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A B S T R A C T   

Reactive transport within porous reactors is crucial to many diverse applications, and the efficacy of these re
actors hinges on their microstructure. Mathematical modeling and optimization play a pivotal role in the 
exploration of efficient designs, enabling the generation of structures that may not be achievable through random 
realizations of packings. In this study, we propose a framework for high-resolution topological optimization of 
porous flow-through reactors based on pore-scale simulations using a non-dominated sorting genetic algorithm 
II. A pore network model for an advection–diffusion-reaction system is developed to simulate reactor perfor
mance. This model is integrated with a mathematical optimization algorithm, incorporating a background grid 
and Delaunay tessellation. The optimization framework generates enhanced porous structures, simultaneously 
maximizing conversion rates while minimizing pumping costs. Striking a balance between permeability and 
reactive surface area, the final designs yield a set of Pareto optimal solutions, encompassing diverse non- 
dominated designs with varying reaction rates and hydraulic requirements. The results demonstrate that 
optimal pore configurations lead to a 280% increase in conversion rates and a 6% reduction in pumping costs at 
one end, while on the opposite end of the Pareto front, a 15.2% increase in reaction rates and an 11.3% reduction 
in pumping costs are observed.   

1. Introduction 

Porous reactors are found in a variety of applications, including 
redox batteries, fuel cells, and catalytic reactors [1–3]. The reactive 
transport occurring within these porous media includes advection and 
diffusion of reactive species in single- or multi-phase fluids, as well as 
singular or multiple (electro-) chemical reactions. The porous matrix 
provides the active surface area on which heterogeneous catalytic re
actions occur and also facilitates the flow of heat and charge. The void 
space provides pathways for the flow of reactive and product species, 
and carrier fluids. Consequently, reactor performance, hydraulic effi
ciency, operational costs, and durability of porous reactors are inter
twined with the microstructural characteristics. For instance, achieving 
a higher reaction rate can be accomplished by increasing the surface 
area, which is most readily achieved by incorporation of smaller pores, 
but this generally hinders flow and diffusion of reactant. Hence, opti
mizing overall performance entails balancing between maximizing 

surface area and minimizing mass transport resistance. An ideal porous 
reactor should consist of pores of varying size and appropriate distri
bution to enhance both surface area and mass transfer concurrently. 
Recent progress in additive manufacturing and 3D printing technologies 
has unlocked fresh prospects for the fabrication of porous reactors 
featuring complex microarchitectures, offering promising advances in 
fields such as catalysis [4], electrochemistry [5,6], and pharmaceuticals 
[7]. However, leveraging the full potential of these fabrication methods 
requires a finely tuned design of the porous microstructure. Several 
experimental investigations have explored tailored reactors with engi
neered structures to enhance performance [8–10]. For instance, Xu et al. 
[8] proposed an electrospinning method to fabricate a free-standing 
carbon nano-fibrous web with ultra-large pores for vanadium redox 
flow batteries (VRFBs). Their findings showed that the new design re
duces concentration polarization, resulting in a VRFB with 10.3% higher 
voltage efficiency and double the electrolyte utilization efficiency 
compared to traditional electrodes at a current density of 60mA cm− 2. 
Despite these promising results, performing comprehensive parametric 
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studies to pinpoint the optimal structural parameters (e.g., pore size) 
remains challenging due to the cost and time associated with experi
ments. Evidently, achieving a fully optimal topology (including factors 
like the ideal pore size and spatial distribution) through experimental 
trial and error appears to be a daunting task. Alternatively, mathemat
ical modeling and optimization offer a systematic approach to investi
gate the structure-performance relationship and generate more efficient 
designs [11–16]. For instance, topology optimization using continuum 
macroscale models has been successfully utilized for optimizing reactive 
transport in porous media. In a recent study by Roy et al.[17], re
searchers employed a density-based topology optimization method to 
automatically optimize the distribution of porosity throughout the 
electrode of VRFBs. Their optimized designs reduced losses caused by 
overpotentials by up to 84%. Additionally, Mitchell and Ortiz [18] 
employed density-based topology optimization to enhance the anode 
electrode structure of a lithium-ion battery. By improving the sluggish 
electron transport caused by the low intrinsic electrical conductivity of 
silicon, they significantly enhanced the electrode performance. While 
these approaches provide a powerful tool for optimizing macroscopic 
material properties (e.g., porosity), they are typically unable to optimize 
the porous microstructure at the pore level. Particularly, since the in
teractions between the aforementioned transport and rate processes 
happen at a pore level, a pore-scale mathematical model becomes 
imperative for precise simulation of reactor behavior under varying 
structural and operational conditions. Moreover, in advec
tion–diffusion–reaction (ADR) systems, around which this study re
volves, several conflicting objectives must be met simultaneously, 
namely high conversion rate, low mass transport resistance, and low 
pumping cost. The absence of trade-offs among these objectives gives 
rise to a multi-objective optimization (MOO) problem, wherein a set of 
Pareto optimal (nondominated) solutions can be attained. Another 
emerging trend is the utilization of particle-scale models, such as the 
lattice Boltzmann method (LBM), together with topology optimization 
algorithms. In a paper published in 2024, Zheng et al.[19] utilized LBM 
coupled with level-set topology optimization to generate optimized 
porous diffusion–reaction systems with hierarchical structures. Their 
optimization yielded structures with enhanced reaction rates and ma
terial utilization. However, their study only considers diffusion and re
action processes, without incorporating any convective flow. Currently, 
integration of LBM and topology optimization in the literature is limited 
and does not encompass various complicated transport and rate 
processes. 

Mathematical models for reactive transport can be broadly classified 
into two primary categories: (1) macro-scale continuum models and (2) 

pore-scale models. In practical applications, porous reactors exhibit a 
diverse and heterogeneous structure. However, macro-scale continuum 
models assume uniform, averaged properties – such as flow resistance, 
thermal resistance, and reaction activity – within a representative 
elementary volume (REV). These models typically describe porous 
media using multiple isotropic and anisotropic properties (e.g. porosity, 
tortuosity, permeability coefficient). Although this approach offers 
valuable insights into reactive transport phenomena, it falls short in 
capturing the impact of the detailed microstructure at a high resolution – 
a necessity for precise simulation and design of porous reactors. In 
contrast, pore-scale models offer a geometrically resolved simulation of 
the system, addressing flow, transport, and reactions at a pore level. 
While this approach comes with increased computational requirements, 
it enables a thorough and dependable insight into the 3D morphology of 
porous reactors, resulting in a more robust comprehension of the 
structure-performance relationship. Numerous studies in the literature 
have introduced pore-scale models aimed at analyzing transport and 
rate processes within porous media across a range of applications 
[20–27]. For example, Zhan et al [21] employed a 3D pore-scale lattice 
Boltzmann method (LBM) to simulate transport mechanisms and elec
trochemical processes within VRFB electrodes. Their investigation 
revealed a critical link between the microstructure of the electrode and 
its electrochemical performance. They concluded that an optimal 
microstructure with a single dominant pore size peak (around 
10 − 20μm) and some large pores is essential for achieving both superior 
electrochemical performance and low-pressure drop, which are crucial 
for reducing operational costs. In another application, Kočí et al [22] 
introduced a novel methodology for pore-scale simulation of flow, 
diffusion, and reaction in coated catalytic filters. They accomplished this 
using 3D reconstructions of porous structures based on X-ray tomogra
phy (XRT). The reconstructed medium was then used for simulation in 
OpenFOAM using the finite volume method (FVM). Their results high
light that gas primarily flows through cracks in the coated layer and 
remaining free pores in the filter wall, with mass transport driven by 
diffusion. The results also underscored that compact catalytic coatings 
lead to a significant increase in pressure drop due to reduced local 
permeability. 

