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Longitudinal data analysis with SEM

Longitudinal data analysis with structural equations

Abstract

p { Suprimit: We

of observable variables, (¢) models with latent variables, (d) models that are [ suprimit: unconditoned

- {Suprimit: and

independent variables: time-varying or time-invariant, and depending on the type of
independent variables: of latent variables or of observable variables), (¢) models with
interaction of variables, (f) models with non-linear variables, (g) models with a
constant, (h) with single level and multilevel measurement, and (i) other advances in

SEM of longitudinal data (latent growth curve model, latent difference score, etc.).

We have paid more attention to the interaction of variables and to non-linear
transformations of variables because they are not frequently used in empirical
investigation. They do, however, offer interesting possibilities to researchers who wish
to verify relations between the variables they obtain. Potential applications are

described, with their advantages and disadvantages.
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Longitudinal data analysis with SEM 1

Longitudinal data analysis with structural equations
Since Joreskog (1969), Keesling (1972) and Wiley (1973) first developed the statistical
model of structural equations, it has become one of the most widely used techniques for
analysing longitudinal data. So much is this the case that: (a) in most handbooks about
longitudinal data analysis one or several chapters are devoted to exemplifying structural
equation models (Amsel & Renninger, 1997; Bijleveld & van der Kamp, 1998; Collins
& Horn, 1991; Collins & Sayer, 2001; Dwyer, Feinlieb & Hoffmeister, 1992;
Fitzmaurice, Laird & Ware, 2004; Frees, 2004; Gottman, 1995; Little, Schnabel &
Baumert, 2000; Plewis, 1985; Singer & Willet, 2003; von Eye & Clogg, 1994); (b)
centres that provide training in longitudinal research offer courses in structural equation
modelling (SEM); and (c) there is a steady increase in the number of journal articles in
which this methodology is applied (Card & Little, 2007). An example of the importance
of SEM applied to longitudinal studies is reflected by the two chapters that Joreskog
(1974, 1977) published on this topic 30 years ago.

In this article we will briefly review the different models applied to the analysis of
longitudinal data by means of SEM. We keep the statistical theory down to a basic
level, but this work is also intended to be a practical guide for researchers who have to .
analyse longitudinal data. For this reason, we largely avoid dwelling on the basics of "
SEM and it is therefore assumed that the reader has some prior knowledge about this iy

subject matter. B

. . . . . i
on conducting his or her research, must ensure a proper integration of the following ') {
!
!
i ! /

,,,,,,,,,, )

aspects; (a) a basic theory with the correctly formulated hypotheses so as to be able to J/ [

/
/// /
,,,,,,,,,,,,,,,,,,,, J /

/

/

study of the variables to be measured, the time between measurements, the number of K

/
/

measurements, the age or ages of the sample, the time the research lasted, and so forth;

and (c¢) the statistical model of data analysis that is to be used as a method of confirming

(or, should it be the case, rejecting) the hypotheses that have been posited (Collins,

2006; Embretson, 2007; Little, Bovaird & Slegers, 2006; Little, Preacher, Selig & Card,
2007; Ram & Grimm, 2007). /
Before beginning any longitudinal study it is important to put forward hypotheses about //

the stability of the observable and latent variables, as well as the relations between K

{Suprimit: Un
!

Suprimit: importante aspecto a
tener en cuenta en cualquier
modelo SEM es que el
investigador, cuando lleva a cabo
su investigacion, ha de tener bien
articulados entre si los siguientes

L aspectos

J

e DY
Suprimit: una teoria de base con

las correspondientes hipdtesis
correctamente formuladas con el
fin de comprobar si los datos se

L corresponden con la teoria,

J

Suprimit: un correcto disefio de
investigacion

|
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Suprimit: con las variables a
medir, el tiempo entre
mediciones, el nimero de
mediciones, la edad o edades de la
muestra, la duracion de la
investigacion, etc. bien

L estudiadas,

J

Suprimit: el modelo estadistico
de andlisis de datos que sirva de
método de comprobacion (o, en su
caso, de refutacion) de las

L hipotesis planteadas
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Suprimit: Antes de comenzar
cualquier estudio longitudinal es
importante plantear hipotesis
acerca de la estabilidad de las

