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Abstract
The reaction of a square-planar platinum(II) complex containing two bis(2-diphenylphosphinoethyl)phenylphosphine 
(triphos), [Pt(triphos)2](NO3)2, with [Au(tu)2]Cl (tu = thiourea) gave a new trinuclear  AuI

2PtII complex, [Pt(triphos)2{Au(tu)}2]
Cl2(NO3)2, through Au-P coordination. While the [Pt(triphos)2]2+ unit in [Pt(triphos)2](NO3)2 adopted the trans-meso con-
figuration, only the cis-racemic isomer was observed for [Pt(triphos)2{Au(tu)}2]Cl2(NO3)2. 31P NMR spectroscopy indicated 
rapid equilibrium among the possible isomers of [Pt(triphos)2]2+, which facilitated the trans-to-cis transformation at the  PtII 
center in this system. Additionally, we observed that this structural transformation led to an increase in the emission intensity.
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Introduction

Square-planar platinum(II) complexes are kinetically inert, 
which often enables the formation of geometric isomers, 
namely, cis/trans or E/Z isomers [1]. These isomers play 
crucial roles in influencing the biological activity [2], opti-
cal/electronic properties [3], and chemical reactivity [4, 
5]. Consequently, controlled syntheses of specific isomers 
are needed to develop functional platinum(II) coordination 
compounds. Structural manipulations of platinum(II) com-
plexes, especially those with phosphine ligands, have gar-
nered increasing interest from coordination chemists. This 
interest is primarily due to the fascinating isomerization 
behavior and photoluminescent features of these complexes 
[6]. In 1970, Mastin and Haake reported that a square-planar 
platinum(II) complex with two triphenylphosphines and two 
chloride ligands, [Pt(PPh3)2Cl2], showed cis-trans equilib-
rium in solution and was directed to the trans-isomer by 
irradiation with UV light [7]. After this report, cis-trans 
isomerism of platinum(II) complexes with monophosphine 
or diphosphine ligands was widely studied and utilized for 

stimuli-responsive systems, such as molecular gears and 
anion receptors [8–11]. Typically, these compounds featured 
a platinum(II) center surrounded by two phosphine groups 
and two heteroatoms, as in  [PtII(P)2(X)2]. This category of 
compounds exhibited distinct electronic states, with the total 
energies differing for the cis and trans isomers [12]. This 
variability facilitates preferential formation of one isomer 
or enables isomerization with chemical/physical stimuli. 
When modified asymmetrically by substituent groups (i.e., 
 [PtII(PA)2(PB)2]), platinum(II) complexes bound by four 
phosphine groups can also form cis-trans isomers [13, 14]. 
These isomers tend to have nearly equal energy levels for the 
cis and trans isomers, so it is more challenging to regulate 
isomerism. While several studies have reported crystalliza-
tion of these isomers [15–18], structural control of the geo-
metric isomers through chemical reactions remains elusive.

In this context, we investigated the stereochemistry of 
a square-planar platinum(II) complex, [Pt(triphos)2]2+ 
(triphos = bis(2-diphenylphosphinoethyl)phenylphosphine). 
This complex was prepared and isolated as an organotin(IV) 
chloride salt by Garcı́a-Fernández and coworkers in 2001, 
who proposed based on 31P and 195Pt NMR spectroscopic 
results that two of the three phosphorous (P) atoms were 
bound to  PtII and one terminal P atom remained uncoordi-
nated [19]. Although both cis and trans isomers are theo-
retically possible for the structure of [Pt(triphos)2]2+, its 
stereostructure has remained ambiguous due to the absence 
of crystallographic data. In this study, we crystallized the 
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nitrate salt [Pt(triphos)2](NO3)2 and determined the struc-
ture. X-ray crystallography revealed that the complex 
[Pt(triphos)2](NO3)2 formed the trans isomer, with two 
uncoordinated phosphorous atoms oriented on opposite 
sides. Furthermore, the reaction of [Pt(triphos)2](NO3)2 
with the gold(I) complex [Au(tu)2]Cl (tu = thiourea) 
resulted in the formation of a heterometallic  PtIIAuI