While geometrically resolved models offer valuable insights into 
reactive transport phenomena, it is well-known that direct numerical 
simulation (DNS) demands substantial computational resources and is 
often limited to unreasonably small calculation domains [28]. There
fore, modeling an entire component (e.g., an electrode of a battery) or 
device (e.g., a battery cell) with a realistic length scale remains a chal
lenge through these approaches. Also, the majority of these studies have 

Nomenclature 

As Wetted surface area 
(
m2)

C Concentration (mol m− 3) 
d Voxel (spacing) size (m) 
DA Solute diffusion coefficient (m2s− 1) 
Dt Throat diameter (m) 
Fobj Objective function 
G Total conductance (m3s− 1Pa− 1 or m2s− 1) 
g Conductance (m3s− 1Pa− 1 or m2s− 1) 
kL Mass transfer coefficient (ms− 1) 
kr Reaction constant (ms− 1) 
Lp Pore segment length (m) 
Lt Throat length (m) 
ng Number of genomes (candidate pores) 
npop Population size 
pc Crossover ratio 

pm Mutation ratio 
Pe Peclet number 
Q Volumetric flow rate (m3s− 1) 
r Radius (m) 
rA Reaction rate (mol s− 1) 
rm Mutation rate 
p Pressure (Pa) 

Greek symbols 
μ Viscosity (Pa s) 
ρ Density (kg m− 3) 

Subscripts/superscripts 
d Diffusive 
h Hydraulic 
p Pore 
surf Surface 
t Throat  
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concentrated on existing materials and structures [29], while pursuit of 
a systematic technique in generating novel optimal designs is not yet 
well studied. This is partly because mathematical optimization algo
rithms usually involve iterative model solutions, requiring extensive 
computational resources to seek even a single local optimum solution. In 
light of these constraints, it becomes evident that topological optimizing 
using geometrically resolved pore scale models is not yet feasible, at 
least with reasonable computational resources. 

Pore network modeling (PNM)[30–32] represents an alternative 
approach to DNS, simplifying the intricate microstructure of porous 
media into a network of interconnected pores and straight tubes 
(throats). This abstraction accelerates simulations by several orders of 
magnitude (typically > 10000 times faster) compared to conventional 
pore-scale DNS models while maintaining an acceptable level of pore- 
scale accuracy. The computational efficiency of PNM positions it as a 
viable alternative for large-scale mathematical optimization of porous 
microstructures at a geometrically resolved level. PNM has been suc
cessfully employed to investigate various physical phenomena in 
different systems—diffusion in fuel cells [33], electrochemical reactive 
transport in battery electrodes [1], dispersion in porous media [34], and 
two-phase flow [35] to name a few. For example, in a recent publication, 
Misaghian et al [1] extended PNM to include multiple coupled physical 
processes to assess the influence of heterogeneous electrode structures 
on a VRFB cell performance, solving the advection–diffusion and Nernst- 
Planck equations for ion transport coupled with Butler-Volmer kinetics 
and solid–liquid mass transfer films. Their findings demonstrated that 
multi-layer structures with higher permeability near the membrane and 
lower permeability near the channel substantially increased current 
density, resulting in a remarkable 57% performance enhancement 
compared to the opposite layer arrangement. 

Furthermore, Sadeghi et al [28] introduced a PNM-based framework 
to investigate reactive transport within hierarchical porous catalyst 
particles, emphasizing the generation of optimal microstructures rather 
than exclusively modeling existing porous media. Notably, the study 
finds that increasing macroporosity does not always enhance catalytic 
activity, and particles with lower pore size ratios exhibit higher reac
tivity. Subsequently, another research group extended this study into 3D 
[36], incorporating pore interconnections as an adjustable parameter. It 
has been found that particle performance exhibits distinct trends, 
influenced by macroporosity and other factors, depending on the 
average pore Damköhler number. Also of note is that the advantages of 
hierarchical structures are most pronounced in systems where the 
reaction-controlled process is absent, and species diffusivity is the 
limiting factor for reactive transport. Following these earlier research 
endeavors, Huang et al [30] investigates the influence of adding chan
nels to a porous reactor with a first-order chemical reaction. After 
validating their PNM model against a finite element method (FEM), they 
showed that the addition of channels in these structures significantly 
enhances mass transport, making multi-channel featured porous systems 
desirable for catalyst applications. Nevertheless, although these studies 
yielded valuable results, their proposed frameworks lack a comprehen
sive mathematical scheme for generating innovative microstructures 
automatically. Instead, they often presuppose certain characteristics of 
the optimal microstructure, such as the presence of macroporosity or 
extended channels, primarily conducting parametric analysis on various 
parameters. In a more rigorous approach, van Gorp et al [29] integrated 
a genetic algorithm (GA) with PNM to design highly efficient electrodes 
for VRFBs. Their optimized design effectively reduced pumping costs by 
73% and improved electrochemical performance by 42% compared to a 
randomly generated initial structure. Although that study provided a 
valuable proof-of-concept, it was limited in several regards. The pores 
were confined to a cubic lattice with a relatively limited number of pores 
(a total of 676 pores), which also limited the size distribution that could 
be attained. Their model did not account for the influence of local 
convective flow (local Reynolds number) when estimating the mass 
transfer coefficient for the transport of species from the bulk solution to 

the solid–liquid interface. Instead, a uniform Reynolds number was 
assumed throughout the domain, based on the superficial velocity. 
Additionally, they manually maintained overall porosity at a constant 
value during the optimization process. As such, their framework did not 
encompass the capacity to generate entirely distinct pore network (PN) 
topologies. 

The primary objective of this study is to present a framework for the 
large-scale optimization of porous reactors by integrating PNM and a 
non-dominated sorting genetic algorithm II (NSGA-II). This framework 
specifically addresses advection, diffusion, and chemical reaction phe
nomena within a porous network, which is generated using a Delaunay 
tessellation of random base points [37]. By employing a Delaunay 
tessellation, the optimization algorithm gained the flexibility to 
distribute pores in arbitrary spatial configurations, in contrast to pre
vious efforts which were limited to a cubic lattice. The network gener
ation and simulations are conducted using OpenPNM, a Python-based 
open-source package developed for PN simulations [38]. Moreover, the 
optimization process is carried out through NSGA-II, allowing for theres 
simultaneous optimization of multiple objectives. In this study, the focus 
is on two key objectives: conversion rate and pumping cost. However, it 
is worth noting that this framework is versatile and capable of accom
modating any number of objectives as needed. 

2. Modeling and optimization 

In many practical applications, diverse and concurrent processes (e. 
g., advection, diffusion, and reaction) compete within porous reactors, 
collectively shaping their overall performance. Should any one of these 
processes impose limitations, it may degrade the overall performance. 
Given the significant influence of porous microstructure on these pro
cesses, the topology of porous networks should seek a balance among 
different processes without imposing severe limitations on any of them 
[39–41]. Furthermore, such systems frequently necessitate the simul
taneous optimization of multiple conflicting objectives. For instance, in 
the context of ADR porous reactors, it is favorable to maximize the 
overall conversion rate while minimizing the hydraulic power re
quirements (pumping cost). Therefore, a MOO algorithm becomes a 
requisite tool to concurrently satisfy these diverse and contradictory 
requirements. In the present study, a designated set of points is provided 
as input for the network generation algorithm to create the PN. This 
constructed PN is subsequently used to solve flow and reaction in 
accordance with predetermined boundary conditions (BCs). The PNM 
simulation is in turn incorporated into an optimization algorithm, 
enabling the systematic refinement of the porous topology through an 
iterative process. Further details on these steps are provided in the 
following subsections. 

