximizes the throughput in Section VII-B and min-
imizes the energy consumption in GF-NOMA, including
a large-scale system, by using our analytical framework
in Section VII-C.

This paper is organized as follows. The next section shows
the differences between this work and related works. Sec-
tion III describes the system model for our analytical frame-
work. Section IV proposes an analytical model, and Section V
presents the validation of our model and analytical results
of throughput trends of GF-NOMA on our analytical model.
Section VI describes the optimization problems based on our
analytical model, and Section VII shows the optimization
results. The final section concludes this paper.

II. RELATED WORKS

This section highlights the novelty of this paper com-
pared with related works analyzing the performance of
channel-inverted GF-NOMA [4]–[19], summarized in Table I,
and other related works [20]–[25]. The following paragraphs
briefly describe the related works.

The first group of related works [4]–[12] focused on the
performance analysis in small-scale GF-NOMA systems with
a specific number of levels, like two and three levels. These
works contained all packet errors to enumerate the combina-
tions of packet arrivals at each level. Reference [4] analyzed
the performance of GF-NOMA with uniform power selection
schemes with an online backoff mechanism. Some works
[5] [6] focused on non-uniform power selection mechanisms
depending on channel gains. References [7] [8] optimized
power selection schemes in GF-NOMA. The other works [9]–
[11] revealed an optimal power selection scheme by a game
theory tool in some conditions, such as fading channels. In
each work, selecting a level is associated with a strategy in
a game. These analytical models [4]–[12] have been available
for only two or three power levels, i.e., small-scale GF-NOMA
systems. However, the performance characteristics in large-
scale GF-NOMA systems have remained unclear in these
works.

Another group of related works [13]–[18] have extended
the analytical models to support the general number of levels
than three levels, i.e., large-scale GF-NOMA systems. Related
works [13] [14] proposed an analytical model containing
collision errors to simplify the model. Some works [15]
[16] reflected lower-power-level errors to the above model to
improve this model. Other works [17] [18] partially contained
higher-power-level errors in addition to collision errors and
lower-power-level errors. Reference [17] assumed that a power
collision at a level caused packet errors in all the higher power
levels than the level. Reference [18] proposed that a power
collision at a collided level impacted as many higher-power
levels as the number of collided packets at the collided level.
However, these works have modeled packet errors unsuitably
enough to analyze and optimize the performance with the
throughput of GF-NOMA.

The other works focused on the simulation-based through-
put evaluations [20] [21]. Reference [20] proposed geograph-
ically selecting power levels to improve the throughput of
the GF-NOMA with channel inversion and evaluated the
throughput by the simulations. Reference [21] focused on
reinforcement learning for GF-NOMA with only two power
levels. However, these simulation-based optimization frame-
works spend more time designing system parameters than
the analysis-based ones, especially in large-scale GF-NOMA
systems.

Unlike these related works [4]–[21], our work proposes a
scalable and accurate analytical model containing all patterns
of packet errors suitably enough to formulate the throughput
in GF-NOMA. Note that our previous work [19] proposed
an analytical model for only uniform per-level offered loads.
This paper significantly extends this previous work to non-
uniform per-level offered loads and proposes an optimization
framework to analyze the optimal per-level offered load based
on the analytical model. Before the analysis and optimization,
the next paragraph describes the system model of our target
GF-NOMA.

Note that our target GF-NOMA facilitates analyzing the
throughput, and thus, this paper focuses on the GF-NOMA
rather than NOMA without power controls [22]–[24] or code-
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TABLE I
RELATED WORKS ABOUT THROUGHPUT ANALYSIS OF GF-NOMA

Limitation Related Works
Scalability (Number of Power Levels) Accurately Modeled Packet Errors Per-Level Offered Load

Only small-Scale (Two and three) All errors [4]–[12]

Large-Scale (General)

Collision errors [13] [14]
Lower-power-level and collision errors [15]–[18]

All packet errors
Uniform Only our previous work [19]

Uniform and non-uniform Only this work

…

K21
Active users with arrived packets

Power

Time

Frequency

…21 L …

…

…

𝑝! =
𝑃ℓ!
ℎ%!

#
𝑝# =

𝑃ℓ"
ℎ%#

#

𝑝$ =
𝑃ℓ#
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#

5G/6G

ℓ%: Level for a packet 𝑘

Slot

ℎ%: Channel coefficient for 
a packet 𝑘

𝑝%: Transmission power for 
a packet 𝑘

𝑃ℓ: Targe-received power value 
associated with ℓ

Fig. 1. An overview of the target GF-NOMA with L power levels for K
packets.

domain NOMA [25].

III. SYSTEM MODEL

Our analysis focuses on a typical GF-NOMA
system [15]–[19], shown in Fig. 1. Let us consider K
users become active at a slot. Each slot has L pre-designed
power levels, as shown in Fig. 1; K is a random variable.
Such users, called active users, transmit their packets to a
BS at the slot assuming an ALOHA-like protocol; namely,
the number of arrived packets per slot is also K. The
following paragraphs describe the detailed procedures of the
target GF-NOMA. The parameters used in this paper are
summarized in Table II.

Each active user selects a power level ℓ from L pre-designed
power levels according to a selection scheme. Let us consider
that a user has a packet k and selects a power level ℓk to
transmit k. This user calculates its transmission power, denoted
as pk, from its selected level ℓk according to channel inversion
[13] as follows:

pk =
Pℓk

|h̃k|2
, (1)

where Pℓ is defined as the target-received power value associ-
ated with a power level ℓ, and h̃k is defined as its estimated hk,
i.e., its channel coefficient between the user transmitting k and
its connected BS. Note that this paper assumes that users can
select all the levels to analyze the fundamental performance
of GF-NOMA. This coefficient is estimated through downlink

reference signals periodically advertised by the BS in each
slot. Pℓ at each level ℓ is designed for the BS to guarantee the
required SINR, denoted as Γ, as follows:

Pℓ = Γ(Γ + 1)L−ℓN0, (2)

where N0 is defined as the spectral density of the additive
white Gaussian noise (AWGN) over the slot, denoted as η.
Note that a smaller ℓ in (2) is associated with a larger target-
received power value based on the decoding order as follows:

P1 > P2 > · · · > PL. (3)

Let us consider that each user selects ℓ at a probability, denoted
as ψℓ. Then, a selection scheme of power levels is expressed
as follows:

ψ =
(
ψ1 ψ2 · · · ψL

)
, (4)

where
∑L

ℓ=1 ψℓ = 1.
Through the above protocol, the BS receives the following

superposed signal at a slot:

y(0) =
∑
k∈V0

√
pkhksk + η, (5)

where sk is defined as the signal of a packet k, and Vi is
defined as a set of remaining packet signals at the ith iteration;
namely, V0 is Vi at i = 0 and thus contains all the transmitted
packets at the slot. ∥V0∥ = K. The BS uses SIC, repeating

TABLE II
NOTATIONS THROUGHOUT THIS PAPER

Notation Definition

pk Transmission power of a user transmitting a packet k
Pℓ Target received power associated with a power level ℓ
η Additive white Gaussian noise (AWGN) per slot

with the spectrum density of N0

hk Channel coefficient between a user transmitting k to
its connected BS

ℓk Power level selected by k
ℓ(c) Power level where a power collision occurs

γ
(i)
k SINR of k at the ith SIC iteration
Γ Required SINR to satisfy the transmission rate R
Kℓ Number of arrived packets at ℓ
Vi Set of remaining packet signals at the ith SIC iteration
ψℓ Selection probability of ℓ
ψ Vector of selection probability at each power level
λℓ Average packet arrival rate or offered load at ℓ
λ Vector of per-level offered load
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the decoding and interference cancellation steps, to decode
multiple signals in the superposed signal. At the ith decoding
step, the BS experiences the following SINR, denoted as γ(i)k ,
for a packet k:

