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A B S T R A C T

Non-Intrusive Thermal Load Monitoring (NITLM) tracks the sub-loads generated by each heat source (e.g.
occupants, equipment, solar radiation etc.) from the total thermal load and indirectly provides a room’s
thermal properties without additional sensors. Since sub-loads can improve the efficiency of HVAC systems,
NITLM is a very attractive technology for building energy management. NITLM has traditionally focused on
analyzing past and present sub-loads. However, by forecasting future sub-loads, HVAC systems will be able
to schedule operations that take into account the thermal properties of future rooms. This work focuses on
a new NITLM framework that forecasts future sub-loads based on the current and past total thermal loads.
In experiments, we selected occupant loads that are closely connected to HVAC systems and performed sub-
load forecasting using two types of approaches. One is a two-step approach that separately performs them
in turn. This approach use separately trained model for disaggregation and forecasting, this allow us to fine-
tuning the hyper-parameter for dedicate model. Moreover, the two-step approach can take into account the
different properties and difficulties of each inference, resulting in smaller errors in sub-load forecasting. The
other is an integrated approach. This approach combines load disaggregation and forecasting into a single
estimation process, eliminating error propagation and reducing overall error in sub-load forecasting. Moreover,
this approach utilizes the Adaptive Moment Estimation (Adam) algorithm for effective parameter optimization,
enabling complex training and improving the accuracy of sub-load forecasting. We conducted evaluations of
thermal load disaggregation and forecasting across a range of realistic building scenarios. The findings indicate
that the integrated approach predicts sub-loads with a MAE that is up to 34.9% lower than that of the two-step
approach. Additionally, it identifies occupants presence with an 18.5% higher F-score. This demonstrates its
enhanced suitability for accurately predicting sub-loads and estimating future occupancy schedules.
1. Introduction

A surge in urban development and the pursuit of enhanced daily
comfort are fueling a rise in energy consumption within buildings. Such
buildings currently constitute 40% of the total energy consumption
and 36% of greenhouse gas emissions in numerous EU countries [1].
From this perspective, creating efficient energy management systems
in buildings is imperative for advancing energy conservation objectives
and fostering a decarbonized society. Heating, Ventilation, and Air
Conditioning (HVAC) systems, which constitute 45% of a building’s
energy consumption [2], represent a primary focus for achieving energy
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efficiency without compromising comfort. Consequently, the develop-
ment of advanced HVAC systems holds significant importance in the
realm of building energy management.

The emergence of load monitoring is a promising and pivotal break-
through in curtailing energy consumption. A comprehensive under-
standing of load enables the occupants and the users of buildings to
assess their energy consumption statuses and refine their practices to
reduce energy usage [3]. Furthermore, monitoring sub-loads attributed
to individual devices within a room unveils a nuanced breakdown of
energy consumption, revealing equipment usage patterns and providing
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valuable insight into how a room is used. This approach also has the
potential to support energy management in buildings. Conventionally,
sub-loads have been monitored by sensors attached to devices. Such
an approach is called Intrusive Load Monitoring (ILM) [4]. Due to
the nature of sensing, users need to install sensors on each device
to properly measure such sub-loads; unfortunately, this requirement
is time-consuming and expensive because it increases the number of
devices. In addition, this approach also raises privacy issues.

Hart [5] responded to this challenge by proposing Non-Intrusive
Load Monitoring (NILM). NILM measures the overall power consump-
tion from smart meters installed in buildings and disaggregates the total
power consumption into sub-loads by empirically analyzing an entire
building’s power consumption. NILM is categorized as a low-cost, sub-
load monitoring method since it does not require the installation of
sensors, unlike ILM. However, it is crucial to acknowledge that NILM
exclusively monitors the sub-loads generated by electronic equipment.
As a result, the insights into room usage provided by NILM are confined
to electronic devices. It less effectively monitors elements that do
not rely on electricity [6]. HVAC operations are intricately linked to
factors independent of electricity usage, such as solar radiation and the
presence and number of people. Ignoring these aspects is impractical
for HVAC systems.

Non-Intrusive Thermal Load Monitoring (NITLM) was proposed by
Ricardo [7] as an NILM extension that considers thermal loads. Unlike
NILM, NITLM monitors the overall thermal load (instead of the power
one) and decomposes it into multiple thermal sub-loads. Exploiting the
thermal nature, NITLM can obtain thermal sub-loads including but not
limited to solar radiation, air thermal diffusion, and human thermal
radiation. The accurate analysis of human thermal radiation offers such
optimal control HVAC systems as on/off and temperature setting [8,9]
and determines the priority of power allocation under power usage
restrictions [10].

Unfortunately, existing works are hampered by a limitation where
NITLM can obtain only past and present thermal sub-loads, meaning
that obtaining the future thermal sub-loads of occupancy is impossible
for estimating future occupancy schedules. To optimize HVAC opera-
tions in line with anticipated occupancy schedules, we have expanded
the previous work [11] in such a way that the NILM concept to include
not only the disaggregation of building thermal loads but also the fore-
casting of variations in sub-thermal loads. This advancement enables
us to predict occupancy schedules by analyzing future thermal loads
of occupants. This novel NITLM framework is named Non-Intrusive
Thermal Load Disaggregation and Forecasting (NITLDF). However, our
previous work forecasted sub-loads are for only a simple building on
a simulator without providing a detailed explanation of the NITLDF
mechanism. In addition, since the building conditions (e.g. weather,
number of occupants, and HVAC operation schedules) undoubtedly
affect the accuracy of sub-load forecasting, the effectiveness of the
NITLDF approach needs to be evaluated in multiple buildings based
on realistic data.