2.1. Network generation 

Transport through the PN depends not only on the pore size distri
bution, but also on the spatial and topological arrangement of the pores. 
Recent work by van Gorp et al [29] demonstrated the ability of genetic 
algorithm-based optimization to generate improve electrode perfor
mance by adjusting the pore size distribution and their spatial distri
bution on a cubic lattice. Confining the pore centers to a cubic lattice 
restricted the possible designs in several ways: the maximum pore size 
could not exceed the lattice spacing (lest pores overlap), the connectivity 
distribution was limited to 6 neighbors, and all connections between 
pores were oriented along the principal axis of the lattice. The present 
work aimed to overcome these limitations by developing a procedure for 
using random PNs based on Delaunay tessellations. Generating a PN 
from a Delaunay tessellation has been described in detail previously 
[37]. This procedure is outlined in subsection 2.1.1. 

The communication between PNM and NSGA-II lies in the network 
generation process. On the PNM side, network generation is performed 
using a Delaunay tessellation in OpenPNM. It receives the coordinates of 
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some base points to generate a network. The background grid specifies 
the coordinates of all possible pores in the design domain. The opti
mizer, NSGA-II, tries to improve the structural design by selecting these 
possible coordinates from the background grid. It does this by including 
or excluding them in an algorithmic way, to enhance the objective 
functions (maximizing reaction rate and minimizing pumping 
requirements). 

2.1.1. Generating random network topology 
The main challenge when coupling random networks to genetic 

optimization is the incompatibility between having a fixed number of 
genes in each individual and each generation, and the infinite possible 
locations of pores. To address this, we defined a grid of possible locations 
and setup the genetic algorithm to optimize which of these locations 
were activated (described in section 2.4). The grid of possible location 
essentially adds a lower limit to the resolution of the pore locations. A 
resolution of 40μm was chosen meaning that the smallest pores size and 
smallest pore-to-pore space cannot be less than this if no other operator 
is applied. Fig. 1(a) shows the result of applying a Delaunay tessellation 
on a grid, which yields a standard cubic lattice, while Fig. 1(b) shows the 
result after randomly activating 30% of the sites on the grid. In this case 
the pore centers still lie on the grid, but the connectivity of the pores is 
more diverse than on a fixed lattice. The pore size distribution, shown in 
Fig. 1(e), is also wider than a cubic lattice (Fig. 1(e)) because the pore 
diameters were able to grow up the distance of the nearest pore rather 
than the fixed lattice spacing. The randomized network shown in Fig. 1 
(b) was further enhanced by applying a relaxation of the pore centers 
after the tessellation. A rigorous relaxation as described by Lloyd [42] 
uses the geometric centroid of each Voronoi cell, which requires 
computing many convex hulls and is time consuming. An alternative, 

less computationally demanding, relaxation method was performed here 
such that new pore locations were computed as the distance-weighted 
average of each neighbor pore. This relaxation was applied iteratively 
by moving the pore centers halfway to the new locations to avoid 
overcorrecting, then repeated N times by recomputing the weighted 
average after each step. It was found that N = 3 provided a good balance 
between stable results and efficient computation. The final result is 
shown in Fig. 1(c) where it can be seen that most pore centers no longer 
lie on the grid and the distribution of the pores fills space. The pore size 
distribution in Fig. 1(f) is even broader than the case in Fig. 1(e). The 
sites along the edges and faces of the domain were always included to 
ensure that the internal pores were confined to a fixed domain size. The 
pores on the inlet and outlet faces were used to apply boundary condi
tions so did not affect the flow through the domain. The layer of small 
pores on the other surfaces can be considered as physically compacted or 
compressed so not relevant to the flow. All simulation results reported 
below were obtained on a 3D network, and the 2D representation shown 
in Fig. 1 is only to aid visualization. 

2.1.2. Assigning geometric properties 
Once the spatial locations of the pores and their connectivity was 

established, the geometric properties of the pores and throats were 
calculated. Pore radii were assigned by finding the maximum possible 
size of each pore that just touched its nearest neighbor, then multiplying 
this value by a random number between 0.75 and 0.9. Throat diameters 
were assigned by finding the minimum diameter of the two neighboring 
pores, then multiplying this value by a random number between 0.5 and 
0.7 to create constrictions. The aforementioned ranges are chosen 
arbitrarily but they fall within the range of previously reported values in 
the literature [29,30]. Pores were treated as spheres and throats as 

Fig. 1. 2D schematic of random network generation on a grid. The subfigures show results (a) when all possible locations are used, (b) with using only 30% of 
possible locations, and (c) using 30% possible location with relaxation of the base points. The bottom row shows the corresponding pore size distributions (in arbitrary 
units) attained by assuming all pore diameters are between 90 and 100% of the distance to their nearest neighbor. 
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cylinders for all subsequent geometry calculations such as surface areas 
and volumes. Throat lengths were computed by assigning the overlap 
between the spherical pore bodies and cylindrical throats to the throat. 
This is illustrated in Fig. 2. 

2.1.3. Adding throat nodes 
As will be discussed in section 2.2, it was necessary to incorporate 

local mass transfer coefficients in the reaction term. Mass transfer co
efficients are a function of local fluid velocity, which is only known in 
the throats, while the reaction is also a function of concentration, which 
is only known in the pores. It was therefore necessary to incorporate 
throat nodes into the network, as described by Misaghian et al [1]. Each 
throat was divided into two segments and a new “node” (i.e., a pore) was 
inserted at the junction. The fluid velocity through this node could then 
be found from the upstream throat segment. The reaction term was only 
enabled in these throat nodes. This process increased the number of 
degrees of freedom so increased the computational time required to 
solve the transport problem, but this was unavoidable. The geometric 
properties of the throat nodes were chosen such that they had no impact 
on the hydraulic and diffusive conductance of the conduit, which were 
calculated before the throat nodes were added. 

2.2. Modeling of dilute solution transport 

Transport through the domain was modeled as advective–diffusive 
transport of a reactive solute. The pressure in each pore (and throat 
node) was first found by solving the flow problem assuming a fixed 
pressure drop across the domain (boundary conditions are outlined in 
section 2.3). The velocity in each throat was found using the computed 
pressures, then used to compute the advective–diffusive conductance 
values using the power-law scheme [34]. Finally, the advec
tion–diffusion problem was solved to determine the concentration dis
tribution in the domain in the presence of a reaction. 

The conductance values were computed assuming cylindrical throats 
and spherical pore bodies, as shown in Fig. 2. The length of the pores, Lp, 
was found by subtracting the length of the intersection between a sphere 
and a cylinder from the radius of the pore. Due to the way that pore sizes 
were assigned they never overlapped, which helped to ensure the throat 
node procedure remained viable. 