γ
(i)
k =

pk|hk|2∑
k̂∈Vi

pk̂|hk̂|2 +N0
, (6)

where Vi = Vi−1 \ {k}. Each packet is delivered within a slot
and requires a common transmission rate, denoted as R, based
on the Shannon capacity as follows:

log2(1 + γ
(i)
k ) ≥ R⇐⇒ γ

(i)
k ≥ 2R − 1 = Γ. (7)

Given the BS correctly decodes k satisfying (7), the BS cancels
the replica of the decoded signal by using h̃k from the remain-
ing superposed signal at the ith interference cancellation step
as follows:

y(i) = y(i−1) −√
pkh̃ksk

≈
∑
k̂∈Vi

√
pk̂hk̂sk̂ + η. (8)

Based on the above procedures, the power level design of
(2) enables the BS to satisfy (7) at no power collisions. Here,
this paper assumes that each user k perfectly estimates its
channel coefficient, i.e., h̃k = hk, and thus, pk|hk|2 = Pℓ;
namely, this paper assumes the perfect SIC as the first step to
analyze the key characteristics by per-level offered loads and
power collisions. Then, the SINR at each iteration equals Γ at
no power collisions. This condition provides the maximum
interference, denoted as I

(+)
ℓ , for successfully decoding a

packet at a level ℓ as follows:

I
(+)
ℓ =

L∑
ℓ̂=ℓ+1

Pℓ̂ =

L∑
ℓ̂=ℓ+1

Γ(Γ + 1)L−ℓ̂N0

= (Γ + 1)L−ℓN0 −N0 =
Pℓ

Γ
−N0. (9)

By this characteristic, simply discussing per-level offered loads
enables analyzing the throughput.

Based on the ALOHA-like protocol, the number of arrived
packets at a slot, i.e., K, can be approximated by using the
Poisson distribution with an average packet arrival rate or
offered load, denoted as λ, under typical mMTC use-cases
[15]–[18]. The probability of K = m under λ is presented
by using the following probability mass function, denoted as
q (m;λ):

Pr(K = m) = q (m;λ) =
e−λλm

m!
. (10)

Given λ and a selection scheme defined in (4), i.e., ψ, a per-
level offered load, expressed as λ =

(
λ1 λ2 · · · λL

)
, has

the offered load at each ℓ, denoted as λℓ, as follows:

λℓ = ψℓλ. (11)

Here, λℓ and λ have the following relationship:
L∑

ℓ=1

λℓ =

L∑
ℓ=1

ψℓλ = λ. (12)

Based on the per-level offered load, i.e., λ, the number of ar-
rived packets at ℓ, denoted as Kℓ, also follows an independent
Poisson random variable with λℓ:

Pr(Kℓ = m) = q (m;λℓ) =
e−λℓλℓ

m

m!
. (13)

In this model, the following section discusses our analytical
model with a per-level offered load.

IV. POWER LEVEL DESIGN-BASED ANALYTICAL
THROUGHPUT MODEL WITH PER-LEVEL OFFERED LOAD

This section describes the proposed analytical model ex-
pressing the three patterns of packet errors due to power
collisions and derives closed-form expressions for the through-
put of GF-NOMA on the system model in Section III. Our
analytical model focuses on the power level design of GF-
NOMA, i.e., (2) and (9), to formulate the event probability
of higher-power-level errors. First, we discuss the packet error
patterns at a power level and their event probabilities. Based
on the probabilities, we formulate the normalized throughput,
i.e., the average number of successfully decoded packets per
slot, denoted as T (λ), at the BS, given a per-level offered load
[15]–[18].

A. Three Patterns of Packet Errors

At a slot, a transmitted packet k may experience the
following three packet error patterns: collision errors, lower-
power-level errors, and higher-power-level errors. Causing
these patterns depends on the number of arrived packets at
each power level at the slot; here, Kℓ is the number of arrived
packets at ℓ, and then, the vector of the numbers is expressed
as κ =

(
K1 K2 · · · KL

)
. All the vectors are included in

a set K = {κ|κ ∈ {0, 1, · · · }L}.
1) Collision Errors: Given that two or more packets are

transmitted at a power level ℓ, these packets experience
collision errors; then, ℓ is defined as a collided level, denoted
as ℓ(c), as shown in the gray level in Fig. 2. The set of κ
causing this error pattern at a level ℓ, denoted as Cℓ, is written
as follows:

Cℓ = {κ ∈ K |Kℓ ≥ 2}. (14)

2) Lower-Power-Level Errors: Given that a power collision
occurs, packet errors occur at all the lower power levels ℓ than
a collided level ℓ(c), i.e., ℓ = ℓ(c)+1, ℓ(c)+2, · · · , L, as shown
in the yellow levels in Fig. 2. Each power collision causes
SIC to unsuccessfully cancel the interference by packets in
ℓ(c) from the mixed signal; thus, the lower-power-level errors

idle

Collision errors

1 L
Number of power levels (L)

Lower-power-level errorsHigher-power-level errorsSuccess (No errors)
ℓ(")

Fig. 2. An example of arrived packets at L power levels in a slot and three
patterns of packet errors due to a power collision.
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necessarily occur with a power collision. This set of κ causing
this error pattern at ℓ, denoted as Lℓ, is formulated as follows:

Lℓ = {κ ∈ K |Kℓ = 1, ∃ℓ(c) < ℓ,Kℓ(c) ≥ 2}. (15)

3) Higher-Power-Level Errors: A power collision may pre-
vent the BS from satisfying the SINR condition in (7) for
packets occupying higher power levels ℓ than a collided level
ℓ(c), i.e., ℓ < ℓ(c). These packets transmitted at ℓ < ℓ(c)

experience higher-power-level errors. Such a power collision
destroys to guarantee the SINR in the pre-designed power
levels in (2). The set of κ causing this error pattern at ℓ,
denoted as Hℓ, is formulated as follows:

Hℓ = {κ ∈ K |Kℓ = 1, ∃ℓ(c) > ℓ,Kℓ(c) ≥ 2, γ
(ik)
k(ℓ) < Γ},

(16)

where k(ℓ) is the packet occupying a level ℓ at the ikth SIC
iteration in (6) at the decoding step for k. Hℓ includes too
many κ to be exactly counted. For example, as the number
of arrived packets at each level increases, packet errors at ℓ
caused by the interference yielded from ℓ(c) increase. This
characteristic may fail to satisfy the SINR condition at much
higher power levels than ℓ(c).

The proposed analytical model approximates the higher-
power level errors by using the following two sets: H−

ℓ and
H+

ℓ . These sets satisfy the following expression:

H−
ℓ ⊂ Hℓ ⊂ H+

ℓ . (17)

Designing these sets provides a trade-off between the com-
putational complexity and the accuracy of approximating the
throughput. To this end, we focus on the power level design
in (2) and (9), as described in the following paragraphs.