2 com-
plex, [Pt(triphos)2{Au(tu)}2]Cl2(NO3)2. In this complex, the 
two uncoordinated P atoms in [Pt(triphos)2]2+ were bound 
by {AuI(tu)}+ units through Au–P bonds (Scheme 1). This 
meant that [Pt(triphos)2](NO3)2 functioned as a ditopic 
P-donating metalloligand [20–23]. Notably, while the 
initial [Pt(triphos)2](NO3)2 adopted the trans isomer, the 
[Pt(triphos)2]2+ unit observed in [Pt(triphos)2{Au(tu)}2]4+ 
adopted the cis configuration. To our knowledge, trans-to-
cis isomerization of a square-planar  [PtII(PA)2(PB)2] unit 
via coordination with metal ions is unprecedented. An 
increase in the photoluminescence was also observed after 
the transformation from [Pt(triphos)2]2+ to [Pt(triphos)2{A
u(tu)}2]4+. The present study demonstrated that combining 
square-planar  PtII complexes with two linear triphosphine 
ligands produced a structurally flexible ditopic P-donating 
metalloligand. Furthermore, the spectroscopic and structural 
data for the two complexes provide an essential dataset for 
understanding the cis/trans isomers of  [PtII(PA)2(PB)2]-type 
square-planar complexes.

Experimental section

Materials

The starting complexes [Pt(triphos)Cl]Cl [24] and [Au(tu)2]
Cl [25] were prepared according to methods described in the 

literature. Other chemicals were purchased and used without 
further purification.

Preparation of the complexes

[Pt(triphos)2](NO3)2·CH2Cl2

To a colorless solution containing [Pt(triphos)Cl]Cl 
(81  mg, 0.10 mmol) in 30 mL of methanol was added 
54 mg (0.099 mmol) of triphos and 30 mL of methanol, 
which yielded a yellow suspension. After stirring for 2 h, 
1.0 mL of a 1 M  NaNO3 aqueous solution and 15 mL of 
water were added to the resulting clear yellow solution, 
which was then slowly evaporated for 3 days. The crude 
[Pt(triphos)2](NO3)2 was collected by filtration and washed 
with water. The crude product was purified by recrystal-
lization from  CH2Cl2-n-hexane. Yield: 86 mg (58%). Anal. 
calcd. for [Pt(triphos)2](NO3)2∙CH2Cl2 =  C69H68Cl2N2O6P6
Pt: C, 56.26; H, 4.65; N, 1.90%. Found: C, 56.45; H, 4.94; 
N, 2.01%. IR spectrum  (cm–1, ATR): 1433, 745 (νP−CH2−), 
1101, 696 (νP−Ph), 1333 (νNO3

−). 1H NMR spectrum (metha-
nol-d4, 500 MHz), δ: 7.64–6.82 (50 H, m), 2.56–2.16 (15 H, 
m). 31P{1H} NMR spectrum (methanol-d4, 202 MHz), δ: 
45.2 (t, 1JP−Pt = 1085 Hz) and 17.9 (t, 1JP−Pt = 624 Hz).

[Pt(triphos)2{Au(Tu)}2]Cl2(NO3)2·5H2O

To a solution containing [Pt(triphos)2](NO3)2·CH2Cl2 
(51 mg, 0.036 mmol) in 3 mL of methanol was added a 
solution containing [Au(tu)2]Cl (31 mg, 0.081 mmol) in 2 
mL of methanol. After stirring for 1.5 h at room temperature 
in the dark, 0.150 mL of an aqueous solution of 1 M NaCl 
was added to the resulting colorless solution, and  Et2O was 
diffused in for 7 days. The resulting colorless needle-like 

Scheme 1  Synthetic routes 
to [Pt(triphos)2](NO3)2 and 
[Pt(triphos)2{Au(tu)}2]
Cl2(NO3)2
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crystals were collected by filtration. Yield: 25 mg (33%). 
Anal. Calcd. for [Pt(triphos)2{Au(tu)}2]Cl2(NO3)2∙5H2O 
=  C70H84Au2Cl2N6O11P6PtS2: C, 40.13; H, 4.04; N, 4.01%. 
Found: C, 40.21; H, 3.88; N, 4.33%. IR spectrum  (cm–1, 
ATR): 3052 (νN−H), 1435, 753 (νP−CH2−), 1103, 694 (νP−Ph), 
1330 (νNO3

−), 1635 (νC=S). 1H NMR spectrum (methanol-
d4, 500 MHz), δ: 7.91–6.63 (50 H, m), 3.63–3.37 (3 H, m), 
3.17n2.58 (11 H, m). 31P{1H} NMR spectrum (methanol-
d4, 202 MHz), δ: 92.2 (t. 1JP–Pt = 1342 Hz), 43.4 (t, 1JP–Pt = 
1221 Hz), 34.6 (s), 33.2 (s).