Given these assumptions, the total hydraulic conductance, Gh, of 
each pore-throat-pore conduit was computed as: 

1
Gh =

1
gh

p,1
+

1
gh

t
+

1
gh

p,2
(1)  

where gh
p,i for a sphere is [43,44]: 

1
gh

p,i
=

4μ
πr3

p

⎛

⎝ rpLp
(

r2
p − L2

p

)+ tanh− 1
(

Lp

rp

)
⎞

⎠ (2)  

and gh
t for a cylindrical throat is: 

1
gh

t
=

8μLt

π2r4
t

(3)  

Similarly, the diffusive conductance, Gd, was found from: 

1
Gd =

1
gd

p,1
+

1
gd

t
+

1
gd

p,2
(4)  

where: 

1
gd

p
=

1
DAπrp

tanh− 1
(

Lp

rp

)

(5)  

and: 

1
gd

t
=

Lt

πr2
t DA

(6)  

And the advective–diffusive conductance, Gad, was found using the 
following power-law formulation [34]: 

Gad =

(
qij

ePeij − 1

)

(7)  

Peij is the pore-scale Peclet number defined as: 

Peij =
Qij

At

Lt

DA
(8)  

where Qij is the volumetric flow between pores i and j. Lt and At are the 
length and cross-sectional area of the element, respectively, and DA is 
the diffusion coefficient of the solute. Inserting the definition of the 
diffusive conductance and the fact that Qij = Gh

ijΔPij yields the Peclet 
number for a conduit in terms of pre-computed conductance values and 
the calculated pressure values in each pore: 

Peij =
Gh

ij

Gd
ij

ΔPij (9)  

The system was modeled at steady state so the mass balance around each 
node i can be expressed as: 
∑

j

(
QijCA,j + Gad( CA,j − CA,i

) )
= rA (10)  

Writing Eq.(10) for every pore in the network yields a system of linear 
equations which must be solved simultaneously to determine the con
centration in every pore. 

The value of rA in Eq.(10) was set to zero for pores where no reaction 
was occurring. In the throat nodes, the solute was consumed in a first- 
order heterogeneous reaction occurring at the solid–liquid interface in 
the throat nodes according to the standard rate expression: 

rA = krAsCA,surf (11)  

where kr is the kinetic constant per unit area, As is the wetted surface 
area, and CA,surf is the concentration of the reactant at the surface. Only 
the bulk concentration is known after solving the system of equation 
defined by Eq.(10); however, since the reaction was assumed to occur at 
the solid–liquid interface the rate of mass transfer between the bulk fluid 
and the wall can be expressed as: 

rA = − kLAs
(
CA − CA,surf

)
(12)  

noting that the diffusion from the bulk to the surface corresponds to a 
consumption of A and hence a negative reaction rate. In Eq.(12), kL is 
mass transfer coefficient. Equating these two expressions for the reaction 
rate and solving for rA in terms of CA yields: 

Fig. 2. Schematic diagram showing the assumed shape and pertinent di
mensions for calculating transport conductance values. 
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rA =
krkL

kL − kr
AsCA (13)  

which provides the required expression for the rate of consumption of A 
in terms of the known concentration. The kinetic constant, kr, was taken 
from Misaghian et al [1] for consumption of vanadium in a redox flow 
battery, while the mass transfer coefficient was computed from: 

Sh =
kLDt

DA
= 1.0Re0.7Sc0.33 (14)  

Sh was computed for each throat node and the throat diameter Dt was 
taken as the characteristic length. The surface area of each throat node 
was taken as the sum of the internal surface areas of the two neighboring 
throat segments which comprised the original throat. As mentioned 
above the velocity is not known in pores, yet this is where the mass 
balances and reactions are applied. Dividing throats into two segments 
separated by a “throat node” means that the velocity from the neigh
boring throat segment can be adopted as the velocity in each throat 
node. Finally, the total rate of reaction in the network was found by 
summing up the rate of consumption of species A in each pore using Eq. 
(10). 

2.3. Boundary conditions 

Constant pressure conditions were assigned to the inlet and outlet 
nodes of the network to solve for the pressure distribution and throat 
velocity. This is translated as a fixed pressure drop (Δp) across the 
domain. Additionally, at the inlet, the concentration (Cin) remained 
fixed, while an outflow boundary condition was imposed at the outlet 
pores, ensuring a zero gradient for the reactant species concentration. 
The specific values of boundary conditions used in this study are dis
cussed in section 2.5 (System parameters). 

2.4. Optimization algorithm 

GA is a well-established optimization technique that draws inspira
tion from the principles of biological evolution, which find application 

in a wide range of fields, including optimization problems, machine 
learning, scheduling, and parameter tuning for machine learning 
models, among others. GA is a part of a broader class of algorithms 
known as evolutionary algorithms, which are designed to mimic the 
process of natural selection by adopting operators such as crossover, 
mutation, and selection to address computationally difficult or time- 
consuming problems. The sophisticated, nonlinear nature of reactive 
transport within porous media at the pore-level necessities the 
employment of gradient-free metaheuristic algorithms, such as GA, to 
seek the optimal PN morphology. In this work, a binary NSGA-II algo
rithm, a MOO variant of GA, is used to improve the conversion rate 
while concurrently minimizing pumping costs. NSGA-II is a mainstream 
choice for multi-objective optimization problems and has been suc
cessfully employed for various problems [45–48]. In this work, we opted 
for NSGA-II because of its robust and efficient algorithm for MOO 
problems. We acknowledge that other metaheuristic algorithms that 
might be advantageous for topological optimization of porous reactors, 
such as sailfish optimization (SFO)[49], whale optimization algorithm 
(WOA)[50], particle swarm optimization (PSO)[51], and multi- 
objective imperialist competitive algorithm (MOICA)[52] could be 
explored. However, a thorough comparison of these algorithms would 
require a comprehensive investigation that falls outside the scope of the 
present work. 

As previously explained, the PN is generated based on a set of points 
residing on a background grid, forming the initial coordinates for po
tential pores. These initial coordinates undergo a relaxation function to 
determine the final pore coordinates within the PN. Each point in the 
problem grid corresponds to a potential pore within the PN, with the 
optimization problem controlling the presence or absence of these po
tential pores. Consequently, a Boolean value is assigned to each point, 
indicating whether the corresponding pore exists or not, and the opti
mization solutions are encoded as a Boolean vector, representing the 
existence or absence of candidate pores. Eliminating one pore may lead 
to the expansion of nearby pores, which facilitates the transportation of 
reactant species. Nevertheless, this action simultaneously affects the 
available reactive surface area. The algorithm begins with the Initiali
zation step, wherein a set of npop initial solutions, referred to as the 

Fig. 3. Flowchart of optimization and simulation algorithms.  
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population or chromosomes, is randomly generated. Each individual 
within the population represents distinct combinations of potential pore 
existence, yielding a binary vector of length ng, where ng denotes the 
total number of points in the problem grid. The size of the grid is 
determined based on the number of points in each direction and the 
voxel size, which defines the spacing between neighboring grid points. 
Subsequently, the initial population undergoes iterative evolution, 
generating increasingly improved solutions over successive generations 
until convergence or a predefined termination criterion is satisfied. This 
study uses the maximum number of iterations as the termination crite
rion. The optimization problem is formulated as: 

max
Vg

F1
obj =

∑Nthroat node

i=1
rA,i

min
Vg

F2
obj = Q × Δp

s.t. Vg,j ∈ {0,1} for j = 1, 2,⋯, ng

(15)  