The set H−
ℓ is defined to contain only κ where a packet

error necessarily occurs at a level ℓ higher than ℓ(c). For such
a κ, one packet arrived at a level ℓ undergoes a packet error,
given that a packet arrives at all the levels from ℓ + 1 to
ℓ(c) − 1. An example is shown in the orange levels in Fig. 2.
In this figure, the collided level is occupied by Kℓ(c) ≥ 2
packets. Given Kℓ(c) ≥ 2 packets, a packet at ℓ undergoes the
following interference power in the SINR based on (9):

Iℓ =

ℓ(c)−1∑
ℓ̂=ℓ+1

Pℓ̂ +Kℓ(c)Pℓ(c) =

L∑
ℓ̂=ℓ+1

Pℓ̂ + (Kℓ(c) − 1)Pℓ(c)

= I
(+)
ℓ + (Kℓ(c) − 1)Pℓ(c) . (18)

Iℓ > I
(+)
ℓ and, this packet experiences a higher-power-level

error. From the above discussions, H−
ℓ includes the following

κ:

H−
ℓ =

κ ∈ K | ℓ ≤ ∀ℓ̂ < min
ℓ(c)>ℓ

K
ℓ(c)

≥2

ℓ(c),Kℓ̂ = 1

 . (19)

This set H+
ℓ is defined to include at least all potential higher-

power-level errors. The key characteristic to formulate such
potential errors is that the power level design in (2) brings
(Γ + 1)Pℓ(c) = Pℓ(c)−1; namely, accumulating Kℓ(c) = Γ+ 1
packets provides the same interference power as Kℓ(c)+1 = 1

packet. This characteristic may prevent κ with Kℓ(c) > Γ +
1 from satisfying the SINR condition; more specifically, no
packets arrive at a level denoted as ℓ̂ where ℓ < ℓ̂ < ℓ(c) and
Kℓ(c) > Γ + 1, but a packet at ℓ may experience a higher-
power-level error. An example is shown in Fig. 3. Then, the
interference power for the level ℓ is written under ℓ(c) = ℓ+3
as follows:

Iℓ = Pℓ+1 + (Γ + 1 + 2)Pℓ(c)

= Pℓ+1 + Pℓ+2 + 2Pℓ(c) =

ℓ(c)∑
ℓ̃=ℓ+1

Pℓ̃ + Pℓ(c) > I
(+)
ℓ .

(20)

From the above discussions, this set contains the following κ
with Kℓ(c) ≥ Γ + 1 in addition to κ ∈ H−

ℓ :

H+
ℓ = H−

ℓ ∪{κ ∈ K |κ /∈ H−
ℓ ,

Kℓ = 1, ∃ℓ(c) < ℓ,Kℓ(c) ≥ Γ + 1}
⊂ H−

ℓ ∪{κ ∈ K |κ /∈ H−
ℓ ,

Kℓ = 1, ∃ℓ(c) < ℓ,Kℓ(c) ≥ ⌊Γ + 1⌋}
= {κ ∈K |Kℓ = 1, ∃ℓ(c) < ℓ,Kℓ(c) ≥ ⌊Γ + 1⌋}

∪ {κ ∈ H−
ℓ | ∀ℓ(c) < ℓ,Kℓ(c) < ⌊Γ + 1⌋}.

(21)

B. Event Probability of Each Pattern of Packet Errors

This section discusses the event probability of each pattern
at a level ℓ under the Poisson packet arrivals in (13). Here, κ
depends on the per-level offered load, i.e., λ, based on (13).

1) Event Probability of Collision Error: Collision errors
occur under Kℓ ≥ 2 based on (14). The event probability,
denoted as Pr(Cℓ), is written as follows:

Pr(Cℓ) = Pr(Kℓ ≥ 2) = 1− Pr(Kℓ < 2)

= 1−
(
q (0;λℓ) + q (1;λℓ)

)
. (22)

2) Event Probability of Lower-Power-Level Error: Lower-
power-level errors occur under (15). This event probabil-
ity is formulated as Pr(Lℓ|Kℓ = 1)Pr(Kℓ = 1), where

𝐾ℓ(") = Γ + 1

idle idle

1 L
Number of power levels (L)

…

ℓ ℓ(#)Higher-power-level errors

Fig. 3. An example of the upper-approximated set of higher-power-level
errors H+

ℓ at using L power levels.
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Pr(H−
ℓ |Kℓ = 1) =

L∑
ℓ(c)=ℓ+1

ℓ(c)−1∏
ℓ̂=ℓ+1

Pr(Kℓ̂ = 1)

Pr(Kℓ(c) ≥ 2)

 =

L∑
ℓ(c)=ℓ+1

ℓ(c)−1∏
ℓ̂=ℓ+1

q
(
1;λℓ̂

) (1− q
(
0;λℓ(c)

)
− q

(
1;λℓ(c) )

). (25)

Pr(H+
ℓ |Kℓ = 1)

=

1−
L∏

ℓ̂=ℓ+1

Pr(Kℓ̂ < ⌊Γ + 1⌋)

+

L∑
ℓ(c)=ℓ+1

ℓ(c)−1∏
ℓ̂=ℓ+1

Pr(Kℓ̂ = 1)

Pr(2 ≤ Kℓ(c) < ⌊Γ + 1⌋)

 L∏
ℓ̃=ℓ(c)+1

Pr(Kℓ̃ < ⌊Γ + 1⌋)


=

1−
L∏

ℓ̂=ℓ+1

Pr(Kℓ̂ < ⌊Γ + 1⌋)

+

L∑
ℓ(c)=ℓ+1

ℓ(c)−1∏
ℓ̂=ℓ+1

q
(
1;λℓ̂

)Pr(2 ≤ Kℓ(c) < ⌊Γ + 1⌋)

 L∏
ℓ̃=ℓ(c)+1

Pr(Kℓ̃ < ⌊Γ + 1⌋)

. (26)

Pr(Lℓ|Kℓ = 1) is the following conditional event probability:

Pr(Lℓ|Kℓ = 1) = 1−
ℓ−1∏
ℓ̂=1

Pr(Kℓ̂ < 2)

= 1−
ℓ−1∏
ℓ̂=1

(
q
(
0;λℓ̂

)
+ q

(
1;λℓ̂

))
= 1−

ℓ−1∏
ℓ̂=1

(
e−λℓ̂λℓ

0

0!
+
e−λℓ̂λℓ̂

1!

)

= 1−
ℓ−1∏
ℓ̂=1

e−λℓ̂

(
1 + λℓ̂

)
= 1−

(
e−

∑ℓ−1

ℓ̂=1
λℓ̂

) ℓ−1∏
ℓ̂=1

(
1 + λℓ̂

)
. (23)

3) Event Probability of Higher-Power Level Error: This
event probability is formulated as Pr(Hℓ|Kℓ = 1)Pr(Kℓ =
1), where Pr(Hℓ|Kℓ = 1) is the conditional probability
expressed by the lower and upper-approximated probability
based on (17) as follows:

Pr(H−
ℓ |Kℓ = 1) ≤ Pr(Hℓ|Kℓ = 1) ≤ Pr(H+

ℓ |Kℓ = 1).
(24)

The lower-approximated one is presented from (19) as (25).
The upper-approximated one is written from (21) as (26). The
first term shows the probability where higher power levels
ℓ̂ than the level ℓ contain Kℓ̂ ≥ ⌊Γ + 1⌋. The second term
presents the event probability of κ ∈ H−

ℓ under Kℓ̂ < ⌊Γ+1⌋.
Note that Pr(Kℓ < ⌊Γ + 1⌋) in (26) is presented as follows:

Pr(Kℓ < ⌊Γ + 1⌋) =
⌊Γ+1−1⌋∑
Kℓ=0

q (Kℓ;λℓ) =

⌊Γ⌋∑
Kℓ=0

q (Kℓ;λℓ),

(27)

and Pr(2 ≤ Kℓ < ⌊Γ + 1⌋) in (26) is formulated as follows:

Pr(2 ≤ Kℓ < ⌊Γ + 1⌋) =
⌊Γ+1−1⌋∑
Kℓ=2

q (Kℓ;λℓ)

=

⌊Γ⌋∑
Kℓ=2

q (Kℓ;λℓ). (28)

C. Normalized Throughput and Expectation of Packet Errors

The normalized throughput, i.e., T (λ), is written as the
summation of the expectations of the number of successfully
received packets at each level, denoted as Tℓ(λ), as follows:

T (λ) =

L∑
ℓ=1

Tℓ(λ). (29)

Let us denote Sℓ as the set of κ where successfully received
packets at a level ℓ, and NSℓ

as a random variable of the num-
ber of successfully received packets at ℓ. Each BS successfully
receives at most a packet at each level, given only a packet
arrives at the level ℓ, and the arrived packet experiences no
lower-power-level and higher-power-level errors. Thus, this set
is formulated as follows:

Sℓ = {κ ∈ K |Kℓ = 1,Lℓ ∧Hℓ}. (30)

From (30), T (λ) is presented as follows:

T (λ) =

L∑
ℓ=1

Tℓ(λ) =

L∑
ℓ=1

E[NSℓ
] =

L∑
ℓ=1

1 · Pr(Sℓ), (31)

where Pr(Sℓ), which is equal to Tℓ based on (30), is written
from (30) as follows:

Pr(Sℓ)

=
(
Pr

(
Hℓ|Kℓ = 1

))
Pr(Kℓ = 1)

(
Pr

(
Lℓ|Kℓ = 1

))
= (1− Pr (Hℓ|Kℓ = 1)) q(1;λℓ) (1− Pr (Lℓ|Kℓ = 1)) .