Building on the previous work [11], this work continues its focus
on NITLDF and provides a more detailed description of the NITLDF ap-
proach and a performance evaluation along more realistic and multiple
scenarios. The NITLDF framework consists of two types of approaches,
namely two-step and integrated approach. By treating thermal load
disaggregation and forecasting as separate inferences, the two-step
approach can take into account the different properties and difficulties
of each inference, resulting in smaller errors in sub-load forecasting. On
the other hand, the integrated approach combines load disaggregation
and forecasting into a single estimation process, eliminating error
propagation and reducing overall error in sub-load forecasting. The
following are its two main contributions.

• The previous work [11] did not describe the details of NITLDF.
In contrast, this paper added comprehensive descriptions of the
2

mechanism in our proposals.
• NITLDF was performed on five actual buildings, each of which
was evaluated in multiple, more realistic scenarios based on
actually observed HVAC operating schedules and weather data.
This strategy allows for a more general evaluation of the NITLDF
approach.

The rest of this paper is organized as follows. Section 2 describes
recent work on load disaggregation and load forecasting. Section 3
overviews our NITLDF approach. Section 4 describes our experimental
setup and results and compares several NITLDF approaches. Section 5
concludes this paper.

2. Related works

2.1. Load disaggregation

A number of studies have monitored indoor elements at low cost
to improve the efficiency of energy management at the building and
room levels. NILM breaks down the power consumption of each ap-
pliance from the total power consumption and determines whether
the appliance is on or off using combinatorial optimization and edge
extraction [5]. Many NILM methods have been proposed, such as
Hidden Markov Models (HMMs) [12–14] and Graph Signal Process-
ing (GSP) [15,16]. In recent years, securing computing resources has
been simplified, and many approaches using machine learning have
appeared. Among them, the NILM algorithm that incorporates Neural
Network (NN) is attracting attention. Convolutional Neural Network
(CNN) [17–20], Long Short-Term Memory (LSTM) [21–24], and Gated
Recurrent Unit (GRU) [22,23] are typical examples of NN. Yadav
et al. [22] incorporated such Recurrent Neural Networks (RNNs) as
GRU and LSTM into a learning framework called a sequence to se-
quence. Load disaggregation using these techniques successfully iden-
tified the status of four appliances at a dairy farm with high ac-
curacy [22]. These NN-based load disaggregation methods capture
nonlinear time-series trends and contribute to highly accurate load dis-
aggregation. On the other hand, since NILM is used for power consump-
tion, only devices that consume electricity can be monitored. Thermal
sub-loads closely related to HVAC systems are not disaggregated and
monitored.

Ricardo et al. [7] shed light on NILM for monitoring thermal loads.
Ricardo uses a Building Energy Simulation (BES) model to recreate
buildings and monitor thermal loads. Xiao et al. [6,25] develop a ma-
chine learning based NITLM that monitors sub-loads by disaggregating
the total thermal load. By feeding time and weather data into a Random
Forest (RF) model, they achieved highly accurate extraction of four sub-
loads. Okazawa et al. [26] also proposed a NITLM model using RNN.
Their model used GRU and LSTM and resolved the load of occupants
with higher accuracy than random forest. All of these load disaggre-
gations [6,25,26] target current and past loads and do not focus on
inference to estimate future sub-loads. Estimating future sub-loads has
finally begun to receive attention in our previous work [11], where sub-
loads are forecasted by an RNN-based inference approach. However,
since the evaluation was conducted in a single building, experiments
in more diverse and realistic buildings are needed to more generally
evaluate the approach’s effectiveness. The previous work [11], which
is still under development, is extended by this work.

2.2. Load forecasting

Load forecasting supports the operation scheduling of HVAC sys-
tems, and various algorithms have been proposed. Such linear models
as linear regression (LR) [27] and support vector machines (SVMs) [28,
29] initially garnered attention. These models, which can learn with a
relatively small amount of data, have achieved thermal load forecast-

ing by combining such weather data as outside temperature [27,28]
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Fig. 1. Thermal load and overview of proposed framework.
and humidity [28]. However, their use struggles to cope with non-
linear and complex data. Although nonlinear data can be dealt with
by incorporating sensitivity analysis [30], evaluations under various
scenarios are required, and issues remain. On the other hand, NN-
based forecasting methods are attracting attention due to their excellent
analysis of complex and nonlinear data. Since NN can uncover rules
that are difficult to clarify with linear models, it achieves thermal load
forecasting with high accuracy, [31–34]. Among the NN schemes, RNN
is one of the most suitable models for forecasting thermal load because
it incorporates the time series of data. In fact, Stefan et al. [35] achieved
highly accurate forecasting by combining LSTM, one of the most fa-
mous RNN models, with feature selection using correlation analysis.
However, these works [31–34] have only focused on forecasting the
total thermal load without disaggregating it into sub-loads, some of
which, including forecasted occupant load, can provide information
that assists HVAC scheduling. Therefore, for HVAC scheduling, sub-
load forecasting that has both load disaggregation and load forecasting
aspects is also desirable.