In which, F1
obj and F2

obj represents the total conversion rate and pumping 
power, respectively. As previously mentioned, F1

obj is computed by 
summing the reaction rates in all throat nodes where reactions occur. 
Moreover, F2

obj is determined by multiplying the overall reactor flow rate 
(Q) and the pressure drop (Δp). Q is evaluated by summing up the flow 
rate of fluid moving through the inlet pores, while Δp is dictated by the 
specified boundary condition. Also, the solution vector, denoted as Vg, 
represents the status of each pore in the problem grid. Following the 
initialization, NSGA-II proceeds to the fitness evaluation step. In this 
phase, the performance of each individual is assessed, by generating the 
corresponding PN, solving the governing equations, and calculating the 
conversion rate and pumping cost. It is worth noting that, in this study, 
population fitness evaluation is executed in parallel on several CPU 
cores. This parallelization significantly accelerates the calculation 
speed, allowing the algorithm to explore a wide search space and find 
high-quality solutions more rapidly. Subsequent to fitness evaluation, 
the algorithm performs a ranking process. It categorizes the population 
into different non-dominated fronts based on their fitness and domi
nance relationships. The first front contains Pareto optimal solutions, 
which are the best trade-offs between conversion rate and pumping cost 
and are not dominated by any other solution. In the crossover and 
mutation step, NSGA-II selects a pool of parent population via a binary 
tournament selection process for reproduction. These selected parents 
undergo a uniform crossover as well as mutation process to produce a 
new set of offspring. The crossover process combines data from two 
parent solutions, enabling the offspring to inherit their distinctive at
tributes, while the mutation operation makes random modifications to a 
single parent, thereby enriching exploration of the search space. Finally, 
in the selection and truncation step, the current population and offspring 
are merged to form a combined pool. Here, the algorithm applies 
ranking operation once again to select fittest individuals from the 
combined pool according to their ranking and crowding distance for the 
next generation. An overview of the optimization procedure is depicted 
in Fig. 3, with the primary operators briefly described as follows. 

2.4.1. Initialization 
In the initialization step, npop distinct PNs are generated randomly 

using Delaunay tessellation. As previously mentioned, each PN is rep
resented by a solution vector, Vg, comprising ng Boolean values that 
indicate presence or absence of each candidate pore in the final PN. To 
generate each Vg, first, a vector of random numbers between 0 and 1, 
with the same size (ng), is produced using a uniform random distribu
tion. Subsequently, each element in this vector is compared to a chosen 
threshold value. Values below the threshold indicate the existence of the 
corresponding pore, while values exceeding the threshold signify the 
absence of the potential pore. As the initial random numbers (between 
0 and 1) were generated using a uniform random distribution, tuning the 

threshold value approximately determines the overall percentage of 
pores that exist in the final PN. For instance, choosing a threshold with 
an extreme value of one will lead to the presence of all potential pores 
from the background in the final PN (see Fig. 1a). It is well-known that 
the efficiency of GA is significantly influenced by the quality and di
versity of the initial population [53]. To ensure appropriate diversity, a 
range of threshold values is considered based on linear spacing between 
0 and 1, in accordance with npop. This initialization strategy ensures the 
presence of a diverse range of design solutions in the initial population, 
encompassing configurations with low, medium, and high numbers of 
pores. In other words, out of the entire intial populations generated in 
this study, the threshold value for each one was different, ranging lin
early from 0 to 1. Hence, among the initial populations, there existed 
design solutions with various numbers of pores. From this perspective, 
we started with generating populations with a “vector of random 
continuous variables”, but then converted this to a “binary vector” using 
the threshold value. 

2.4.2. Population ranking front 
NSGA-II [54,55] employs a non-dominated sorting operator to rank 

the individuals of a population in a case with multiple objectives. The 
initial step in this operator is non-dominated sorting, which classifies 
individuals into distinct fronts based on their dominance relationships. 
Dominance is determined by comparing the objective function values of 
two individuals. If one individual is superior in at least one objective and 
not worse in any other, it is considered dominant. For instance, in this 
study, conversion rate and pumping cost are treated as two conflicting 
objectives. A solution exhibiting a higher conversion rate and lower 
pumping cost consistently dominates any alternative solutions charac
terized by lower conversion rates and higher pumping costs. However, 
in scenarios where both the conversion rate and pumping cost of two 
solutions are either simultaneously higher or lower compared to each 
other, mutual domination does not occur, and these solutions are cate
gorized within the same class (or front). This process organizes in
dividuals into a series of fronts, where the first front consists of non- 
dominated individuals, the second front contains individuals domi
nated only by those in the first front, and so on. After non-dominated 
sorting, the next step is to calculate the crowding distance (CD) for 
each individual within a front. CD reflects the density of individuals in 
the objective space, helping to maintain diversity in the population. It is 
calculated by considering the distances between an individual and its 
neighboring individuals along each objective dimension. Individuals 
with higher CDs are preferred as they contribute to a more evenly 
distributed Pareto front. The final sorting of the entire population is a 
two-step process: first, individuals are sorted based on their crowding 
distance in descending order, ensuring that individuals with greater CDs 
are prioritized. The second sorting is the front ranking, arranging in
dividuals based on their front ranking. This sequential sorting based on 
CD and front ranking guarantees a systematic arrangement of popula
tion according to dominance. In tied rankings, priority is assigned by 
considering their CD values. This dual-criteria sorting mechanism en
sures a meticulous organization of individuals within the population, 
promoting a comprehensive and balanced exploration of the solution 
space. In each generation, following the arrangement of the merged 
parent and offspring populations through the previously outlined pro
cedure, the top npop individuals survive and advance to the subsequent 
generation during the truncation process. This mechanism ensures that 
only the fittest individuals, determined by their performance in the 
optimization objectives, pass to the next generation, fostering a 
continuous progression of the population toward superior solutions. 

2.4.3. Binary tournament selection 
The optimization process uses a binary tournament method to select 

parents for the reproduction of offspring. This method randomly sam
ples two individuals from the population and evaluates their dominance 
relationship, ultimately selecting the parent with a superior front 
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ranking and CD. This strategic approach ensures that all individuals 
have an opportunity to participate in reproduction, thereby promoting 
overall diversity. However, fitter individuals are granted a higher 
probability of passing on their genomes to the subsequent generations, 
aligning with the principle of biological evolution and natural selection. 
Further information regarding this selection scheme can be found in the 
literature [56,57]. 

2.4.4. Crossover 
In the present study, a uniform crossover operator is utilized to 

generate new PNs by exchanging genetic information between pairs of 
parent networks. The selection of parent networks is performed through 
a binary tournament. The number of reproduced offspring from the 
crossover process is determined by a given crossover ratio (pc) and is 

calculated by 2×
⌈

pc×npop
2

⌉
. Each PN is represented by a vector of binary 

genome, and the uniform crossover operates independently on each 
genome (see Fig. 3). Notably, a pair of parents gives rise to two children, 
with the decision on the inheritance of genomes from each parent to 
each child being dictated by a uniform random distribution. 

2.4.5. Mutation 
The mutation operator introduces random changes into the genetic 

makeup of solutions, fostering diversity in the population and promoting 
exploration within the search space. First, a subset of 

⌈
pm × npop

⌉
in

dividuals are randomly selected for mutation from the parents’ pool, 
where pm is a specified mutation ratio. The severity of mutation is then 
dictated by the mutation rate (rm), with 

⌈
rm × ng

⌉
genomes being flipped 

at random positions (see Fig. 3) using a “bit mutation” operator. This 
targeted alteration in genetic information introduces variability among 
the individuals, contributing to the algorithm’s capacity for effective 
exploration of the solution space. This inherent randomness is funda
mental for avoiding premature convergence and promoting the 
continued exploration of the search space. The introduction of slight 
variations ensures that the optimization algorithm is not confined to a 
narrow region of the solution space and is better equipped to discover 
diverse and potentially optimal solutions. The values of algorithm pa
rameters are given in Table 1. The number of generations (iterations) in 
optimization is specified based on the size of search space. It is also 
noteworthy that “crossover ratio” and “mutation ratio” indicate the 
proportion of the population that undergoes crossover and mutation 
operations, respectively. Once an individual is selected for mutation, 
only a portion of its genes undergoes mutation. “Mutation rate” defines 
the severity of the mutation by specifying this proportion. 