(32)

In (32), this paper focuses on the lower or upper-
approximated sets of higher-power-level errors, i.e., H±, and
then, the throughput is also approximated. Let us introduce the
upper or lower-approximated throughput, defined as T±(λ),
respectively. T±(λ) has the following relationship for the
exact throughput:

T−(λ) ≤ T (λ) ≤ T+(λ). (33)
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Here, Pr(Hℓ|Kℓ = 1) in (32) is approximated to Pr(H∓
ℓ |Kℓ =

1) for T±
ℓ (λ), and thus, T±(λ) is presented by using T±

ℓ (λ)
as follows:

T±(λ) =

L∑
ℓ=1

T±
ℓ (λ)

=

L∑
ℓ=1

(
1− Pr(H∓

ℓ |Kℓ = 1)
)
q (1;λℓ) (1− Pr(Lℓ|Kℓ = 1)) .

(34)

Additionally, we discuss the expectations of the number of
packets experiencing collision errors, lower-power-level errors,
and higher-power-level errors, including the lower and upper-
approximated ones. The numbers of these packet errors are
denoted as NC , NL, and NH± , respectively. Also, NCℓ

, NLℓ
,

and NH±
ℓ

are denoted as these numbers at ℓ. The expectations
of NC , denoted as E[NC ], is written from (22) by using E[NCℓ

]
as follows:

E[NC ] =

L∑
ℓ=1

E[NCℓ
] =

L∑
ℓ=1

∞∑
Kℓ=2

Kℓ · Pr(Kℓ)

=

L∑
ℓ=1

(
E[Kℓ]−

(
0 · Pr(Kℓ = 0) + 1 · Pr(Kℓ = 1)

))
=

L∑
ℓ=1

(λℓ − λℓe
−λℓ). (35)

The expectation of NL, denoted as E[NL], is written from (23)
by using E[NLℓ

] as follows:

E[NL] =

L∑
ℓ=1

E[NLℓ
] =

L∑
ℓ=1

Pr(Lℓ|Kℓ = 1)q (1;λℓ) . (36)

The expectation of NH± , denoted as E[NH± ], is written from
(26) and (25) by using E[NH±

ℓ
] as follows:

E[NH± ] =

L∑
ℓ=1

E[NH±
ℓ
] =

L∑
ℓ=1

Pr(H±
ℓ |Kℓ = 1)q (1;λℓ) .

(37)

D. Special Case: Uniform Selection Scheme

This section discusses closed-form expressions of the
throughput in the uniform selection scheme of power levels
as a special case of the above analytical model. In this case,
the selection scheme is ψ =

(
1
L

1
L · · · 1

L

)
, and thus, the

offered load at ℓ, i.e., λℓ, shows the same value and then, λℓ
is presented as follows:

λℓ = λ̂ =
λ

L
. (38)

The uniform per-level offered load, denoted as λu, is presented
as λu =

(
λ̂ λ̂ · · · λ̂

)
. Eq. (38) enables simplifying some

expressions. At first, the probability of each error pattern is

rewritten. The lower-power-level errors occur at the following
probability transformed from (23):

Pr(Lℓ|Kℓ = 1, λ̂) = 1−
ℓ−1∏
ℓ̂=1

Pr(Kℓ̂ < 2)

= 1−
(
q(0; λ̂) + q(1; λ̂)

)ℓ−1

. (39)

The higher-power-level errors occur at the lower-approximated
probability transformed from (25) as follows:

Pr(H−
ℓ |Kℓ = 1, λ̂)

=

L∑
ℓ(c)=ℓ+1

ℓ(c)−1∏
ℓ̂=ℓ+1

Pr(Kℓ̂ = 1)

Pr(Kℓ(c) ≥ 2)


= (1− q(0; λ̂)− q(1; λ̂))

L∑
ℓ(c)=ℓ+1

q(1; λ̂)ℓ
(c)−ℓ−1

= (1− q(0; λ̂)− q(1; λ̂))
1− q(1; λ̂)L−ℓ

1− q(1; λ̂)
. (40)

The higher-power-level errors occur at the upper-approximated
probability shown in (41), transformed from (26). Then, the
throughput with the uniform selection scheme, denoted as
T±
u (λ̂), is presented from (34) as follows:

T±
u (λ̂) =

L∑
ℓ=1

(
1− Pr(H∓

ℓ |Kℓ = 1, λ̂)
)

× q(1; λ̂)
(
1− Pr(Lℓ|Kℓ = 1, λ̂)

)
. (42)

E. Characteristics of Analysis Accuracy and Throughput

1) Analysis Accuracy: The proposed analytical model has
the following two approximations: approximating the sets of
higher-power-level errors by using H±

ℓ and approximating
packet arrivals by using the Poisson distribution. For the
former one, the upper-approximated throughput, i.e., T+(λ),
is expected to show better approximations than the lower-
approximated one T−(λ) because Pr(Kℓ̃ < ⌊Γ+1⌋) observed
in T−(λ) is more rarely than q (0;λ) and q (1;λ) observed in
T+(λ). For the latter one, the Poisson approximations are
expected to be accurate enough for the analysis from the
related works [13]–[18].

The proposed model shows better approximations than the
existing analytical model [18] that approximates the through-
put most accurately in the other existing models [15]–[17].
Our proposed model contains all the error patterns more
suitably than [18]. The upper-approximated throughput in [18],
denoted as T̂+(λ), is written as follows:

T̂+(λ) =

L∑
ℓ=1

(
q (1;λℓ)− Pr(Lℓ|Kℓ = 1)q(1;λℓ)

)
=

L∑
ℓ=1

λℓe
−λℓ

(
e−

∑ℓ−1

ℓ̂=1
λℓ̂

) ℓ−1∏
ℓ̂=1

(
1 + λℓ̂

)
. (43)
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Pr(H+
ℓ |Kℓ = 1, λ̂)

=

1−
L∏

ℓ̂=ℓ+1

Pr(Kℓ̂ < ⌊Γ + 1⌋)

+

L∑
ℓ(c)=ℓ+1

ℓ(c)−1∏
ℓ̂=ℓ+1

Pr(Kℓ̂ = 1)

Pr(2 ≤ Kℓ(c) < ⌊Γ + 1⌋)

 L∏
ℓ̃=ℓ(c)+1

Pr(Kℓ̃ < ⌊Γ + 1⌋)


=
(
1− Pr(Kℓ̂ < Γ + 1)L−ℓ

)
+

L∑
ℓ(c)=ℓ+1

(
q(1; λ̂)ℓ

(c)−ℓ−1 Pr(2 ≤ Kℓ(c) < ⌊Γ + 1⌋) Pr(Kℓ̃ < Γ + 1)L−ℓ(c)
)

=
(
1− Pr(Kℓ̂ < Γ + 1)L−ℓ

)
+ Pr(2 ≤ Kℓ(c) < ⌊Γ + 1⌋)