3. NITLDF and approaches

In this section, we introduce NITLDF, a novel NITLM framework,
and explain two NITLDF approaches. One is a two-step approach,
which has a pair of inference steps that combine a technique of the
conventional NITLM and a forecasting model that predicts the thermal
load for each sub-load. The other is a predicting approach: that is, a
one-shot, integrated forecasting model. Both approaches use RNN for
inferences.

3.1. NITLDF framework

Fig. 1 shows the flow of sub-load monitoring and forecasting. For
simplicity, we assume five heat sources in a single room: lighting, solar
radiation, outdoor air, equipment, and occupants. We cannot measure
each thermal sub-load. We also assume that HVAC cools a room with a
corresponding cooling load, whose measurement is based on the total
thermal loads from the heat sources. Thus, the load from HVAC is
assumed to be always equivalent to the loads from the five heat sources.

Traditionally, NITLM obtains a measured thermal load from HVAC
and disaggregates it to investigate a room’s thermal properties. Ther-
mal load forecasting provides insight into thermal storage and avoids
intensive HVAC operation. However, NITLM cannot take into account
the future thermal properties of a room, and thermal load forecasting
cannot reveal the causes of future thermal load peaks. NITLDF solves
3

these problems by combining NITLM and thermal load forecasting into
a more effective HVAC system operation. Two approaches are devised
for NITLDF. An integrated approach simultaneously infers thermal load
disaggregation and forecasting. The two-step approach infers them
separately with multiple models. Each approach is given a thermal load,
temperature, humidity, and the time and calendar information for a
temporal period. The weather and time information are related to the
thermal load and support the analysis. In fact, many studies dealing
with thermal load forecasting rely on weather data, such as tempera-
ture [35–37]. In addition, several works on NITLM have reported that
time [6,26] and calendar [11] information are effective in addition
to weather data. Our proposed NITLDF represents a unique approach
by integrating thermal load disaggregation (NITLM) and forecasting in
a unified framework. This integration allows for leveraging synergies
between NILM and forecasting, potentially enhancing the accuracy and
efficiency of both tasks. We believe this novel contribution fills a gap in
the existing literature, where these tasks are often treated separately.

3.2. A two-step forecasting approach

In the previous section, we introduced the NITLDF task, which
advances the NILM concept by extending it to the disaggregation of
building thermal loads, not just decomposing energy usage but also
forecasting changes in thermal loads. Moreover, the work’s principal
aim is to forecast future occupancy schedules by projecting the thermal
loads of anticipated future occupants. This requires breaking down the
disaggregation process and targeting the forecasting at specific aspects,
in line with the primary objective of this work. In other words, we ac-
knowledge the traditional approach’s merit in dividing the NITLDF task
into two distinct sub-tasks: NILM for disaggregation and forecasting.
Load disaggregation and forecasting are different types of inferences,
and the optimal parameters for each inference model may be different.
The two-step approach treats these two inferences separately, trains the
model separately, and optimizes their parameters. The two inference
models may forecast sub-loads with small errors if the difficulty and
the properties of these inferences are different.

This approach is further subdivided into two approaches based on
the order of the inferences. One is the disaggregation-to-forecasting
(D2F) approach (Fig. 2(a)). The operation pipeline of the D2F approach
is outlined as follows:

1. Utilize temperature, humidity, time, calendar, and thermal model
data as inputs for the disaggregation model.

2. The disaggregation model divides the total thermal load into
various sub-loads.
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Fig. 2. Proposed approaches.
3. Employ the disaggregated sub-load, together with weather and
time information, as inputs for an independent forecasting model
to predict future sub-loads.

he other is the forecasting-to-disaggregation (F2D) approach
Fig. 2(b)), which forecasts the thermal loads and disaggregates them
nto sub-loads. This approach forecast the sub-load in an opposite
ay of D2F approach. The operation pipeline of the D2F approach is
utlined as follows:

1. Utilize temperature, humidity, time, calendar, and thermal model
data as inputs for the forecasting model.

2. The forecasting model utilizes this information to predict the
future total thermal load.

3. The disaggregation model then separates the predicted total
thermal load into distinct sub-loads.

ince the forecasting target changes depending on the inference or-
er, the error may greatly fluctuate. The D2F approach forecasts the
isaggregated sub-load; the F2D approach forecasts the total thermal
oad. Differences in error between them reflect the characteristics of
he sub-loads and the room’s total thermal load.