L variables observables y latentes
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relaciones entre las mismas

comprobando si
.
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| Longitudinal data analysis with SEM

variables and their corresponding observable variables are equal at each time of

measurement; (d) the internal correlations between latent and/or observable variables

The different models we will be looking at are as follows: (a) univariate and
multivariate models; (b) observable variable models and latent variable models; (c)
unconditioned versus conditioned to other variables; (d) with and without interaction
terms; (e) with linear and non-linear effects; (f) with and without constants; (g) with
measures at one and more than one level; and (h) diverse advances in longitudinal SEM.
In fact, there can be as many different models as there are combinations among the

preceding conditions, which is what makes SEM a highly versatile research tool.
Univariate models of observable variables

The theoretical foundation of effect models with observable variables lies in simple
regression (Pearson, 1896) and in path analysis (Wright, 1918, 1921). Path analyses are
a further development of regression, but with the addition of intermediate variables to
predict the response variable of interest. SEM encompasses both these observable

variable models and those with latent variables (or factors).

Univariate repeated measures models are those in which the same persons are measured
on a single variable on several occasions. Thus, if the variable V; is measured 4 times
(e.g. let us suppose we are dealing with a group of children for whom the variable ‘level
of knowledge of mathematics’ is measured at 6, 7, 8 and 9 years of age; in panel designs
this is represented by 4W1V, that is to say, 4 ‘waves’ or times, and 1 variable), then the
the first subscript indicates the variable (in this example it is always the same: V;,) and
the second subscript indicates the time of measurement (the first time, at the age of 6, is
represented by V; ;; the second time, at 7 years old, by V; », and so forth). The simplest

model for representing the nature of these data is shown in Figure 1.

Insert Figure 1 about here

In the graphic representation of the SEM we have followed Bentler’s (1995) system of
notation, which uses rectangles to represent the observed variables (V; 4, V;.2, Vi3 and

V1 4); the effects of some variables on others are represented by arrows (which show the

Suprimit: las varianzas de las
variables latentes y observables
son estables o difieren a lo largo
del tiempo,

Suprimit: lo mismo respecto de
las medias, tanto de las variables
observables como de las latentes,

Suprimit: las cargas, o
coeficientes, entre las variables
latentes y sus correspondientes
variables observables son iguales
en cada momento de medicion,

Suprimit: las correlaciones
internas entre variables latentes
y/o observables se mantienen
estables entre diferentes
momentos de medicion,

Suprimit: los efectos entre
diferentes momentos de medicion
son equivalentes o cambiantes

Suprimit: ,
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Longitudinal data analysis with SEM 3

direction of each respective effect), with the corresponding size of the effect (b;, b, and
b3); and the arrows that are labelled with the letter “E” (E; 2, E; 3 and E; 4) are the
residuals.
The model in Figure 1 is called a first-order autoregressive model (4R(1)), or
‘simplex’ or Markov model. The term ‘autoregressive’ refers to the fact that each
value of the variable V; at time ¢ depends only on the value of that same variable in the
previous measurement -/ (V;,=f(V} ¢.1))). This model was put forward by Guttman
(1954), but has since been developed by others (Anderson, 1960; Heise, 1969;
Humphreys, 1960). It should be noted that there is no £; ; in the model because one of
the assumptions of the model is that the independent (or explanatory) variables have
been measured without error. This model can be represented algebraically in a
compact form:

y=By+TIx+eg, 1
where y is the px/-order vector of dependent (or response) variables: y’ =[V; 2, Vi3,
V4], X is the gxI-order vector of independent variables: x=[V; /], € is the vector of
residuals: € =[E},, E; 3, E4], while the relations between the dependent variables are

represented by matrix B, of order pxp, and are as follows:

B=

& o

0 0
0 0f, (2)
b, 0

(=]

3

T is a coefficient matrix of order pxq that relates the independent variables with the

dependent ones, which in our case will be: I"” = [b,, 0, 0].

In order to estimate the corresponding parameters, matrix ¥ = Cov(g), where Cov is
the covariance operator so that Cov(Y,Y) = Var(Y), and ¥ is a matrix of order pxp,
must be added to the previous matrices. In our case, the residual variances (Cov(E| >,
E;,), Cov(E; 3, E;3), Cov(E; 4, E1 4) Will be represented on the main diagonals of this
matrix. Matrix @ = Cov(x), of order g xg, which represents the matrix of the

covariances of the independent variables, would also have to be added to the model.