Pr(Kℓ̃ < Γ + 1)L−ℓ − q(1; λ̂)L−ℓ

Pr(Kℓ̃ < Γ + 1)− q(1; λ̂)
. (41)

T̂−(λ) =

L∑
ℓ=1

λℓe
−λℓ

(
e
−

∑ℓ−1

ℓ̂=1
λ
ℓ̂

) ℓ−1∏
ℓ̂=1

(
1 + λℓ̂

) L∏
ℓ̂=ℓ+1

e−λ
ℓ̂
(
1 + λℓ̂

)
+

L∑
ℓ(c)=ℓ+2

q(ℓ(c);λℓ(c)) ℓ(c)−1∏
ℓw=ℓ+1

e−λℓw

L∏
ℓ̂=ℓ(c)+1

e−λ
ℓ̂
(
1 + λℓ̂

).
(45)

T̂−
u (λ̂) =

L∑
ℓ=1

λ̂(1 + λ̂)ℓ−1e−ℓλ̂

e−λ̂(L−ℓ)
(
1 + λ̂

)(L−ℓ)
+

L∑
ℓ(c)=ℓ+2

(
q
(
ℓ(c); λ̂

)
e−λ̂(L−ℓ−1)

(
1 + λ̂

)(L−ℓ(c))
). (46)

In the special case of the uniform selection scheme, T̂+
u (λ̂) is

reformulated by (38) as follows:

T̂+
u (λ̂) =

L∑
ℓ=1

q
(
1; λ̂

)(
q(0; λ̂) + q(1; λ̂)

)ℓ−1

=

L∑
ℓ=1

λ̂e−λ̂
(
(1 + λ̂)e−λ̂

)ℓ−1

=

L∑
ℓ=1

λ̂(1 + λ̂)ℓ−1e−ℓλ̂. (44)

T̂+(λ) reflects the impacts of lower-power-level errors but
includes no impacts of higher-power-level errors. Thus, T̂+(λ)
overestimates the exact throughput more significantly than
T+(λ).

The lower-approximated throughput in [18], denoted as
T̂−(λ), is based on an upper-approximated set of higher-
power-level errors. Reference [18] assumed that given that a
power collision occurs at ℓ(c), higher-power-level errors occur
at Kℓ(c) levels higher than ℓ(c); in other words, Reference [18]
assumed that Kℓ(c) packet arrivals require the same number
of vacant levels as higher-power-level errors. Then, T̂−(λ)
is formulated in (45), as well as (34). At the special case,
i.e., GF-NOMA using the uniform power selection scheme,
T̂−(λ) is transformed by (38) to (46). As discussed in IV-A,
power collisions with Kℓ(c) ≤ ⌊Γ+ 1⌋ only requires a vacant
level to experience no higher-power-level errors, and thus,
T̂−(λ) underestimates the exact throughput more significantly
than T−(λ). At power collisions with Kℓ(c) > ⌊Γ + 1⌋,
T−(λ) is expected to overestimate the exact throughput more
significantly than T̂−(λ). This event is expected to occur
much less frequently than the above event around the peak
throughput, and thus, the proposed model is expected to show
more accurate throughput than the existing model. In Section
V-B, we validate these characteristics by the quantitative
evaluations.

2) Throughput vs. Per-Level Offered Load: First, this sec-
tion qualitatively discusses the characteristics of the nor-
malized throughput of per-level offered load yielded by the
uniform selection scheme, i.e., λu discussed in Section IV-D,
based on the three packet errors. The throughput shows a
unimodal trend at a larger λ̂. As λ̂ increases, the number
of occupied power levels increases. Also, at a larger λ̂,
collision errors at ℓ occur more frequently as expressed in
(22). Such a larger λ̂ causes lower-power-level errors and
higher-power-level errors more frequently based on (23) and
(25). As a result, as λ̂ increases, the throughput increases and
then decreases. Additionally, the uniform selection scheme
experiences higher throughput at a higher power level. A
higher power level experiences higher-power-level errors more
frequently, and a lower power level experiences lower-power-
level errors more frequently. In particular, the first power
level experiences no lower-power-level errors, and the Lth
power level experiences no higher-power-level errors. Note
that Pr (Hℓ|Kℓ = 1) is more minor than Pr(Lℓ|Kℓ = 1)
based on the definitions in (15) and (16). As a result, these
characteristics allow a lower power level to experience higher
throughput.

Next, this section qualitatively discusses the throughput
in per-level offered loads obtained by non-uniform selection
schemes. Such per-level offered loads provide different bal-
ances of event probabilities of the packet errors from the
uniform per-level offered load. Along to λℓ, power collisions
at a level ℓ occur monotonically, involving collision errors. The
two other packet errors occur based on power collisions. As
a typical selection scheme, let us consider a higher selection
probability at a lower power level, called a rising selection
scheme; namely, ψℓ < ψℓ̃ where ℓ < ℓ̃. The per-level offered
load obtained by this scheme causes power collisions at a
lower power level more frequently. As a result, such a per-
level offered load causes higher-power-level errors more fre-
quently than the uniform one. Also, this per-level offered load
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causes a higher power level to experience collision errors less
frequently. This characteristic allows such a per-level offered
load to experience lower-power-level errors less frequently
than the uniform one. In addition to these trends, decreasing λℓ
involves reducing the probability where a packet is correctly
received at ℓ. Balancing these characteristics depends on the
throughput. In contrast, using a higher selection probability
at a higher power level, called a sloping selection scheme,
shows the inverse characteristics; namely, lower-power-level
errors are dominant to the throughput.

V. NUMERICAL RESULTS

A. Analysis Parameters

This section describes the analytical results by our analyt-
ical model proposed in Section IV. To validate the analysis
accuracy of the proposed model, we compared the analytical
results with the following two models. The first one was the
exhaustive search, providing the exact throughput under the
Poisson packet arrivals. This comparison supports validating
the approximation accuracy of the event probability of higher-
power-level errors. The second one was the Monte Carlo
simulation assuming no Poisson packet arrivals to validate
the Poisson approximations, discussed in Section IV-E; in
each simulation, 1000 users randomly selected their power
levels, given a per-level offered load. The following metric of
approximation errors was introduced as an error percentage:

ϵ =

∣∣∣∣F (λ)T (λ)
− 1

∣∣∣∣× 100%, (47)

where F (·) ∈ {T±(·), T̂±(·)}, and T (λ) is the throughput
obtained by the exhaustive search or Monte Carlo simulation.
Each plot was averaged over 106 samples. The required SINR,
i.e., Γ, was set to 4 ≈ 6 dB [16].

We analyzed the throughput with the per-level offered loads
yielded by two typical non-uniform selection schemes in
addition to the uniform selection scheme. The first scheme
was the following sloping selection scheme:

ψℓ =
L− ℓ+ 1∑L

ℓ̂=1 (L− ℓ̂+ 1)
. (48)

The second scheme was the following rising selection scheme:

ψℓ =
ℓ∑L
ℓ̂=1 ℓ̂

. (49)

Fig. 4 shows the selection probability in these schemes at
L = 5, compared with the uniform selection scheme. As
shown in Fig. 4, (48) and (49) realized the non-uniform
selection schemes. Also, we compared the analysis accuracy
of the proposed analytical model with the existing analytical
model [16]–[18], as discussed in Section IV-E.

B. Analysis Accuracy

This section describes the analysis accuracy of the proposed
model in the uniform, rising, and sloping selection schemes of
power levels. Fig. 5 shows the normalized throughput in these
selection schemes at L = 5, 10, 15. The horizontal axes are
the average packet arrival rate (offered load), i.e., λ, and the
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Fig. 4. The selection probability in the sloping scheme (left) in (48) and
rising scheme in (49) (right) at L = 5, compared with the uniform selection
scheme, respectively.

vertical axes are the normalized throughput. Fig. 6 shows the
expectations of the number of packet errors in the proposed
model with increasing the offered load (i.e., average packet
arrival rate), i.e., λ, at L = 5 in these selection schemes,
respectively. The horizontal axes are the offered load, and the
vertical axes are the expectations of the number of packet
errors.