Physical measurements

IR spectra were recorded with a JASCO FT/IR-4100 infra-
red spectrophotometer using the ATR method at room tem-
perature. Elemental analyses (C, H, N) were performed at 
Osaka University with a YANACO CHN Corder MT-5. 
X-ray fluorescence spectrometry was performed with a 
SHIMADZU EDX-7000 spectrometer. The TG and DTA 
measurements were performed with a SHIMADZU DTG-60 
system. The PXRD patterns were recorded with a BRUKER 
D2 PHASER diffractometer at room temperature. 1H and 
31P NMR spectra were recorded with a JEOL ECS400 
(400 MHz) spectrometer in methanol-d4 with tetramethyl-
silane (TMS) as an internal standard for 1H spectra and 
triphenylphosphine as an external standard for 31P spec-
tra. Powder X-ray diffraction (PXRD) measurements were 
performed under ambient conditions with a BRUKER D2 
PHASR diffractometer. The simulated powder patterns were 
generated from the single-crystal X-ray structures with Mer-
cury 2023.2 [26]. The diffuse solid-state reflection spectra 
were measured with a JASCO V-670 UV/VIS spectrometer 
at room temperature using  MgSO4. The photoluminescence 
spectra were recorded with a JASCO FP-8500 spectrometer. 
The internal emission quantum yields (Φ) were obtained via 
absolute measurements with an integrating sphere (JASCO 
ILFC-847); the internal surface was coated with highly 
reflective Spectralon. An ESC-842 calibrated light source 
(WI) and an ESC-843 calibrated light source (D2) were used 
to calibrate the emission intensities and measure the absolute 
quantum yields.

X‑ray structural determinations

The single-crystal X-ray diffraction dataset for [Pt(triphos)2]
(NO3)2·CH2Cl2 was collected at 100 K with a Synergy Cus-
tom X-ray diffractometer equipped with a Hypix-6000HE 
hybrid photon counting detector and a Rigaku VariMax 
rotating-anode X-ray source with a Mo target (λ = 0.71073 
Å). The dataset for [Pt(triphos)2{Au(tu)}2]Cl2(NO3)2 was 
collected with a PILATUS3 X CdTe 1 M detector with a syn-
chrotron X-ray source at the BL02B1 beamline at Spring-8. 
The intensity data were collected via the ω-scan technique 

and empirically corrected for absorption. All structures were 
solved by the intrinsic phasing method within the SHELXT 
program [27] and were refined on F2 by the full-matrix least-
squares technique using the SHELXL program [28] via the 
Olex2 interface [29]. The hydrogen atoms, with the excep-
tion of those on the water molecules, were calculated and 
placed with riding models. All nonhydrogen atoms were 
refined anisotropically, while the H atoms were refined iso-
tropically. Nitrate anions and water molecules could not be 
modeled and were, therefore, removed from the electron 
density map with the Olex2 solvent mask command [29]. 
ISOR instructions were applied for C35 in [Pt(triphos)2]
(NO3)2·CH2Cl2 and C35 and N2 in [Pt(triphos)2{Au(tu)}2]
Cl2(NO3)2.

The crystallographic data are summarized in Table 1. 
Selected bond distances and angles are summarized in 
Tables 2 and 3.

Results and discussion

Synthesis and structural characterization 
of [Pt(triphos)2](NO3)2

The reaction of [Pt(triphos)Cl]Cl with one equivalent of 
triphos in methanol triggered a color change from color-
less to yellow. Subsequently, an excess of  NaNO3 was 
added to isolate the nitrate salt of [Pt(triphos)2]2+ as a crude 
powder. Slow diffusion of n-hexane into a solution of the 
crude powder in  CH2Cl2 yielded colorless block crystals 
([Pt(triphos)2](NO3)2) in moderate yield (58%). The IR 
spectrum of [Pt(triphos)2](NO3)2 exhibited an intense band 
at 1343  cm–1 attributed to the νN−O stretch of the  NO3

– ion, 
along with sharp signals corresponding to νP−Ph (1103, 
694   cm–1) and νP−C (1435, 753   cm–1) vibrations of the 
triphos ligands (Fig. 1a) [30]. The CHN elemental and fluo-
rescence X-ray analyses were consistent with the  CH2Cl2 
adduct [Pt(triphos)2](NO3)2·CH2Cl2 (Fig. S1). Thermo-
gravimetric (TG) analyses indicated a weight loss of 3.0% 
at 92 °C, corresponding to loss of the  CH2Cl2 molecule of 
solvation (Fig. S2). This value, which was lower than the 
theoretical value of 5.6% for the loss of one  CH2Cl2, sug-
gested the efflorescent nature of [Pt(triphos)2](NO3)2.