.3. An integrated forecasting approach

In the above two-step approach, each disaggregation and forecasting
tep has a dedicated inference model; in the integrated approach,
nly one inference model is used. Although load disaggregation and
oad forecasting are different inferences, an integrated approach, which
imultaneously performs both types of inference, is unique to NITLDF
nd includes both load disaggregation and forecasting in one esti-
ation. Not surprisingly, it is not addressed in the numerous load
isaggregation and forecasting works in Section 2. Fig. 2(c) shows the
ntegrated approach. Similar to the two-step approach, the inference
odel is given the total thermal load, the temperature, humidity, time,

nd calendar information. However, disaggregation and forecasting
re performed simultaneously within one inference process, and fu-
ure sub-loads are output from the model. In the training process,
arameters are optimized based on the Adaptive Moment Estimation
Adam) algorithm [38]. The integrated approach requires simultaneous
nalysis of the changes in the time direction and the proportion of sub-
oads in the total load at a certain time, and so the training difficulty
evel surpasses the two-step approach. The Adam algorithm enables
uch complex training by performing effective parameter optimization
hat incorporates momentum and RMSProp. Furthermore, due to its
tructure, since inference is performed only once, no error propagation
ccurs. This idea suggests that the integrated approach can forecast
4

ub-loads with less error than the two-step approach.
Table 1
Detailed information on building models.
Building A Y N O R

Location Osaka Tokyo

Stories 6 6 9 9 9

Target floor 2 3 8 3 4

Square [m2] 200 430 320 600 120

Type Office

4. Experiments

In this section, we compared the two-step and integrated approaches
(described above) in five buildings. The former approach represents
both D2F and F2D. To evaluate the performance of these two ap-
proaches, we select two well-known machine learning structures,
namely, LSTM and GRU, as the inference model. In this paper, we focus
on the occupant load that is closely involved with the HVAC system. We
compared these approaches under different machine learning structures
based on the error between the forecasted values and the ground
truth and the accuracy of determining the presence or the absence of
occupants in the room using F-scores.

4.1. Setup

This section describes the details of the dataset, the parameter opti-
mization, and the experimental environment. Fig. 3 shows an overview
of our experiment. Since there are no publically available datasets
for thermal loads, we generated one with EnergyPlus [39], a physics
simulator. The weather, heat source and HVAC schedules, and the
building’s model are given to EnergyPlus to calculate the thermal loads.

Fig. 4 shows the room layout of the building model used in the
experiment. These are actual buildings in Osaka and Tokyo. Indoor
units are represented by symbols from A1 to H3. The same letter is used
for indoor units that are connected to the same outdoor unit (e.g., A1-
A10 are connected to the same outdoor unit). In EnergyPlus, since only
one indoor unit can be set in a room, we performed a simulation by
dividing one room into multiple zones using virtual walls that have the
same properties as air.

Table 1 shows detailed information about the buildings. Buildings
A and Y are located in Osaka; the others are in Tokyo. Therefore,
these building models are given weather data that are comprised of
the observed values for each region in their thermal load calculation.
Although each building has multiple floors, the experiment targets just
one floor. Furthermore, the area of each floor is different.
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Fig. 3. Overview of data generation and NITLDF.
Fig. 4. Room layout of building model given to EnergyPlus.
Table 2 shows building A’s basic schedule for such indoor heat
ources as occupants, lighting, and equipment. The maximum number
f occupants in it is 0.1 person∕m2, and the maximum thermal load

from lighting and equipment is 12 W∕m2. Each heat source is scheduled
at a percentage of its maximum value for each hour. The settings for
the heat source in EnergyPlus are based the office section of japan
energy conservation standards for non-residential buildings [40]. It
should be noted that, to simplify the model, we assigned the same heat
source value to both lighting and equipment. However, in reality, these
values could vary significantly due to the diversity of luminaries, device
typologies, and equipment types. Each schedule has four patterns,
depending on HVAC on/off, weekdays, and holidays. In addition, the
schedules of the occupants in the room are given a maximum of 20%
noise based on random numbers that follow a uniform distribution. We
actually measured the HVAC schedule in each building to generate a
dataset from June 1 to September 30. The data resolution is one hour.
5

More detail information of heat sources schedules in building Y, N, O,
R are listed in Appendix.

The calculated thermal load is given to each NITLDF approach along
with the weather and calendar information. In the training process,
each inference model is given 672 points (four weeks) as training data,
and 168 points (one week) as validation data. The parameters of the
RNN, which makes the inferences in each approach, are optimized in
the training phase using the Treestructured Parzen Estimator (TPE)
algorithm [41], which is a Bayesian optimization method. In the ex-
periment, we optimized the number of neurons, the batch size, the
max epochs, and the input length through 60 trials. In the evaluation
process, 168 points (one week) were used as test data. We evaluated
the accuracy by comparing the occupant sub-loads forecasted by the
two-step or integrated approaches with the sub-load calculated by
EnergyPlus. The data intervals used for training, validation, and testing
can slide in 168-point increments, and the sub-load is forecasted until
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Table 2
Heat source schedules in building A.

Heat source Value

Weekday Holiday

Occupants Maximum 0.1 person/m2

Schedule 00:00–06:00 (0%) 00:00–24:00 (16%)
(HVAC ON) 06:00–08:00 (16%)

08:00–12:00 (80%)
12:00–13:00 (48%)
13:00–17:00 (80%)
17:00–19:00 (40%)
19:00–20:00 (24%)
20:00–21:00 (16%)
21:00–24:00 (0%)

Schedule 00:00–24:00 (0%) 00:00–24:00 (0%)
(HVAC OFF)

Lighting Maximum 12 W/m2

Schedule 00:00–06:00 (0%) 00:00–24:00 (50%)
(HVAC ON) 06:00–08:00 (50%)

08:00–12:00 (100%)
12:00–13:00 (50%)
13:00–19:00 (100%)
19:00–21:00 (80%)
21:00–24:00 (0%)

Schedule 00:00–24:00 (0%) 00:00–24:00 (0%)
(HVAC OFF)

Equipment Maximum 12 W/m2

Schedule 00:00–06:00 (25%) 00:00–24:00 (25%)
(HVAC ON) 06:00–08:00 (25%)

08:00–12:00 (100%)
12:00–13:00 (80%)
13:00–19:00 (100%)
19:00–21:00 (50%)
21:00–24:00 (25%)

Schedule 00:00–24:00 (25%) 00:00–24:00 (25%)
(HVAC OFF)

September 30. The experiments were performed using TensorFlow
2.5.0 [42] on a GeForce RTX 3070 with 8 GB of VRAM and CUDA
11.2 [43].