First, we describe the analysis accuracy in the per-level
offered load yielded by the uniform selection scheme. The
left graph in Fig. 5 highlights that the proposed lower-
approximated model achieved underestimating the exact
throughput by only 0.4% at λ = L = 5; the upper-
approximated throughput was only 0.01% higher than the
exact throughput. Thus, the proposed model achieved the error
percentage, i.e., ϵ, within 0.4%. At the same λ, the lower-
approximated and upper-approximated ones in the existing
model [16]–[18] showed ϵ of 25% and 51%, respectively.
These results highlighted that the proposed model formulated
the GF-NOMA throughput more accurately than the existing
model, focusing on modeling higher-power-level errors, as
discussed in Section IV-E. This graph also emphasizes that
the proposed model showed enough accurate throughput at a
large number of power levels; at L = 15, the proposed lower-
approximated model provided ϵ of only 0.001% for the Monte
Carlo simulation at λ = 5, providing the peak throughput; at
the same parameters, the existing lower-approximated one pro-
vided 27% less throughput than the Monte Carlo simulation.

1) Sloping Selection Scheme: Second, we describe those
in the sloping selection scheme. The middle graph in Fig. 5
highlights that the proposed model achieved ϵ of only 0.08%
for the exhaustive search at λ = L = 5; in particular, the
upper-approximated throughput was only 0.003% higher than
the exact throughput. At the same λ, the lower-approximated
and upper-approximated ones in the existing model showed
ϵ of 11% and 48% for the exhaustive search, respectively.
At L = 15, the proposed lower-approximated throughput
provided only 0.05% lower throughput than the Monte Carlo
simulation at λ = 4, providing the peak throughput; at the
same parameters, the existing lower-approximated one pro-
vided 13% less throughput than the Monte Carlo simulation.

2) Rising Selection Scheme: Finally, we focus on the ana-
lytical results with the rising selection scheme. The right graph
in Fig. 5 highlights that this selection scheme provided less
accurate throughput at a larger offered load more remarkably
than the other schemes, but the proposed model showed
enough accuracy around peak throughput. In the proposed
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Fig. 5. The normalized throughput with increasing the offered load, i.e., λ, at L = 5, 15 in the uniform (left), sloping (middle), and rising (right) selection
schemes, respectively.
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Fig. 6. The expectations of the number of packet errors in the proposed model with increasing the offered load, i.e., λ, at L = 5 in the uniform (left), sloping
(middle), and rising (right) selection schemes, respectively.

model, T−(λ) and T+(λ) were ϵ of only 2% and 0.07% for
the exhaustive search at λ = L = 5, respectively; then, T̂−(λ)
and T̂+(λ) in the existing model showed ϵ of 37% and 72%,
respectively. At L = 15, the proposed lower-approximated
throughput provided 0.1% lower throughput than the Monte
Carlo simulation at λ = 5, providing the peak throughput;
then, the existing lower-approximated one provided 34% less
throughput than the Monte Carlo simulation. Even in the
schemes, these results emphasized that the proposed model
achieved enough accurate throughput to express the exact
throughput around the peak one.

C. Throughput and Packet Error Analysis

This section analyzes the normalized throughput and packet
errors. At first, Fig. 7 shows the normalized throughput for
the offered load in the three selection schemes at L = 5, 15;
here, the normalized throughput is the upper-approximated
throughput because the upper-approximated one was more
accurate than the lower-approximated one in Fig. 5. The
horizontal axis is the offered load, i.e., λ, and the vertical axis
is the normalized throughput. Fig. 8 shows the expectations
of the number of packet errors in the proposed model at each
power level at L = 5 at the offered load λ = L

2 = 2.5 around
the peak throughput, in these selection schemes, respectively.
The horizontal axes are the power level, i.e., ℓ, and the vertical
axes are the throughput and the expectations of the number of
packet errors.

In Fig. 7, we compared the characteristics of the normal-
ized throughput with the per-level offered loads obtained by
selection schemes. At L = 5, the uniform selection scheme
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Fig. 7. The normalized throughput with increasing the offered load, i.e., λ,
at L = 5, 15, in the uniform, sloping, and rising selection schemes.

increased the normalized throughput over the sloping and
rising ones by 14% and 8%, respectively. At L = 15, the
uniform selection scheme increased the normalized throughput
over the sloping and rising ones by 21% and 6%, respectively.
The following subsections break down packet errors and
results per level in each selection scheme.

1) Uniform Selection Scheme: The left graph in Fig. 6 high-
lights that lower-power-level errors were more dominant than
higher-power-level errors, as discussed in IV-E. At λ = L = 5,
lower-power-level errors occurred 40% more frequently than
higher-power-level errors. Also, at a larger λ, collision errors
were more dominant to the throughput, and the other errors
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Fig. 8. The expectations of the number of packet errors in the proposed model at each power level at L = 5 at the offered load λ = L
2

= 2.5 around the
peak throughput, in the uniform (left), sloping (middle), and rising (right) selection schemes, respectively.

occurred less frequently. The left graph in Fig. 8 shows that
a lower-power level provided lower throughput; selecting the
first level experienced 99% higher throughput than selecting
the fifth level.

2) Sloping Selection Scheme: Also, the middle graph in
Fig. 6 highlights that the sloping selection scheme increased
the impacts of lower-power-level errors on the throughput
over the uniform selection scheme, as discussed in IV-E; at
λ = L = 5, lower-power-level errors occurred 157% more
frequently than higher-power-level errors. This characteristic
increased the difference of the throughput over power levels,
as shown in the middle graph in Fig. 8; selecting the first level
experienced 255% higher throughput than selecting the fifth
level.

3) Rising Selection Scheme: Also, this scheme showed
the inverse characteristics of packet errors to the other two
schemes. The right graph in Fig. 6 presents that higher-power-
level errors occurred more frequently than lower-power-level
errors, as discussed in IV-E; the difference of expectations was
33% at λ = L = 5. Also, the right graph in Fig. 8 shows that a
higher power level experienced lower throughput; specifically,
selecting the fifth level showed 106% higher throughput than
selecting the first level.

VI. PSO-BASED OPTIMIZATION FRAMEWORK FOR
PER-LEVEL OFFERED LOAD

This section discusses a PSO-based optimization framework
for a per-level offered load as applicable examples of the
analytical model. This section discusses the following two
typical optimization problems using the proposed analytical
model: the throughput maximization problem and the energy
minimization problem under a throughput condition. In the fol-
lowing subsections, we describe these optimization problems
and how to solve them by PSO, which is a basic optimization
technique and has a few design parameters.

A. Throughput Maximization Problem

This optimization problem aims to maximize the throughput
of GF-NOMA based on the analytical model. To guarantee the

exact throughput, we use the lower-approximated throughput.
This problem is formulated as follows:

max
λ

T−(λ) (50a)

s.t. λℓ > 0, ∀ℓ. (50b)

Considering the uniform selection scheme of power levels, the
above problem has the following constraint:

max
λ

T−(λ) (51a)

s.t. λℓ = λℓ̂ > 0, ∀ℓ, ∀ℓ̂. (51b)

To simply solve this problem, we transform this problem for
λ as follows:

max
λ

T−
u

(
λ

L

)
(52a)

s.t. λ > 0. (52b)

In this optimization framework with the existing analytical
model, named the existing framework, T−(λ) is replaced to
T̂−(λ), and T−

u ( λL ) is replaced to T̂−
u ( λL ).