A single-crystal X-ray analysis of [Pt(triphos)2](NO3)2 
revealed that the asymmetric unit comprised half of a 
mononuclear platinum(II) complex cation with two triphos 
ligands, [Pt(triphos)2]2+, situated at the crystallographic 
inversion center, and half of a solvated  CH2Cl2 molecule. 
Although the  NO3

– ions could not be modeled, they were 
presumed to occupy the crystal void spaces and were dis-
ordered. As illustrated in Fig. 2, each triphos ligand was 
bonded to the square-planar  PtII center in a bidentate-
P,P′ fashion, engaging one of the two terminal  PPh2 groups 
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Table 1  Crystallographic data 
for [Pt(triphos)2](NO3)2·CH2Cl2 
and [Pt(triphos)2{Au(tu)}2]
Cl2(NO3)2

a) R1 = Σ||Fo| - |Fc||/Σ|Fo|
b) wR2 = {Σw(|Fo| - |Fc|)2/ΣwFo

2}1/2, w = 1/2Σ(Fo)

[Pt(triphos)2](NO3)2·CH2Cl2 [Pt(triphos)2{Au(tu)}2]Cl2(NO3)2

Empirical formula C69H68Cl2P6Pt C70H74Au2Cl2N4P6PtS2

Formula weight 1349.1 1881.3
Crystal size, mm 0.40 x 0.10 x 0.02 0.08 x 0.04 x 0.01
Crystal system Triclinic Monoclinic
Space group P-1 C2/c
a, Å 10.0577(4) 17.0638(17)
b, Å 10.8441(5) 29.412(3)
c, Å 16.5828(7) 18.0970(18)
α, ° 79.317(4) 90
β, ° 75.396(4) 90.118(6)
γ, ° 79.633(4) 90
V, Å3 1702.90(13) 9082.4(16)
Z 1 4
T, K 100(2) 100(2)
R (int) 0.0532 0.1333
ρcalcd, g  cm–3 1.315 1.376
m (Mo Kα),  mm–1 2.317 1.229
θmax 30.7730 15.602
Total no. of data 23129 66104
No. of unique data 8439 10410
No. of parameters
No. of restraints

358
6

393
12

R1a) [I>2σ(I)] 0.0443 0.0969
Rw

b) [All data]
Largest diff. peak and hole, 

e.Å–3

0.0968
2.18 and − 1.68

0.2057
2.84 and − 1.90

Table 2  Selected bond distances and angles for [Pt(triphos)2](NO3)2·CH2Cl2

#1: −x,1−y,1−z

Bond distances (Å)

Pt(1)-P(2) 2.3268(9) Pt(1)-P(3) 2.3190(9)

Angles (°)

P(3)-Pt(1)-P(3#1) 180.0 P(2)-Pt(1)-P(2#1) 180.0
P(2)-Pt(1)-P(3) 84.04(3) P(2)-Pt(1)- P(3#1) 95.96(3)

Table 3  Selected bond distances and angles for [Pt(triphos)2{Au(tu)}2]Cl2(NO3)2

#1: 1−x,+y,1/2−z

Bond distances (Å)

Pt(1)-P(2) 2.311(3) Au(1)-P(1) 2.265(4)
Pt(1)-P(3) 2.316(3) Au(1)-S(1) 2.314(5)

Angles (°)

P(2)-Pt(1)-P(2#1) 95.72(1 P(2)-Pt(1)-P(3#1) 174.12(11)
P(2)-Pt(1)-P(3) 84.51(11) P(1)-Au(1)-S(1) 174.07(15)
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and the central PPh group. The  PtII center was coordinated 