2.5. System parameters 

The proposed framework is employed to optimize the PN topology of 
an ADR porous reactor. This reactor facilitates the transport of a dilute 
solution through advection–diffusion mechanisms, extending from the 
inlet to outlet boundaries, while simultaneously an arbitrary solute 
species A is reacted in presence of active surface area. Depending on the 
configuration of parameters, the system may exhibit characteristics of 
either kinetic or hydraulic sluggishness. The optimization process is 
designed to yield a tailored PN topology that improves system perfor
mance by achieving a balanced compromise between transport and rate 
phenomena. This involves proper control of both surface area and 

permeability through alternation of PN morphology. The properties of 
the solution and solute are adopted from literature for vanadium ion 
redox reaction in a VRFB. The values of these properties as well as the 
operating conditions (boundary conditions) are presented in Table 2. 
Although the developed model does not involve all phenomena occur
ring in a VRFB, the reaction constant, kr, is estimated according to the 
Butler-Volmer kinetics assuming a constant overpotential and a largely 
polarized condition (only forward reaction) as described below. 

kr = k0exp
(

αF
RT

η
)

(16)  

In this equation, α, T, η, F, and R are charge transfer coefficient, tem
perature, overpotential, Faraday’s constant, gas constant, respectively. 

3. Results and discussion 

A 3D background grid with shape 50 × 13 × 13 and spacing of 40μm 
is assumed as the PN design domain. The optimization process aimed to 
identify the optimal PN morphology within this 2 × 0.52 × 0.52mm3 

lattice, toggling candidate pores on and off under the assumption of flow 
occurring in the longitudinal direction (2mm). Following the determi
nation of the presence or absence of each potential pore in the config
uration, the PN was constructed, and simulations were conducted using 
OpenPNM, as described in the preceding sections. This iterative pro
cedure was repeated for 1000 generations, during which the optimizer 
generated an improved set of Pareto optimal PN topologies in each 
iteration. The parent population pool initially consisted of 1200 solu
tions and 1080 new offspring were reproduced through crossover and 
mutation processes (np × (pc +pm) = 1200× (0.85+0.05) = 1080). 
Next, the objective function was evaluated, resulting in the model being 
solved over one million times in total during the optimization process. 
Such an ultra-large optimization with high resolution was only 
manageable through a cost-effective modeling method like PNM. 

Fig. 4(a) illustrates the history of Pareto fronts of dual objectives over 
all generations, showing reaction rate and pumping cost of various non- 
dominated solutions. As optimization progressed, enhanced PN mor
phologies were generated, leading to higher conversion rates and lower 
pumping costs. It is noteworthy that all points on the Pareto graph of 
each generation can be considered as potential optimal points, 
depending on the trade-off between reaction rate and pumping power. If 
minimal pumping cost is crucial, the point on the bottom-left corner of 
the Pareto front can be chosen as the optimum design. Conversely, if 
maximal conversion rate is the goal, the point on the opposite extreme 
could be selected. The “ideal point” on this graph lies on the top-left 
corner, where a very high reaction rate could be achieved with mini
mal pumping requirements. The Pareto optimal solutions in this figure 
tend toward that ideal point. For instance, comparing points A1 and B1, 
the ending points of the Pareto fronts after and before optimization 
(generations 1000 and zero), reveals a 280% increase in reaction rate 

Table 1 
Optimization algorithm parameters.  

Optimizer parameter Value 

Population size (npop) 1200 
Crossover ratio (pc) 0.85 
Mutation ratio (pm) 0.05 
Mutation rate (rm) 0.1  

Table 2 
System properties and operational conditions.  

Parameter Unit Value / range 

Grid shape − 50 × 13 × 13 
Voxel size (d) μm 40 
Grid dimensions mm3 2 × 0.52 × 0.52 
Number of candidate pores − 8450 
Solution density (ρ) [1] kg m− 3 1350 
Solution viscosity (μ) [1] Pa s 0.005 
Solute diffusion coefficient (DA) [1] m2s− 1 3.9 × 10− 10 

Kinetic constant per unit area (k0) [1] m s− 1 5 × 10− 7 

Solute concentration (Cin) [1] mol m− 3 600 
Charge transfer coefficient (α) [1] − 0.5 
Temperature (T) K 298 
Pressure drop (Δp) Pa 400 
Overpotential (η) V 0.3  
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accompanied by a 6% reduction in pumping cost. Such a significant 
elevation in the conversion rate, along with an appreciable reduction in 
hydraulic requirements, was only achievable through a robust optimi
zation process that led to proper configuration of the pores in the final 
PN. Furthermore, comparing points A3 and B3, situated at the other end 
of Pareto fronts of the optimal and initial generations (see Fig. 4(a)), 
shows a similar trend. The reaction rate increased by 15.2%, and 
pumping power decreased by 11.3%. Choosing any points between the 

two ends on the Pareto front depends on practical constraints and the 
trade-off between the two objectives. For instance, in a practical appli
cation such as VRFB, the net generated power (i.e. the difference be
tween cell and pumping power) can determine a proper trade-off 
between the two objectives. In such cases, the framework presented in 
this paper can be utilized with a single-objective optimization algorithm, 
such as GA, to produce innovative PN with improved performance. 
However, in the absence of any particular trade-off, points A2 and B2 are 

Fig. 4. History of (a) Pareto fronts, (b) entire population, and (c) hypervolume over optimization process. In (a), each color spectrum represents Pareto optimal 
solutions of one generation, from dark purpule for generation zero and yellow for generation 1000. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 
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chosen for the sake of comparison in this study. These points have a 
median pumping power among all solutions in their corresponding 
Pareto front. A quantitative comparison of these three representative 
points before and after optimization is reported in Table 3. A more 
detailed comparison of the PN of optimal solutions is provided later in 
this study. 

Moreover, Fig. 4(b) and (c) show the convergence history of opti
mization process in terms of entire population and hypervolume, 
respectively. As shown in Fig. 4(b), it is evident that the entire popu
lation, over generations, improved in both reaction rate and pumping 
cost, shifting toward the ideal point. This figure also confirms that while 
the randomly generated population at generation zero is spread on the 
plot surface, the solutions in subsequent generations become more 
converged. As a post-processing step, optimization convergence is 
tracked using a hypervolume indicator [58], shown in Fig. 4(c). In this 
case, the hypervolume is the area under the Pareto plot in each gener
ation with respect to a reference point. The reference point, assumed in 
this study as (pumping cost, reaction rate) = (0.0527W m− 2, 0), repre
sents a relatively poor solution dominated by all Pareto solutions. The 
incremental trend of hypervolume plot in Fig. 4(c) indicates the 
improvement of Pareto front over generations. It is noticeable that the 
hypervolume indicator increased sharply in the first 200 generations, 
signifying rapid improvement at the beginning of the optimization 

Fig. 4. (continued). 

Table 3 
Comparison of the results between the three representative cases before and 
after optimization.  

Parameter Cases 

A1 A2 A3 B1 B2 B3 

Reaction rate 
(× 10− 3 mol s− 1m− 2) 

5.06 16.7 25.8 1.33 12.2 22.4 

Pumping power 
(× 10− 2 W m− 2) 

2.01 2.74 3.89 2.15 2.60 4.39 

Number of pores 7082 4540 3198 7847 5407 3084 
Minimum pore 

diameter (μm) 
23.5 23.3 23.3 26.0 21.8 23.6 

Maximum pore 
diameter (μm) 

53.9 67.7 88.0 46.4 60.5 116.7 

Average pore diameter 
(μm) 

30.3 31.7 32.6 30.6 31.4 32.8 

Average throat 
diameter (μm) 

16.7 17.1 17.7 16.6 16.9 17.7 

Superficial velocity 
(mm s− 1) 

0.194 0.263 0.374 0.206 0.250 0.422 

Porosity (− ) 0.379 0.423 0.473 0.392 0.410 0.475 
Permeability (D) 4.84 6.58 9.36 5.16 6.24 10.55 
Specific surface area 

(m2m− 3) 
8273 27086 36641 1827 19841 29882  

Fig. 5. (a) Pressure drop-reaction rate and (b) pumping power-reaction rate performance curves of representative PMs before and after optimization.  
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process, followed by a gradual slowing down as the optimization reaches 
convergence. 