B. Energy Minimization Problem

This problem minimizes the energy consumption, given
λ provides equal or higher throughput than the optimally
uniform per-level offered load, denoted as λ∗

u, i.e., T (λ) ≥
T (λ∗

u). The energy consumed by each user depends on the
selection scheme of power levels and its channel from its
transmission power by (1). The channel depends on the
user distribution model, and thus, this paper focuses on the
expectation of the transmission power of a user k as follows:

E [pk] =

L∑
ℓk=1

Pℓk

|hk|2
ψℓk =

L∑
ℓk=1

Pℓk

|hk|2
λℓk
λ
. (53)

The objective function to minimize this energy is simply
formulated as the following expectations of target-received
power values based on the selection scheme based on λ:

E [Pℓ | λ] =
L∑

ℓ=1

Pℓ
λℓ
λ
. (54)

To guarantee T (λ) ≥ T (λ∗
u), we use a constraint where

the lower-approximated throughput for λ∗ is equal to the
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upper-approximated throughput for λ∗
u or larger. Then, the

optimization problem is presented as follows:

min
λ

E [Pℓ | λ] (55a)

s.t. λℓ > 0, ∀ℓ, (55b)

T−(λ) ≥ T+(λ∗
u). (55c)

Note that the uniform per-level offered load shows the follow-
ing energy: E [Pℓ | λ∗

u] =
1
L

∑L
ℓ=1 Pℓ. As well as the above

throughput maximization problem, in the existing framework,
T−(λ) is replaced to T̂−(λ), and T+(λu) is replaced to
T̂+(λu).

C. PSO-based Optimization Framework
This paper uses a PSO technique to solve the above non-

linear and complex problems directly. Let us consider that Z is
the set of particles. In PSO, each particle z ∈ Z on a position at
time t, denoted as x(t)

z , explores a better position for a fitness
function than the past positions of itself and other particles. In
our framework, x(t)

z = λ =
(
λ1 λ2 · · · λL

)
. Its position

is updated by using its velocity, denoted as v(t)z , as follows:

x(t+1)
z = x(t)

z + v(t+1)
z . (56)

The velocity is defined as follows:

v(t+1)
z = wmv

(t)
z + r(t)p ⊙

(
x(t)
z,p − x(t)

z

)
+ r(t)g ⊙

(
x(t)
g − x(t)

z

)
, (57)

where wm is a constant value, and rp ∈ [0, wp]
L and rg ∈

[0, wg]
L are the vectors with random values. wp and wg are

the constant values to decide the ranges of the random values,
respectively. Also, x(t)

z,p is the personally best position in a
particle z until t, and x(t)

g is the globally best position in
all the particles until t. To solve the throughput optimization
problem, these positions are designed as follows:

x(t)
z,p = argmax

{x(t̂)
z |t̂≤t}

T−
(
x(t̂)
z

)
,

x(t)
g = argmax

{x(t)
z,p|z∈Z}

T−
(
x(t)
z,p

)
,

(58)

and the positions for the energy minimization problem are
presented as follows:

x(t)
z,p = argmax

{x(t̂)
z |t̂≤t}

E
(
x(t̂)
z

)
,

x(t)
g = argmax

{x(t)
z,p|z∈Z}

E
(
x(t)
z,p

)
,

(59)

where E(·) is an energy function based on (55a) with the
penalty for the constraint of the throughput as follows:

E(λ)

=

{
E [Pℓ |λ∗

u] + T+(λ∗
u)− T−(λ) T−(λ) < T+(λ∗

u)

E [Pℓ |λ] T−(λ) ≥ T+(λ∗
u).

(60)

In the penalty term, i.e., the function at T−(λ) < T+(λ∗
u), the

second term for unsatisfying the throughput condition aims for
each particle to move positions achieving higher throughput
than T+(λ∗

u) based on (55c). The first term, i.e., E [Pℓ |λ∗
u],

avoids that the value in T−(λ) < T+(λ∗
u) is smaller than

E [Pℓ |λ] in T−(λ) ≥ T+(λ∗
u). Also, the initial position and

velocity of each particle are randomly selected as follows:

x
(0)
i ∈ [0, 1]L, v

(0)
i = 0. (61)

For the rapid convergence, Z contains a particle z with x(0)
z =

λ∗
u. Note that each function used in the above explanations is

replaced along with the optimization problems described in
Sections VI-A and VI-B.

D. Characteristics of Optimal Per-Level Offered Load

First, this section qualitatively discusses the characteristics
of the optimal per-level offered load by the proposed frame-
work. For the throughput maximization problem, the optimal
λ depends on balancing the event probabilities of packet error
patterns, as discussed in Section IV-E and analytical results
shown in V. A key characteristic is that lower-power-level
errors occur more frequently than higher-power-level errors.
Based on this characteristic, the per-level offered load with
the rising selection scheme is expected to be near-optimal.
Another key characteristic is that the first power level expe-
riences no lower-power-level errors, and the Lth power level
experiences no higher-power-level errors. Suitably balancing
these characteristics yields the maximum throughput. For the
energy minimization problem, the expected energy depends
on the optimal per-level offered load in addition to balancing
the characteristics. Selecting a lower power level at a larger
probability suppresses the expected energy, and as a result, a
rising selection scheme is expected to be near-optimal.

Next, this section qualitatively compares the optimal per-
level offered load of the proposed framework with the ex-
isting framework that uses the existing analytical model.
The proposed framework provides a better per-level offered
load than the existing framework for the accuracy of the
analytical model. The existing model shows that higher-power-
level errors are more dominant to the throughput than the
proposed model. This approximation error is expected to cause
the existing framework to provide a near-uniform selection
scheme as the optimal per-level offered load. For the energy
minimization problem, the existing framework provides the
throughput less accurately and thus prevents satisfying (55c)
more remarkably than the proposed framework. As a result, λ
is less likely to reach λ∗.

VII. OPTIMIZING PER-LEVEL OFFERED LOAD

This section describes the optimal per-level offered load
in the two optimization problems discussed in Section VI as
application examples of the proposed analytical model. First,
this section describes the optimization results in the throughput
maximization problem. Second, this section describes the per-
level offered load minimizing the energy under satisfying the
required throughput.
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TABLE III
ANALYSIS PARAMETERS

Parameter Value Parameter Value
Γ 4 ≈ 6 dB N0 −110 dBm
|Z| 1000 Number of steps 100
wm 0.8 wp and wg 0.2

A. Parameters

This section used typical wireless parameters. Γ = 4,
the same value in Section V. N0 = −110 dBm, used in
many related works [20]. The PSO parameters were typical
values, summarized in Table III. We compared the optimal
λ obtained from the proposed framework with the existing
framework, which is the PSO-based framework using the
existing analytical model denoted in the related work [18].

B. Throughput Maximization

This section shows the results of the throughput maxi-
mization. Fig. 9 shows the achievable throughput in the per-
level offered load optimized by the proposed optimization
framework, i.e., the PSO-based framework with the proposed
analytical throughput model, compared with the existing one.
The horizontal axis represents the number of power levels,
i.e., L, and the vertical axis shows the proposed analytical
throughput for the optimal per-level offered load by each
framework. This graph showed that optimal per-level offered
loads formulated by (52), named Uniform per-level offered
load, and (50), named Optimal per-level offered load, by the
proposed and existing frameworks.

From Fig. 9, our framework showed more throughput than
the existing framework by optimizing λ. In the proposed
framework, λ∗ provided 1% more throughput than λ∗

u at
L = 5; then, the proposed framework achieved at most 2%
more throughput than the existing framework in the optimal
per-level offered load. Also, at L = 15, λ∗ optimized by
the proposed framework provided at most 3% and 8% more
throughput than λ∗

u and the optimized λ by the existing
framework, respectively. Our results highlighted that the non-
uniform selection scheme had small impacts on the throughput.
Note that the upper-approximated throughput provided only
0.04% higher than the lower-approximated throughput, but
this difference in the existing analytical model was 18% at
λ optimized by the existing framework at L = 5. Our results
highlighted that the proposed analysis was accurate enough
even during the optimization process.