by two  PPh2 and PPh groups from the triphos ligands, form-
ing a [Pt(PA)2(PB)2]-type chromophore with a trans configu-
ration, thereby positioning the uncoordinated  PPh2 groups 
on opposite sides. In addition to cis-trans isomerism around 
the  PtII center, the coordinated PPh group, which was a ste-
reogenic phosphorous atom, exhibited an R–S configura-
tion, leading to meso(RS)-racemic (RR/SS) isomerism in 
[Pt(triphos)2]2+. Among the four possible isomers illustrated 
in Chart 1, [Pt(triphos)2](NO3)2 was found to adopt the 
trans-meso isomer in the crystals. The Pt–PPh2 (2.3190(9) 
Å) and Pt–PPh (2.3268(9) Å) bond distances were longer 
than those in a related  AuIPtII complex with a similar asym-
metric triphos coordination mode, [AuPt(triphos)Cl3] 
(Pt–PPh2 = 2.23(1) Å, Pt–PPh = 2.23(1) Å) [24]. Elongation 
of the Pt–P bonds in [Pt(triphos)2](NO3)2 resulted because 
the trans influence of phosphine groups was larger than that 
of  Cl– [31, 32], which is why [Pt(triphos)2](NO3)2 reached 
solution equilibrium on the NMR timescale (vide infra).

It should be noted that the powder X-ray diffraction pat-
tern of [Pt(triphos)2](NO3)2 was consistent with the simu-
lated pattern for the crystal structure, which indicated that 
only the trans-meso isomer was formed in the bulk sample 
of [Pt(triphos)2](NO3)2 (Fig. 3a). In the packing diagram 
for [Pt(triphos)2](NO3)2, the complex cations formed two 
intermolecular C–H···π interactions between the phenyl 

Fig. 1  IR spectra of a  [Pt(triphos)2](NO3)2 and 
b [Pt(triphos)2{Au(tu)}2]Cl2(NO3)2

Fig. 2  Perspective view of 
[Pt(triphos)2](NO3)2. The ther-
mal ellipsoids are illustrated at 
50% probability. Color code: Pt: 
white, P: orange, Cl: green, C: 
gray, H: pale blue. (Color figure 
online)
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groups of the uncoordinated  PPh2 and coordinated  PPh2 
groups (CH···Cg = 2.53 Å and 3.07 Å), creating a 2D sheet 
supramolecular structure in the crystallographic ab plane 
(Fig. 4a). The 2D structures were stacked along the c axis 
and accommodated the  CH2Cl2 molecule in the interstitial 
space (Fig. 4b). We assumed that the adjusted crystal pack-
ing to accommodate the  CH2Cl2 was the key to the selective 
crystallization of the trans-meso isomer of [Pt(triphos)2]
(NO3)2. Similar solvent-directed crystallization of one of 
four isomers was observed for a  PtII complex with chloro-
phosphineamides [16].

Synthesis and structural characterization 
of [Pt(triphos)2{Au(Tu)}2]Cl2(NO3)2

The [Pt(triphos)2](NO3)2 complex contained two unbound 
 PPh2 groups. Consequently, these groups were anticipated 
to function as coordination sites for other metal ions, 

similar to the role of P-donating metalloligands with free 
phosphine groups, e.g., 1,1’-bis(diphenylphosphino)fer-
rocene (dppf) [33], (-PhPC5H4FeC5H4-)3 [21], and [Pt(Ar)
phenylpyridinates (κ1-dppm)] [22, 23]. To probe this abil-
ity, we examined the reaction of [Pt(triphos)2](NO3)2 with 
two equivalents of [Au(tu)2]Cl, which is a well-known  AuI 
source [34], in methanol. With addition of excess NaCl to 
the colorless reaction mixture and subsequent diffusion of 
diethyl ether vapor, we isolated colorless plate-like crys-
tals of [Pt(triphos)2{Au(tu)}2]Cl2(NO3)2 in satisfactory 
yield (33%). An X-ray fluorescence analysis revealed that 
[Pt(triphos)2{Au(tu)}2]Cl2(NO3)2 contained Pt and Au 
as the metallic elements in a 1:2 ratio, in addition to S, P, 
and Cl (Fig. S1). The IR spectrum revealed bands due to 
 NO3

– ions at 1330  cm–1, νP−Ph (1103, 694  cm–1) and νP−C 
(1435, 753  cm–1) bands for the triphos ligands, and νN−H 
(3052  cm–1) and νC=S (1635  cm–1) bands for the tu ligands 
(Fig. 1b) [30, 38]. These results supported the formation 

Chart 1  Four possible isomers 
of [Pt(triphos)2]2+; a Trans-
meso, b trans-racemic, c cis-
meso, and d cis-racemic

Fig. 3  Observed (top) and simulated (bottom) powder X-ray diffraction patterns for a  [Pt(triphos)2](NO3)2 and b  [Pt(triphos)2{Au(tu)}2]
Cl2(NO3)2
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of a 1:2 adduct by the [Pt(triphos)2]2+ and [Au(tu)]+ units. 
Moreover, the elemental analyses indicated the formula of 
a double salt, [Pt(triphos)2{Au(tu)}2]Cl2(NO3)2·5H2O. The 
presence of water molecules was supported by the TG analy-
sis (Fig. S2).