While the optimization was conducted at a fixed pressure drop (Δp =

400Pa), a more comprehensive understanding was sought by investi
gating the porous reactor’s performance before and after optimization 
for a wide range of pressure drops. Fig. 5(a) and (b) illustrate pressure 

Fig. 6. Comparison of representative PNs before and after optimization. (a) pore size, (b) solution velocity, and (c) bulk concentration distribution.  
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drop and pumping power versus reaction rate, respectively, for six 
representative PNs. Comparing the conversion rate of PNs after opti
mization (points A) with their corresponding networks before optimi
zation (points B), as depicted in Fig. 5(a), clearly demonstrates the 
superior performance of optimal PNs across various pressure drops. 
Furthermore, it is observed that the pressure drop-reaction rate curve of 
A3 shows the best performance among all other PNs in Fig. 5(a), even 
when compared to PNs A1 and A2. However, it is important to note that 
while the reaction rate of A3 is higher than other PNs at the same 
pressure drop, this higher conversion rate comes at the cost of a higher 
pumping cost, as confirmed by the pumping power-reaction rate curves 
shown in Fig. 5(b). All curves in this figure are plotted for a pressure 
drop up to 1000Pa, similar to Fig. 5(a). Clearly, A3 demands a higher 
hydraulic power compared to A1 and A2. Moreover, A3 has the capability 
to cover a wider range of pumping cost for a given pressure drop range, 
thanks to its higher permeability, which is not achievable by other PNs. 
Similarly, with a common pumping cost, A3 exhibits a higher conversion 
rate (see Fig. 5(b)), but this is only possible with different pressure 
drops. Therefore, the choice of the best PN depends on the application 
constraints and the trade-off between the reaction rate and pumping 
cost. 

Fig. 6 demonstrates the morphology and simulation results of the 
initial and optimal representative PNs without throat nodes. A closer 
look at Fig. 6(a) reveals that PNs B1 and A1 contain a higher number of 
pores compared to B3 and A3, as quantitatively reported in Table 3. This 
condensed configuration leaves less space for the pores to grow in the 
given design domain, resulting in many relatively small pores. In 
contrast, by deleting some potential pores, the remaining pores in PNs B3 
and A3 had the chance to become larger, with some pores exhibiting a 
diameter larger than 100μm in B3. Comparing the PNs before and after 
optimization illustrates how the network topologies evolved over the 
optimization process. 

Additionally, in a PNM, throats serve as pathways for fluid transport. 
As explained earlier, the throat diameter is determined based on the 
minimum diameter of its neighboring pores. Therefore, a PN with larger 
pore diameters features larger throats on average, facilitating fluid flow. 
This is confirmed by Fig. 6(b), which illustrates the velocity magnitude 
in the bundle of throats, and the superficial velocity stated in Table 3. 
According to Eq.(3), the hydraulic conductance of a cylindrical throat is 
proportional to the fourth power of its radius. Hence, enlarging a throat 
can greatly increase the flow rate passing through it with a fixed pres
sure difference. Since the reaction rate depends on the local concen
tration of active species, a fast delivery of reactant species may lead to a 
higher total conversion rate. However, it is noteworthy that an excess 
hydraulic conductance and flow rate may be obtained at the cost of 
higher pumping power and lower reactive surface area, without 
contributing to the total reaction rate. Therefore, during the evolution 
process from B3 to A3, for instance, the optimizer favored changing the 
topology so that very large pores were replaced with several smaller 
ones. In ADR systems, the mass transfer coefficient plays a key role in 
determining the rate of reactant consumption. According to Eq.(14), kL 
is a function of Reynolds number, which itself depends on the fluid 
velocity. Therefore, even a concentrated solution with a high bulk 
concentration may not result in rapid chemical reaction if the convective 
fluid velocity is low. For example, the concentration distribution of PN 
A1 in Fig. 6(c) indicates that the species concentration in the pores near 
outlet boundary is almost equal to those near inlet boundary. Due to the 
slow fluid flow in this network, the mass transfer coefficient is so low 
that a considerable portion of the active species exits the reactor without 
undergoing reaction. In contrast, the higher velocities observed in PNs 
A2 and A3 (refer to superficial velocity values in Table 3 and velocity 
magnitude in Fig. 6(b)) promote enhanced species transport from the 
bulk solution to the solid surface, resulting in a faster consumption of 
active species. The elevated reaction rate in A3 corresponds to a lower 

Fig. 6. (continued). 
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bulk concentration in regions near the outlet, with the minimum con
centration reaching approximately 284mol m− 3. 

However, the fluid velocity, prescribed by the network hydraulic 
conductance, is not the sole determining factor in the overall perfor
mance of a PN. Another critical parameter in this multi-objective opti
mization problem is the active surface area. In a PNM, this value 
depends on the definition of the surface area and the geometrical as
sumptions of the network. As discussed earlier, in this study, the reactive 
surface area of each “throat node,” where the chemical reaction occurs, 
is assumed to be equal to the internal surface area of throat with which it 
is associated. The surface area of the pore bodies was excluded since the 
fraction of its area to associate with each throat is not easily determined. 
This assumption is justified on geometrical grounds because the internal 
surface area of a pore is reduced by the opening created by each inter
secting throat, so the internal surface areas are quite low. In fact, the 
internal surface area of all pores in network A3 was 1.81× 10− 6m2, 
while the throat surface area was 1.05× 10− 5m2, so on average we can 
expect ignoring this surface area only affects the active surface area by 
17%. This assumption is also supported on physical grounds since the 
fluid velocity in pores is lower than throats so the reaction will be more 
mass transfer limited, thus would contribute relatively little reaction to 
each throat. 

The radar charts in Fig. 7 display the topological characteristics and 
performance of the representative PNs before and after optimization. 
Here, ε, κ, SSA, Rrxn, Ppump, and Cavg denote porosity, permeability, 
specific surface area, reaction rate, pump power, and average bulk 

concentration, respectively. The values with a hat symbol ( ^ ) are 
normalized with respect to a common reference value, converting them 
all between 0 and 1. Porosity, permeability, and SSA values are calcu
lated using OpenPNM for each network. In this context, SSA is defined as 
the ratio of the wetted surface area to the volume of the solid phase. 
Comparing the results before (B points) and after (A points) optimization 
reveals a considerable increase in SSA value for all three networks. The 
enhancement of SSA, resulting from an improved network topology, 
contributes to the increment of the reaction rate in all PNs. Additionally, 
permeability serves as an index of the overall network hydraulic 
conductance. Since the pressure drop was kept fixed during the opti
mization process, the pumping cost depends solely on permeability. For 
instance, the lower permeability (9.36D vs. 10.55D, 11.3% decrease) 
and higher SSA (36641m2m− 3 vs. 29882m2m− 3, 22.6% increase) of A3 
compared to B3 helped reduce the pumping requirement and increase 
the reaction rate after optimization. 