From Fig. 10 and 11, we analyze the per-level offered
load. Fig. 10 shows the per-level offered load optimized by
these frameworks; the left graph shows λ by the existing
framework, and the right graph shows λ by the proposed
framework. The horizontal axes are the power level, and the
vertical axes are the offered load. Also, Fig. 11 shows the nor-
malized throughput and expectations of the number of packet
errors in these optimal per-level offered loads. The horizontal
axes and vertical axes are the same as Fig. 8, respectively.
The right figure in Fig. 10 emphasizes that the proposed
framework optimally balanced lower and higher-power-level
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Fig. 10. The optimal per-level offered load in the PSO-based optimization
framework with the existing model (left) and proposed model (right) at
L = 5, compared with the optimally uniform per-level offered load in each
framework.

errors; the per-level offered load was mainly based on the
rising selection scheme except for the first level. The optimal
per-level offered load showed a uni-modal per-level offered
load; λ1, impacting no lower-power-level errors, was higher
than λ2, and monotonically increasing the offered load at the
other levels involved suppressing lower-power-level errors, as
discussed in Section VI-D, while suppressing higher-power-
level errors. From the left graph in 11, λ∗ decreased lower-
power-level errors below λ∗

u, although λ∗ increased higher-
power-level errors above λ∗

u. λ∗ highlighted the throughput
at ℓ = 5 was higher than ℓ = 2, 3, 4. In contrast, the existing
framework discovered a uniform-like per-level offered load as
the optimal λ.

Fig. 12 and Fig. 13 show the optimization process. The
horizontal axis of Fig. 12 is the time step, and the vertical
axis is the size of the numerical gradient of the throughput.
Fig. 13 shows the positions of particles, shown in circles,
in the proposed framework at L = 5 at t = 0, 10, 15, 30.
The horizontal axis is the offered load at the first level, i.e.,
λ1, and the vertical axis is the totally-remained offered load,
i.e., λ − λ1. The background color shows T (λ). The value
was converged around the PSO time step t = 30 in Fig. 13,
and then the numerical gradient was small enough for zero in
Fig. 12.

C. Energy Minimization

This section shows the results of the energy minimization.
Fig. 14 shows the expected energy achieved by the proposed
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Fig. 11. The normalized throughput and the expectations of packet errors at each level in λ∗
u (left)

and λ∗ (right) in the proposed framework.
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Fig. 12. The gradient of the throughput over time
steps in PSO at L = 5.
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Fig. 13. The positions of particles at the PSO time steps t = 0, 10, 15, 30 at L = 5 in the proposed PSO-based throughput optimization framework.

and existing framework in the dBm domain with increasing
the number of power levels. The horizontal axis is the number
of power levels, i.e., L, and the vertical axis is the expected en-
ergy. Fig. 15 shows the normalized throughput with increasing
the number of power levels. The horizontal and vertical axes
are the same as Fig. 9. From Fig. 14, at L = 5, λ∗ achieved
27% (i.e., 1.3 dB) less energy than λ∗

u and the optimal λ
optimized by the existing one. Then, in Fig. 15, λ∗ provided
0.01% higher throughput than λ∗

u with an enough small
approximation error. Also, the proposed framework suppressed
the energy consumption more significantly at a larger L. At
L = 15, the optimal per-level offered load consumed 73%
(i.e., 5.6 dB) less energy than the existing optimal per-level
offered load and λ∗

u.

Fig. 16 shows the optimal per-level offered loads at L = 5
to analyze the above results more deeply. The left graph shows
λ optimized by the existing framework, and the right graph
shows λ∗

u and λ∗ by the proposed framework described in
Section VI. The horizontal and vertical axes are the same
as Fig. 10. Fig. 16 highlights that the existing framework
did not find per-level offered loads satisfying the condition,
and then, the optimal per-level offered load was the same
uniform per-level offered load. The proposed method dis-
covered an optimally non-uniform λ, as shown in Fig. 16.
The optimal per-level offered load presented a larger offered
load at a higher power level, i.e., a rising selection scheme.
The selection scheme has a small selection probability of the
first level enough to reduce the energy consumed in the first
level, as discussed in Section VI-D. From the characteristic
of GF-NOMA analyzed in Section VII-B, the throughput
was less sensitive for the offered load, and then, GF-NOMA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N(mber of Power Le)e s

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

E
x

p
e

c
te

d
 E

n
e

r
g

y
 (

d
B

m
)

Uniform Per-Le)e  Offered Load (Existing)

Optima  Per-Le)e  Offered Load (Existing)

Uniform Per-Le)e  Offered Load (Proposed)

Optima  Per-Le)e  Offered Load (Proposed)

Existing 
or 

Uniform
Optimal 

(Proposed)

27% down

73% down

Fig. 14. The expected energy in the optimized per-level offered load with
increasing the number of power levels.

suppressed the energy while guaranteeing similar throughput
to the optimally uniform per-level offered load. Fig. 17 shows
the throughput and the expectations of the number of packet
errors in λ optimized by each framework. The horizontal
and vertical axes are the same as Fig. 8. As a result of the
optimization, the optimal per-level offered load showed lower
throughput at the first level than the optimally uniform power
selection scheme.

As well as the throughput maximization, we confirmed the
optimization process in the energy minimization in Fig. 18
and Fig. 19. Fig. 18 shows the expected energy over time
steps in PSO at L = 5. The horizontal axis is the time
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Fig. 15. The normalized throughput in the optimized per-level offered load
with increasing the number of power levels.
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Fig. 16. The optimal per-level offered loads in the PSO-based optimization
framework with the existing model (left) and the proposed model (right) at
L = 5.

step, and the vertical axis is the expected energy, calculating
no numerical gradients of the value because of no smooth
function. Fig. 19 shows the position of each particle at time
step t = 0, 10, 15, 30 in the solution space defined by E(·) in
(60). The horizontal and vertical axes are the same as Fig. 13.
The color in the solution space shows E(·) in (60). Each
point shows the position of each particle, and its color shows
the throughput condition of (55c); specifically, the particles
satisfying the condition are painted red, and the others are
painted blue. The expected energy was converged around
t = 30 in Fig. 18, and then, the particles also converged to
the optimal per-level offered load at t = 30 in Fig. 19.

VIII. CONCLUSION

This paper proposed a scalable analytical framework for
the throughput of GF-NOMA in mMTC and analyzed the
achievable performance for the per-level offered load opti-
mized by the proposed analytical framework with our model.
The proposed model focuses on the power level design of GF-
NOMA to reflect higher-power-level errors more accurately,
even in the large-scale GF-NOMA systems, than the exist-
ing analytical models. Our analytical model enables scalably
optimizing the per-level offered load for typical optimization
problems of GF-NOMA: the throughput maximization and the
energy minimization. Our analytical results showed that the
proposed analytical model provided an approximation error
percentage of 0.4% for the exact throughput at L = 5, although

the existing one showed that of 25%. These results highlighted
that the proposed analytical model achieved enough accurate
throughput to optimally design new access protocols for large-
scale GF-NOMA systems. As one of the examples, our opti-
mization results emphasized that our proposed PSO-based op-
timization framework discovered a 27% more energy-efficient
per-level offered load at L = 5 than the optimally uniform per-
level offered load and the optimal per-level offered load on the
existing analytical model; then, the proposed one guarantees
higher throughput than the optimally uniform one.
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Fig. 17. The normalized throughput and the expectations of packet errors at each level in λ optimized
by the existing framework (left) and the proposed framework (right).
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