The [Pt(triphos)2{Au(tu)}2]Cl2(NO3)2 crystals showed 
weak diffraction with the laboratory instrument, so we con-
ducted single-crystal X-ray analyses with the synchrotron 
faculty at SPring-8. The asymmetric unit contained half 
of the  AuI

2PtII complex cation, [Pt(triphos)2{Au(tu)}2]4+ 
(Fig. 5), which was situated on the crystallographic C2 axis, 
and one chloride ion. As found for [Pt(triphos)2](NO3)2], 
two triphos ligands in [Pt(triphos)2{Au(tu)}2]4+ chelated 
the square-planar  PtII center via bidentate-P,P’ binding. The 
bond distances around the  PtII center (Pt–PPh2 = 2.316(3) Å, 
Pt–PPh = 2.311(3) Å) were similar to those in [Pt(triphos)2]
(NO3)2. However, the  PtII unit had unexpectedly adopted 
the cis configuration, and the two stereogenic P atoms 
had the same chirality. That is, the cis-racemic isomer of 
[Pt(triphos)2]2+ was contained in [Pt(triphos)2{Au(tu)}2]
Cl2(NO3)2. The two {Au(tu-S)}+ moieties were bound to the 
free  PPh2 sites of the [Pt(triphos)2]2+ unit (Au–P = 2.265(4) 
Å, Au–S = 2.314(5) Å, S–Au–P = 174.07(15)°) to form a het-
erometallic trinuclear structure. The powder X-ray diffrac-
tion pattern for the bulk sample of [Pt(triphos)2{Au(tu)}2]
Cl2(NO3)2 matched the simulated pattern from the crystal 
data well (Fig. 3b), which confirmed the phase purity of 
[Pt(triphos)2{Au(tu)}2]Cl2(NO3)2.

In the crystal packing structure, two  Cl– anions were 
wrapped by the  NH2 groups of the tu ligands and the 

Fig. 4  Perspective views of [Pt(triphos)2](NO3)2; a  2D sheet supra-
molecular structure viewed from the c axis and b  packing structure 
viewed from the a axis. The blue dotted lines indicate the CH···π 

interactions. Color code: Pt: white, P: orange, Cl: green, C: gray, H: 
pale blue. (Color figure online)

Fig. 5  A perspective view of the complex cation accommodating the 
 Cl– anion in [Pt(triphos)2{Au(tu)}2]Cl2(NO3)2. The thermal ellipsoids 
are illustrated at 50% probability. Color code: Pt: white, Au: pink, P: 
orange, Cl: green, N: blue, C: gray, H: pale blue. The red dotted lines 
indicate hydrogen bonds. (Color figure online)
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ethylene and phenyl groups of the triphos ligands via 
NH···Cl (2.25 Å) and CH···Cl (2.64, 2.62, and 2.94 Å) 
hydrogen bonds. These interactions resulted in forma-
tion of the discrete supramolecule {Cl2@[Pt(triphos)2{Au
(tu)}2]}2+ (Fig. 5). We assumed that the interaction between 
[Pt(triphos)2{Au(tu)}2]4+ and  Cl– led to preferable forma-
tion of the cis-racemic isomer of [Pt(triphos)2{Au(tu)}2]
Cl2(NO3)2. Moreover, these supramolecules were inter-
connected by additional CH···Cl hydrogen bonds (2.63 Å) 
between the phenyl groups and  Cl– anions of adjacent supra-
molecules, forming a 1D chain structure (Fig. 6a). The 1D 
chains also interacted with neighboring chains via CH···π 
interactions (CH···Cg = 3.21 and 2.71 Å), culminating in a 
3D supramolecular structure with large void spaces (34.2%, 
3102.3 Å3 per unit cell) (Fig. 6b). We could not model the 
nitrate anion and solvated water molecules in the crystal 
structure because they were severely disordered in the void 
space.