4.2. Metrics

Each NITLDF approach was evaluated with three error metrics and
one accuracy metric. Each NITLDF approach was evaluated on three
error metrics and one accuracy metric. MAE (1), RMSE (2), both of
which are typical indicators of time-series analysis [44], and MRE
(3) which is a relative indicator, were used as error indicators. These
metrics, which have been previously used by NITLM works [11,25,26],
are calculated as follows. 𝑛 is the amount of evaluation data. 𝑦𝑖 is the
forecasted value, and 𝑦𝑖 is the ground truth. The simulated load data is
used as the ground truth:

𝑀𝐴𝐸 = 1
𝑛

𝑛
∑

𝑘=1
|𝑦𝑖 − 𝑦𝑖| (1)

𝑅𝑀𝑆𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

𝑘=1
(𝑦𝑖 − 𝑦𝑖)2 (2)

𝑀𝑅𝐸 = 100 ⋅
∑𝑛

𝑘=1 |𝑦𝑖 − 𝑦𝑖|
∑𝑛

𝑘=1 |𝑦𝑖|
(3)

An F-score is used as an accuracy indicator. It is one of the most popular
indicators for measuring the accuracy of binary classification and is
often used in NILM works [22,45]. F-scores are calculated by Eq. (6)
using 𝑅𝑒𝑐𝑎𝑙𝑙 and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 given by Eqs. (4) and (5). 𝑇𝑃 represents
the proportion of the estimated positives that are actually positive, and
𝐹𝑃 represents the proportion of those that are actually negative. 𝐹𝑁
6

represents the proportion of the estimated negative results that were
actually positive:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(4)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(5)

𝐹 -𝑠𝑐𝑜𝑟𝑒 = 2 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙 ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

(6)

In these experiments, if an occupant load exists, it is defined by the
presence of occupants and labeled as positive. On the other hand, when
the occupant load is 0, it is defined as the absence of occupants and is
labeled as negative.

4.3. Results

The NITLDF results for the occupant loads are shown in Table 3
and present the MAE, RMSE, MRE, and F-scores for the D2F, F2D, and
integrated approaches under different machine learning structures. The
best value among the three approaches for each metric and building
is highlighted. The findings indicate that for both MAE and MRE, the
LSTM surpasses the GRU by margins of up to 21.9% and 21.8%, with
average improvements of 5.0% and 4.1%, respectively. However, in
terms of RMSE and F score, the superiority of the LSTM model over
the GRU model is narrower, peaking at 15.3% and 10.0%, respectively.
Furthermore, the average performance improvements do not show
significant differences. Therefore, this experiment suggests that LSTM
exhibits marginally superior forecasting capabilities compared to GRU.

Focusing on the approaches, the integrated approach is the best
among all the metrics and outperformed the two-step approaches,
including the D2F and F2D approaches. The difference is particularly
remarkable for building N, where the integrated approach shows a
maximum of a 34.9% lower MAE and an 18.5% higher F-score than
the two-step approach in LSTM structures. Therefore, in general, an
integrated model is clearly more suitable for forecasting sub-loads to
detect the number of occupants or their absence. However, for some
metrics of buildings A and Y, the difference in error between D2F and
the integrated approach was small, and for building R, the superiority
of D2F and the integrated approach was reversed. This result suggests
that the integrated approach is unsuitable for some buildings.

To investigate the apparent superiority reversal in building R, Fig. 5
shows the total thermal load and occupant loads of buildings N, O, and
R. Simulated by EnergyPlus, the total thermal load is given to the infer-
ence models as input data, and the occupant loads are the ground truth.
For each building, the daily and hourly changes in the total thermal
load are given in the red heat map. On the other hand, the occupant
loads are given by a similar blue heat map. The vertical axis shows
the dates from June 1 to September 30, and the horizontal axis shows
the times. The redder the color is, the greater the total thermal load,
and the bluer the color is, the greater the occupant loads. These results
show the operating hours of each building’s HVAC systems and the
hours when occupants are present. These three buildings are all located
in Tokyo, so the outdoor temperature and humidity given for the sub-
load forecasting are identical. Naturally, identical calendar information
is also given. Therefore, we believe that the total thermal load greatly
impacted the forecasting results of these three buildings. Looking at
Fig. 5(c), building R’s total thermal load often occurred all night long in
late August, and the occupant load also occurred all night long. No such
trend change is seen before late August or in buildings 𝑁 and O. This
change in the load trend may have complicated forecasting the sub-
loads for building R. In addition, this may have particularly affected
the integrated approach, where training the inference model is more
difficult than the two-step approach, perhaps reversing the superiority
of D2F and the integrated approach in building R. If the load pattern
switches suddenly, as in building R, the integrated approach may lose
its advantage over the two-step approach due to the difficulty of the
training model. This suggests a certain trade-off between increasing the
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Table 3
Performance of NITLDF approaches.
Building Approach LSTM GRU