The pore size distribution of the optimized networks (represented by 
points A) is illustrated in Fig. 8. As depicted, the histogram of PN A3 is 
right shifted compared to the other networks, indicating the presence of 
larger pores. PN A3 comprises a number of pores exceeding a diameter 
size of 40μm, a characteristic not observed in PN A1. Larger pores are 
associated with larger throats connected to them. As previously dis
cussed, larger throats exhibit higher hydraulic conductivity, leading to 
an elevated Reynolds number. This, in turn, enhances mass transfer 
between the bulk fluid and the solid–liquid interface, increasing the 
likelihood of reactant species undergoing reaction before leaving the 
electrode. Moreover, the larger pores distributed in the longitudinal 
direction (see Fig. 6(a)) facilitate the rapid delivery of reactants to re
gions far from the inlet and therefore mitigate significant concentration 
depletion. In contrast, as demonstrated in Fig. 8, PN A1 exhibits a more 
uniform pore size distribution within a condensed configuration. 

Finally, the 3D rendered representations of the solid-phase porous 
reactor, derived from the dimensions of pores and throats across six 
representative PNs, are presented in Fig. 9. This figure showcase how the 
predicted networks can be turned into a solid object. Some numerical 
analysis of these images are provided in the Supplementary Informa
tion. While manufacturability of these tailored designs currently relies 
on the accuracy and resolution limitations of existing technologies, it is 
envisoned that the ongoing advancements in additive manufacturing 
methods, such as projection micro stereolithography [6], offer prom
ising avenues for fabricating such intricate structures with greater pre
cision and efficiency. The proposed PNM-NSGA optimization framework 
proves capable of tailoring innovative microstructures at a pore-scale 
with high resolution, encompassing multi-physics considerations 
without relying on a cubic lattice. Further studies are imperative to 
explore the impact of various operating and structural parameters, the 
trade-off between objectives, and the incorporation of additional physics 

Fig. 7. Macroscopic structural and performance properties of the representative PNs: (a) before optimization and (b) after optimization.  

Fig. 8. The pore size distribution of optimized PNs, displaying pore diameter 
frequency and the cumulative frequency in terms of percentange (%). 
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and more complicated reaction kinetics. 

4. Conclusions 

This study presents a robust framework for the large-scale optimi
zation of porous reactors by integrating PNM with the NSGA-II algo
rithm. The proposed approach capitalizes on the computationally 
efficient nature of PNM to model reactive transport in a porous reactor at 
the pore scale. It employs the NSGA-II multi-objective optimizer to 
enhance the porous network morphology, aiming to maximize conver
sion rates and minimize hydraulic requirements. Distinguished from 
previous studies, the proposed framework introduces the idea of back
ground grid, and utilizes Delaunay tessellation as well a relaxation 
operation to provide greater freedom for the pore coordinates. Formu
lating the problem as a multi-objective optimization offers a versatile 
framework applicable to various applications with contradictory ob
jectives, eliminating the need for a specific trade-off. 

The proposed PNM-NSGA framework was applied to optimize the 
microstructure of a 2 × 0.52 × 0.52 mm3 porous reactor, coupling 
advection–diffusion phenomena with a first-order chemical reaction. To 
account for the impact of convective flow on the mass transfer coeffi
cient between bulk liquid and the solid–liquid interface, “throat nodes” 
were introduced to the developed PNM where a local mass transfer co
efficient was incorporated into the reaction term. The algorithm 
generated a range of Pareto optimal solutions for various pumping costs. 
Comparison of the optimal solution with the lowest pumping cost on one 
end of the Pareto front with its corresponding PN in the initial genera
tion revealed a significant 280% increase in reaction rate accompanied 
by a 6% decrease in pumping cost. This improvement is attributed to the 
precise placement and sizing of pores in the designated design domain. 
In the absence of a specific trade-off between objectives, three distinct 
optimal solutions were selected from different regions of the Pareto front 
and thoroughly compared. The presented methodology can be used for 
designing porous reactors with pore-scale resolution in various appli
cations, such as electrodes for electrochemical energy devices (e.g., flow 
batteries, fuel cells, and electrolyzers) and catalytic reactors. With 

advancements in additive manufacturing techniques and manufactur
ability resolution, it is envisioned that these robust algorithmic methods 
will have broad application in generating high-performance porous re
actors. Further exploration is necessary to extend this framework to 
accommodate additional physics, enhance its degree of freedom, and 
reduce computational costs. Additionally, more investigation is required 
concerning the manufacturability of the generated network topologies. 
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Appendix A. Derivation of hydraulic conductance for a sphere 

The hydraulic conductance of pore segment, gh
p , as expressed in Eq.(2) can be derived via two methods. First, the simpler approach is explained as 

follows. Since the cross section of a sphere is not constant when moving from a pole to the center, the Hagen-Poiseuille model cannot be used for 
evaluation of hydraulic conductance. Assuming that the part of the sphere from center to Lp (see Figure A–1) consists of infinite number of infini
tesimal cylinder-like rings in series, the Hagen-Poiseuille model can be used to calculate the overall hydraulic conductance by taking an integral of the 
hydraulic resistivity over this portion as follows: 

1
gh

p
=

∫ Lp

0

8μdx
πr4(x)

(A1)  

where x denotes the distance from center of the sphere. The radius of an infinitesimal ring depends on x and is given by: 

r(x) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
r2

p − x2
√

(A2)  

By inserting Eq.(A–2) into Eq.(A–1) and calculating the integral, the overall hydraulic conductivity is expressed as: 

1
gh

p
=

∫ Lp

0

8μdx

π
(

r2
p − x2

)2 =
4μ
πr3

p

[
rpLp

r2
p − L2

p
+ tanh− 1

(
Lp

rp

)]

(A3)   

A more comprehensive and robust derivation could be obtained based on the approximate analytical solution of laminar, single-phase flow in a 
gradually-varying channel of arbitrary cross-section that was previously studies by Bahrami and coworkers [43,44]. They showed that the pressure 
drop in a conduit with slowly changing cross-section is expressed by: 

−
1
Q

(
dp
dx

)

= μ
[

16π2
( I*

p

A2(x)

)

−
2ρQ

μ

(
dA(x)/dx

A3(x)

)]

(A4)  

in which I*
p is the specific polar moment of inertia and A(x) is the cross-section area. For a circular cross-section, A(x) is given by: 

A(x) = πr2(x) = π
(

r2
p − x2

)
(A5)  

The first and second terms on the right-hand-side of Eq.(A–4) correspond to frictional and inertial losses, respectively. Given the assumption that the 
cross-section area is changing gradually (dA(x)/dx→0), the frictional loss is typically substantially more than the inertial loss and therefore the second 
term could be neglected. The total pressure drop can be computed by integrating Eq.(A–4) over the length of Lp after ignoring the inertial term as 
follows: 

Δp
Q

= 16π2μ
∫ Lp

0

I*
p

A2(x)
dx (A6)  

Given the definition of hydraulic conductance as the ratio of the volumetric flow rate to the pressure drop (gh
p = Q/Δp) and knowing the specific polar 

moment of inertia of a circle is 1
2π, the hydraulic conductance is derived as: 

Fig. A1. Representation of sphere segment in a pore-throat-pore conduit. (a) shows assumption of infinite number of differential rings in series, and (b) shows the 
geometric dimensions of an infinitesimal ring.  
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1
gh

p
= 16π2μ

∫ Lp

0

(1/2π)
[
π
(

r2
p − x2

) ]2 dx =
4μ
πr3

p

[
rpLp

r2
p − L2

p
+ tanh− 1

(
Lp

rp

)]

(A7)  

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.compstruc.2024.107452. 
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