NMR spectral study

X-ray diffraction experiments revealed that in the solid sam-
ples of [Pt(triphos)2](NO3)2 and [Pt(triphos)2{Au(tu)}2]
Cl2(NO3)2, the [Pt(triphos)2]2+ units selectively formed 
the trans-meso- and cis-racemic isomers, respectively. To 
investigate the molecular structure in solution, we performed 
NMR spectroscopic measurements of these compounds in 
methanol-d4. The 1H NMR spectra were complicated (Fig. 
S3); therefore, our analysis was primarily focused on the 
31P NMR spectra. The 31P NMR spectrum of [Pt(triphos)2]
(NO3)2 determined in methanol-d4 at 25 °C exhibited two 
singlet signals with platinum satellites at δ 46.28 (signal 

A) and 19.02 ppm (signal B) with an integration intensity 
ratio of 1:2 (Fig. 7a). The coupling constant JP−Pt of sig-
nal A (1087 Hz) was approximately twice that of signal B 
(622.6 Hz). These spectral features were inconsistent with 
the Cs symmetric mononuclear structure observed in the 
single-crystal X-ray study, which should display two sin-
glets with similar JP−Pt values alongside one singlet without 
platinum satellites. We tentatively assigned the 31P signals 
A and B to the central PPh and terminal  PPh2 groups of 
triphos ligands, respectively, and we presumed that the coor-
dinated and uncoordinated  PPh2 groups rapidly exchanged 
on the NMR timescale. To verify this dynamic behavior, 
we measured the variable-temperature (VT) NMR spectra 
at temperatures from 25 °C to − 80 °C. Upon cooling, sig-
nals A and B became broader at -40 °C and disappeared at 
lower temperatures. At − 80 °C, a new singlet without plati-
num satellites appeared at − 15.23 ppm (signal C), which 
indicated uncoordinated  PPh2 groups, as typically reported 
in the literature [36]. Additionally, complex, broad signals 
appeared between δ 15–50 ppm. We hypothesized that all or 
some of the four possible stereoisomers of [Pt(triphos)2]2+ 
(cis-meso, cis-racemic, trans-meso, and trans-racemic) were 
in equilibrium in solution, and an average structure was 
observed at 25 °C. Exchange among the isomers required 
Pt–P bond cleavage. The Pt–P bonds were elongated, which 
was attributed to the substantial trans influence of the phos-
phines, may have facilitate bond cleavage within the system.

The 31P NMR spectrum of [Pt(triphos)2{Au(tu)}2]
Cl2(NO3)2 determined in methanol-d4 at 25  °C showed 
two singlets with platinum satellites at 92.21 (JP−Pt = 
1342 Hz) and 43.37 (JP−Pt = 1211 Hz) ppm ascribed to 
the Pt-PPh2 and Pt-PPh groups, respectively. In addition, 

Fig. 6  Perspective views of [Pt(triphos)2{Au(tu)}2]Cl2(NO3)2. a  The 
2D chain structure viewed from the b axis. b The packing structure 
viewed from the a axis. The red and blue dotted lines indicate the 

hydrogen bonds and CH···π interactions, respectively. Color code: Pt: 
white, Au: pink, P: orange, Cl: green, N: blue, C: gray, H: pale blue. 
(Color figure online)
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the spectrum showed two singlets without platinum sat-
ellites at 34.6 and 33.2 ppm due to the Au-PPh2 group 
(Fig. 7b). The overall spectrum was consistent with the 
C2 symmetric trinuclear  AuI

2PtII structure observed in the 
single-crystal X-ray analysis, except for the appearance of 

two signals due to the Au-PPh2 groups. The signal split-
ting presumably resulted from partial exchange of the 
tu ligands with the solvent in solution. Note that the VT 
NMR spectra of [Pt(triphos)2{Au(tu)}2]Cl2(NO3)2 from 25 
to − 80 °C showed no drastic spectral changes, unlike that 
of [Pt(triphos)2](NO3)2. Au-P bond formation may have 
suppressed Pt-P bond exchange, which maintained the cis-
racemic isomer of [Pt(triphos)2{Au(tu)}2]Cl2(NO3)2 even in 
solution.

Photophysical properties

The absorption spectra of the [Pt(triphos)2](NO3)2 and 
[Pt(triphos)2{Au(tu)}2]Cl2(NO3)2 complexes in methanol 
exhibited π-π* transition bands below 270 nm due to the Ph 
groups of the triphos ligands and a 1MLCT transition from 
 PtII to the phosphine groups at approximately 320 nm (Fig. 
S4) [37]. In addition, [Pt(triphos)2](NO3)2 showed a weak 
visible band at approximately 400 nm due to the 3MLCT 
transition.