The model in Figure 1 (which has 3 degrees of freedom) can be reformulated so that
each measurement depends on the measurement immediately before it but also on the
measurement performed at the last time but one. As a result, the model in Figure 2

could be proposed.

/{ Suprimit: q




Longitudinal data analysis with SEM 4

Insert Figure 2 about here

The model in Figure 2 (which would have 1 degree of freedom) is called second-order
autoregressive (AR(2)) because each value is a function of the two measurements
immediately preceding it (V;,,=f(Vi -1, V1,-2)), and if there were evidence that the
measurements of the different times were closely related, a third-order autoregressive
model could be contemplated, where a new effect (bs) would have to be added to the
model in Figure 2. This effect would go from V; ;to V; 4 and in general for any AR(3)
model it would be: Vi, =f(V1 -1, V14-2,V143). To be able to formulate a p-order

autoregressive model, we need at least p+/ measurements.

The AR(3) model above would have 0 degrees of freedom, and therefore it would not be

- { Suprimit: hypothesis

- {Suprimit: hypothesis

Figures 1 and 2) are the equality of the effect parameters, of the variances and between

covariances of the residuals (Brown, 2006):

- { Suprimit:

Figure 1, it could be hypothesised that,b; = b, = b; and, following on with the same -~ {suprimit:
logic, in the AR(2) model in Figure 2, it could be considered that b; = b, = b3, and alsq, -~ } ?pr!m:: :
- uprimit: :

b4 = bs. These assumptions make more sense if the time span between variables is the
same, and if it is assumed that the process does not change over time (which is more

likely to occur with adults than with small children).

(b) Since the same variable V;; is measured on several occasions, the residual variances
could be assumed to be equal; thus, in the models in Figures 1 and 2, Cov(E} ,,
E;>)=Cov(E;s E;3) = Cov(E; 4, E; 4) can be included in the syntax of the constraints
paragraph of the input for the statistical software that is being used (Cov is the
covariance operator so that Cov(Y,Y) = Var(Y)). This assumption makes more sense
when the variances of the variables have roughly the same value, which is more
frequent in research conducted with adults. This is due to the fact that when the same
variable is examined in small children, the variance is usually seen to increase with age

and the previous constraint will not be fulfilled empirically.

(c) Different assumptions can be made about the residuals. It might be reasonable to

suppose that, because the same variable is being measured several times, the residuals at

time 2 (£7,) will covary with those from time 3 (£} 3), that is to say, Cov(E; ;,E; ;) will {Suprimit. ”




Longitudinal data analysis with SEM 5

be left free (i.e. # 0), those from time 3 will covary with those from 4 (Cov(E; 3,E; 4)),
which could also be left free, and so forth, if there were more measurement times

(Cov(E; 4 Eys), ...). These parameters will therefore be included in the corresponding

- { Suprimit: ,

,,,,,,, e ‘[Suprimit: s

this assumption were added to Figure 1, the resulting model would be like the one in
Figure 3. From Figure 3 onwards, we will follow the convention of representing

covariances by means of curved lines with arrowheads at both ends.

Insert Figure 3 about here

(d) Bearing in mind that it is the same variable, and that the same covariance processes
occurring between errors can be repeated between consecutive measurements, the

following constraint can be added: Cov(E; ,, E;3) = Cov(E; 3 E14) = etc.

(e) The residuals at each occasion can be interpreted as ‘innovations’ of the variable at
the time of measurement (Box, Jenkins and Reinsel, 1994), as they are a part of the
same variable that is not explained by the previous variable or variables. Thus, a first-
order moving average model (MA(1)) can be put forward, in which each value of the

variable at any given time (V;,) is a function of the previous error for the same person

- {Suprimit: ing

Insert Figure 4 about here

In fact, the model in Figure 4 is a first-order autoregressive and first-order moving
average model (ARMA(1,1)). 1t is possible to add the constraint whereby the effects of
the moving averages are invariant over time (as is assumed in Box-Jenkins time series
models), by leaving b, = bs. The constraints mentioned above for the effects, variances

and covariances of the residuals can also be applied to the model in Figure 4.