MAE [W] RMSE [W] MRE [%] F-score [%] MAE [W] RMSE [W] MRE [%] F-score [%]

D2F 129.2 265.1 22.4 67.5 142.2 305.8 24.7 66.1
A F2D 151.1 313.0 26.2 69.7 151.9 313.7 26.4 71.1

Integrated 122.1 279.0 21.2 71.3 134.3 289.7 23.3 74.9

D2F 292.8 551.5 25.1 80.3 273.0 475.7 23.4 75.3
Y F2D 332.3 619.6 28.5 75.5 320.5 550.7 27.5 75.5

Integrated 255.8 494.3 22.0 77.2 267.8 509.0 23.0 77.4

D2F 106.8 281.3 15.6 66.9 120.4 296.8 17.6 60.9
N F2D 133.3 305.4 19.5 63.7 123.4 280.6 18.1 70.1

Integrated 86.8 255.7 12.7 75.5 91.0 248.7 13.3 67.8

D2F 283.4 661.7 19.3 71.6 345.4 717.7 23.5 73.7
O F2D 334.7 777.1 22.8 73.3 346.9 732.7 23.6 69.7

Integrated 233.2 533.9 15.9 78.2 236.2 524.3 16.1 79.0

D2F 137.2 219.7 33.2 74.8 146.2 223.6 35.4 74.1
R F2D 149.6 229.5 36.2 72.6 146.9 218.1 35.5 74.3

Integrated 147.9 249.9 35.8 74.2 155.1 258.9 37.5 77.0
Fig. 5. Total thermal load and occupants load of buildings N, O, and R.
complexity for higher-quality forecasting and the ability to respond to
rapid load pattern switching.

On the other hand, the F2D approach shows large errors in almost
all the buildings and indicators. Even when compared with the D2F
approach, which is identical as the two-step approach, there is a
difference in the error. The discrepancy between the D2F and F2D
approaches is the order of the inference, and the order in which
forecasting is performed after extracting the sub-loads may be more
suitable for forecasting the load of the occupants.

To confirm the results of the occupant-load forecasting, the results
for one week in August for building A are shown in Fig. 6. The vertical
axis is the occupant load, and the horizontal axis is the date. The
forecasting results by Integrated, D2F, and F2D are shown by red,
green, and blue lines. The ground truth calculated by the simulator is
7

shown by a black dotted line. Focusing on the integrated approach, it
successfully captured the large decrease in the load around noon on
weekdays. On the other hand, the two-step approaches of D2F and F2D
successfully captured general waveforms, although it seems difficult
to capture more detailed fluctuations over several hours. In Fig. 6,
the D2F and F2D waveforms change almost horizontally after the load
rises, suggesting that detailed waveform was not captured. These results
support the superior value of the integrated approach over the two-step
approach (Table 3). In addition, the thermal load increases earlier in
the F2D approach than in the other approaches. Such several-hour error
might have significantly increased the error of the F2D approach.

To illustrate the magnitude of the error in the two-step approach,
we look at the results of the first step of each approach. Fig. 7 shows the
results of the first step in the D2F approach: that is, the disaggregation
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Fig. 6. NITLDF results using LSTM for building A.
step. The displayed results are the disaggregation results for building
A for one week in August, a time period which is identical as in
Fig. 6. The vertical axis represents the occupant load, and the horizontal
axis represents the date. The disaggregated occupant load is shown in
red; the ground truth calculated by the simulator is shown in black.
Although the D2F approach failed to capture detailed waveforms in
Fig. 7, it successfully captured the load decrease around noon in the
disaggregation step, a result that suggests that the forecasting step may
have caused the increase in the error in the D2F approach.

Fig. 8 shows the results of the first step in the F2D approach: that
is, the forecasting step. Similar to Figs. 6 and 7, one week in August at
building A is shown. The vertical axis represents the total thermal load,
and the horizontal axis represents the date. The forecasted total thermal
load is shown in red, and the ground truth calculated by the simulator
is shown in black. Focusing on the time when the load increases in
the early morning, F2D forecasts that the load will occur earlier than
the ground truth, albeit just slightly. Since the total thermal load is
much larger than the occupant load, the small error in Fig. 8 seems
to have been a major factor in increasing the error during the F2D
disaggregation step. Also in both Figs. 7 and 8, a load was incorrectly
estimated on August 26, a day without an occupant load: a holiday.
This error propagates and affects the final occupant-load forecasting
result in Fig. 6.