The solid samples of [Pt(triphos)2](NO3)2 and 
[Pt(triphos)2{Au(tu)}2]Cl2(NO3)2 showed emission at 
77 K. The excitation and emission spectra are illustrated in 
Fig. 8. The excitation spectra of the two complexes showed 
π–π* bands at approximately 280 nm and 1MLCT bands 
at approximately 330 nm. The similar excitation spectra 
indicated that cis-trans isomerism around the  PtII center 
and the presence/absence of the {Au(tu)}+ moieties did 
not affect the absorption spectrum. However, the emission 
band for [Pt(triphos)2{Au(tu)}2]Cl2(NO3)2 (λem = 474 nm) 
occurred at a longer wavelength than that of [Pt(triphos)2]
(NO3)2 (λem = 438 nm). Moreover, the emission band for 
[Pt(triphos)2{Au(tu)}2]Cl2(NO3)2 revealed a structured 
pattern with a separation of ca. 1600   cm–1. This value 

Fig. 7  VT 31P NMR spectra of a  [Pt(triphos)2](NO3)2 and 
b [Pt(triphos)2{Au(tu)}2]Cl2(NO3)2 determined in methanol-d4

Fig. 8  Excitation (ex) and emission (em) spectra of a [Pt(triphos)2](NO3)2 and b [Pt(triphos)2{Au(tu)}2]Cl2(NO3)2 in the solid-state at 77 K
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was similar to the C=S stretching energy (1635  cm–1) of 
the tu ligand in [Pt(triphos)2{Au(tu)}2]Cl2(NO3)2, which 
was observed in the IR spectra (vide supra). Therefore, we 
propose that the emission of [Pt(triphos)2](NO3)2 involved 
charge transfer from  PtII to a phosphine (3MLCT) of the 
 [PtP4] moiety, while the emission of [Pt(triphos)2{Au(tu)}2]
Cl2(NO3)2 was ascribed to charge transfer from S to P 
(3LLCT) or S to Au (3LMCT) [38]. The large Stokes shift 
for [Pt(triphos)2{Au(tu)}2]Cl2(NO3)2 was explained by intra-
molecular energy transfer from the  [PtP4] to [AuPS] moieties 
and structural distortion of the  AuI ion in the triplet state. 
The quantum yields (Φ) of the two complexes were 6.9% 
for [Pt(triphos)2](NO3)2 and 16% for [Pt(triphos)2{Au(tu)}2]
Cl2(NO3)2. Multiple H bonds between the complex cationa 
and  Cl– may have reduced the molecular vibrations, which 
may have contributed to the strong photoluminescence from 
the  AuI

2PtII complex [Pt(triphos)2{Au(tu)}2]Cl2(NO3)2.

Concluding remarks

We crystallized and elucidated the structure of [Pt(triphos)2]
(NO3)2, in which two triphos ligands were chelated to the 
square-planar  PtII center with two of three P atoms. We also 
showed that the [Pt(triphos)2]2+ complex acted as P-donating 
metalloligands for  AuI ions by utilizing the two remaining 
P atoms. This was evidenced by formation of the trinuclear 
 AuI

2PtII complex [Pt(triphos)2{Au(tu)}2]Cl2(NO3)2, which 
was synthesized by reacting [Pt(triphos)2](NO3)2 with 
[Au(tu)2]Cl. Notably, we observed a structural transforma-
tion within the [Pt(triphos)2]2+ unit; the trans-meso isomer 
present in [Pt(triphos)2](NO3)2 underwent conversion to the 
cis-racemic isomer in [Pt(triphos)2{Au(tu)}2]Cl2(NO3)2. An 
NMR spectral analysis suggested that this unique trans-to-cis 
isomerization of the  PtII center was triggered by the reaction 
with  AuI and occurred through rapid equilibrium among the 
possible isomers in solution. The complexes [Pt(triphos)2]
(NO3)2 and [Pt(triphos)2{Au(tu)}2]Cl2(NO3)2 showed pho-
toluminescence at 77 K. The higher luminescence quantum 
yield for [Pt(triphos)2{Au(tu)}2]Cl2(NO3)2 relative to that 
for [Pt(triphos)2](NO3)2 was tentatively explained by the 
presence of multiple hydrogen bonds with  Cl–, which may 
have suppressed vibrational quenching of the photolumi-
nescence in [Pt(triphos)2{Au(tu)}2]Cl2(NO3)2. Finally, the 
present study demonstrated that square-planar  PtII species 
with two triphosphine ligands can serve as P-donating met-
alloligands with dynamic geometric isomerism for the future 
design and creation of switchable luminescent materials.
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