This experiment forecasted the occupant loads in multiple realistic
buildings. The integrated approach usually showed a better sub-load
forecasting performance for most buildings compared to the two-step
approaches, such as D2F and F2D. On the other hand, in buildings
that experience rapid changes in load patterns, such as building R,
the integrated approach’s advantage is squandered. Both two-step ap-
proaches remain problematic, mainly in the forecasting step. Although
D2F captured the load fluctuations in detail in the disaggregation step,
it failed to capture them in the forecasting step. F2D forecasted the
total thermal load in the forecasting step. Since the total thermal load
greatly exceeds the occupant load, slight forecasting error created a
very large error propagation. In this experiment, for a more basic and
fair comparison between the integrated and two-step approaches, we
unified the inference models for each approach to the RNN model,
which has the highest accuracy in the current NITLM work. How-
ever, more advanced deep learning models can be applied, such as
transformer and sequence to sequence models. Perhaps errors can be
reduced by frequency analysis technology, which is used in many time-
series forecasting techniques. A more comprehensive evaluation using
these techniques is desired.
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Fig. 7. Results of disaggregation step with D2F using LSTM for building A.

Fig. 8. Results of forecasting step with F2D using LSTM for building A.

5. Conclusions

In this study, we focused on a novel NITLM framework (NITLDF)
and forecasted the occupant loads in five realistic buildings based on
actual measurements. In our experiments, the occupant loads were fore-
casted by a two-step approach that infers thermal load disaggregation
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Table A.4
Heat source schedules in building Y.

Heat source Value

Weekday Holiday

Occupants Maximum 0.1 person/m2

Schedule 00:00–07:00 (0%) 00:00–24:00 (16%)
(HVAC ON) 07:00–08:00 (16%)

08:00–12:00 (80%)
12:00–13:00 (48%)
13:00–18:00 (80%)
18:00–19:00 (40%)
19:00–20:00 (24%)
20:00–21:00 (16%)
21:00–24:00 (0%)

Schedule 00:00–24:00 (0%) 00:00–24:00 (0%)
(HVAC OFF)

Lighting Maximum 12 W/m2

Schedule 00:00–06:00 (0%) 00:00–24:00 (50%)
(HVAC ON) 06:00–07:00 (50%)

07:00–12:00 (100%)
12:00–13:00 (50%)
13:00–20:00 (100%)
20:00–21:00 (80%)
21:00–23:00 (50%)
23:00–24:00 (0%)

Schedule 00:00–24:00 (0%) 00:00–24:00 (0%)
(HVAC OFF)

Equipment Maximum 12 W/m2

Schedule 00:00–08:00 (25%) 00:00–24:00 (25%)
(HVAC ON) 08:00–12:00 (100%)

12:00–13:00 (80%)
13:00–21:00 (100%)
21:00–23:00 (50%)
23:00–24:00 (25%)

Schedule 00:00–24:00 (25%) 00:00–24:00 (25%)
(HVAC OFF)

and forecasting in turn, and an integrated approach that simultane-
ously performed them. We examined the performance of these two
approach under LSTM and GRU structure, the LSTM outperformed GRU
in terms of MAE and MRE for 5.0% and 4.1% in average. Moreover,
the integrated approach generally showed higher sub-load forecasting
performance than the two-step approach (D2F and F2D), with up to
34.9% lower MAE and 18.5% higher F-score. However, in buildings
that involve sudden switches in load patterns, the performance deterio-
rated significantly. In the two-step approach that sequentially performs
disaggregation and forecasting, the forecasting step’s performance is an
issue. Therefore, more advanced models are available for time-series
forecasting, such as sequence to sequence models and transformer
models. In addition, frequency analysis can be introduced as a means
of understanding the characteristics of load waveforms. One of our
future works will incorporate these technologies and improve NITLDF
approaches.

CRediT authorship contribution statement

Naoya Kaneko: Writing – original draft, Software, Methodology,
Conceptualization, Data curation, Formal analysis. Kazuki Okazawa:
Writing – review & editing, Data curation. Dafang Zhao: Writing –
review & editing, Project administration. Hiroki Nishikawa: Writing
– review & editing, Project administration. Ittetsu Taniguchi: Project
administration, Supervision, Writing – review & editing. Hiroyuki
Murayama: Data curation, Resources, Writing – review & editing.
Yoshinori Yura: Data curation, Resources, Writing – review & editing.
Masakazu Okamoto: Data curation, Resources, Writing – review &
editing. Francky Catthoor: Writing – review & editing. Takao Onoye:
9

Supervision.
Table A.5
Heat source schedules in building N.

Heat source Value

Weekday Holiday

Occupants Maximum 0.1 person/m2

Schedule 00:00–07:00 (0%) 00:00–24:00 (16%)
(HVAC ON) 07:00–08:00 (16%)

08:00–12:00 (80%)
12:00–13:00 (48%)
13:00–18:00 (80%)
18:00–19:00 (40%)
19:00–20:00 (24%)
20:00–22:00 (16%)
22:00–24:00 (0%)

Schedule 00:00–24:00 (0%) 00:00–24:00 (0%)
(HVAC OFF)

Lighting Maximum 12 W/m2

Schedule 00:00–07:00 (0%) 00:00–24:00 (50%)
(HVAC ON) 07:00–08:00 (50%)

08:00–12:00 (100%)
12:00–13:00 (50%)
13:00–20:00 (100%)
20:00–21:00 (80%)
21:00–22:00 (50%)
22:00–24:00 (0%)

Schedule 00:00–24:00 (0%) 00:00–24:00 (0%)
(HVAC OFF)

Equipment Maximum 12 W/m2

Schedule 00:00–08:00 (25%) 00:00–24:00 (25%)
(HVAC ON) 08:00–12:00 (100%)

12:00–13:00 (80%)
13:00–19:00 (100%)
19:00–20:00 (50%)
20:00–24:00 (25%)

Schedule 00:00–24:00 (25%) 00:00–24:00 (25%)
(HVAC OFF)
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Appendix

The appendix describes the weather in Osaka and Tokyo, which was
not explained in detail due to page limitations, as well as the HVAC and
occupant schedules for target buildings in Osaka.

Figs. A.1 and A.2 show the outdoor temperatures in Osaka and
Tokyo from June 1 to September 30 in 2018. The vertical axis repre-
sents the date, and the horizontal axis represents the time. The redder
the color is, the higher the outdoor temperature, and the bluer the color
is, the lower the outdoor temperature. In both regions, there are days
when the outdoor daytime temperature exceeds 30 °C from early July
to late August. On rainy and cloudy days, the outdoor temperature
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Table A.6
Heat source schedules in building O.

Heat source Value

Weekday Holiday

Occupants Maximum 0.1 person/m2

Schedule 00:00–06:00 (0%) 00:00–24:00 (16%)
(HVAC ON) 06:00–08:00 (16%)

08:00–12:00 (80%)
12:00–13:00 (48%)
13:00–18:00 (80%)
18:00–19:00 (40%)
19:00–20:00 (24%)
20:00–23:00 (16%)
23:00–24:00 (0%)

Schedule 00:00–24:00 (0%) 00:00–24:00 (0%)
(HVAC OFF)

Lighting Maximum 12 W/m2

Schedule 00:00–06:00 (0%) 00:00–24:00 (50%)
(HVAC ON) 06:00–08:00 (50%)

08:00–12:00 (100%)
12:00–13:00 (50%)
13:00–20:00 (100%)
20:00–21:00 (80%)
21:00–23:00 (50%)
23:00–24:00 (0%)

Schedule 00:00–24:00 (0%) 00:00–24:00 (0%)
(HVAC OFF)

Equipment Maximum 12 W/m2

Schedule 00:00–06:00 (25%) 00:00–24:00 (25%)
(HVAC ON) 08:00–12:00 (100%)

12:00–13:00 (80%)
13:00–19:00 (100%)
19:00–21:00 (50%)
21:00–24:00 (25%)

Schedule 00:00–24:00 (25%) 00:00–24:00 (25%)
(HVAC OFF)

Fig. A.1. Outdoor temperature in Osaka.

is low throughout the day. Looking at the outdoor temperatures in
Osaka (Fig. A.1), they rise significantly during the day and drop in
the evening. On the other hand, in Tokyo (Fig. A.2), the outdoor
temperature is low throughout the day, and there are many rainy
and cloudy days, especially in June and September, where there is
no noticeable increase. However, since the temperature and humidity
are given for the integrated and two-step approaches, these are taken
into account in the inference model. The difference in weather between
Osaka and Tokyo does not have a large effect on the superiority of the
NITLDF approaches.

Fig. A.3 shows the total thermal and occupant loads of buildings
A and Y in Osaka. Similar to Fig. 5 in Section 4.3, the vertical axis is
10
Table A.7
Heat source schedules in building R.

Heat source Value

Weekday Holiday

Occupants Maximum 0.1 person/m2

Schedule 00:00–07:00 (0%) 00:00–24:00 (16%)
(HVAC ON) 07:00–08:00 (16%)

08:00–12:00 (80%)
12:00–13:00 (48%)
13:00–18:00 (80%)
18:00–19:00 (40%)
19:00–20:00 (24%)
20:00–24:00 (0%)

Schedule 00:00–24:00 (0%) 00:00–24:00 (0%)
(HVAC OFF)

Lighting Maximum 12 W/m2

Schedule 00:00–07:00 (0%) 00:00–24:00 (50%)
(HVAC ON) 07:00–08:00 (50%)

08:00–12:00 (100%)
12:00–13:00 (50%)
13:00–20:00 (100%)
20:00–24:00 (%)

Schedule 00:00–24:00 (%) 00:00–24:00 (0%)
(HVAC OFF)

Equipment Maximum 12 W/m2

Schedule 00:00–08:00 (25%) 00:00–24:00 (25%)
(HVAC ON) 08:00–12:00 (100%)

12:00–13:00 (80%)
13:00–19:00 (100%)
19:00–20:00 (50%)
20:00–24:00 (25%)

Schedule 00:00–24:00 (25%) 00:00–24:00 (25%)
(HVAC OFF)

Fig. A.2. Outdoor temperature in Tokyo.

the date, and the horizontal axis is the time. The total thermal load is
shown as a red heat map, and the occupant load is shown as a blue
heat map. In building A, HVAC basically operates between 7:00 am
and 11:00 pm, and the occupants are also present during these hours.
There are almost no days of exceptional behavior. In building Y, the
HVAC operates from 7:00 am to 1:00 am, and people are in the room.
However, building Y exhibits exceptional behavior in some periods,
such as around June 22 and September 14. Although this behavior
may have increased the error of the NITDF approach, the integrated
approach still shows a better sub-load forecasting performance than the
two-step approach.

Tables A.4–A.7 describe the heat source schedules in building Y, O,
N, R, respectively.
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Fig. A.3. Total thermal load and occupant load of buildings A and Y
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