P { Suprimit: hypotesis

model, but if used wisely they help to identify the underlying model that generates the
data. The models that have been outlined here constitute the basis of SEM, and
understanding and being able to apply them is an almost indispensable condition before

moving on to more complex models.
Multivariate models of observable variables

Multivariate models of observable variables, as we have already stated, are an extension
of univariate models. For example, let us suppose that (as in Figure 1) the same children

are measured at 6, 7, 8 and 9 years of age on the variable ‘level of knowledge of

/{ Suprimit: q




Longitudinal data analysis with SEM 6

language’ in addition to their ‘level of knowledge of mathematics’: the design would

now be represented by 4/W2V. As we have seen, the variable ‘level of knowledge of

- {Suprimit: ;

‘level of knowledge of language’ is represented as V5, V2, V53 and V5 4. One
advantage of measuring two variables is that it becomes possible to study the directional
effect of one variable on the other. That is to say, the researcher can formulate two
research questions, namely, do the two variables develop independently of each other,
or does the variable ‘level of knowledge of mathematics’ exert a greater influence over
that concerning ‘level of knowledge of language’ or vice versa? This gives us the model

in Figure 5.

Insert Figure 5 about here

In Figure 5 the covariance between the variables V; ;, V> is represented by lines with
arrowheads at both ends that join the two variables; if the variable ‘maths ability’ (V7 ,
Vi2 Visand V) exerted an influence on ‘language ability’ (V3,;, Va2, Va3 and V3 4),
then the effects bs, b;9 and b;, could be expected to be statistically significant; if the
opposite were true, then the significant effects would be by, b;; and b,;. In each case the
researcher must have some substantive hypotheses that justify the specification; if only
a few of the previous effects were significant, the researcher would have to establish an

explanation for these findings and their meaning.

The mathematical representation of the model in Figure 5 would have the same form as

the one in Equation 1, but the y vector of the dependent variables is now of order 6 x/:

. _ - Suprimit:
Y =12 Vi3 Vi Voo Vos. Vo), the X vector is now of order 2x1: v 1w
1,2 1,3 1,4

x’= (V.1 V21), while € is the vector of residuals, which in our case is of order 6x/: & =

(Ej2, E13.E1 4. Eso, E> 5. E> 4), B being of order 6x6:

00 0 000
00 0 000
g_|b by 0 000
b, b, 0 0 0 0|
0 0 b by, 00
0 0 b, b, 00

and I' is a coefficient matrix of order 6x2 that relates the independent variables with the

dependent ones:

/{ Suprimit: q




Longitudinal data analysis with SEM 7

pofb by 0000
by b, 000 0)

Matrix W is of order 6x6, and in our case the variances of the residuals (Cov(E; ,, E; 2),

Cov(E;3,E13), ..., Cov(Esy, E>4) will be represented on its main diagonal; the main
diagonal of matrix @ = Cov(x), of order 2x2, will contain the variances of V; ; and of
V> 1, while the other two elements of the matrix contain the covariance between V; ; and

szl.

Sometimes the crossed effects between variables V;, and V,, are contemporaneous
(either reciprocal or unidirectional) rather than lagged; thus, it can be supposed that in
the model in Figure 5 the variables ‘level of knowledge of mathematics’ and ‘level of
knowledge of language’ influence each other at the same time. The model would
therefore be non-recursive (two or more variables exert an influence on each other); a

feasible representation of such a model is shown in Figure 6.

Insert Figure 6 about here

If the variable ‘level of knowledge of mathematics’ (V;;, V12, V13 and V; 4) influenced

‘level of knowledge of language’ (V>.1, V2.2, V23 and V> 4), then only effects by, b;; and

- { Suprimit: by

b;3 in Figure 6 would be significant. If, jn contrast, the variable ‘level of knowledge of -

language’ were the one that exerted an influence on ‘level of knowledge of

mathematics’, then parameters bs, b;9 and b;, would be significant. If no crossed effects

- {Suprimit:

between the variables (bs, bo, bio, .., by3) were significant, then this would indicate that -

the variables V;, and V>, develop independently, with just the initial covariance

(Cov(V 1, V) representing the preliminary relation between the two.

The model in Figure 6 is non-recursive because there are one or several interdependence
‘loops’ between variables; note that there is a reciprocal influence between V;, and V2,
between V; ; and V) 3, as well as between V; , and V4. These models are also called
interdependence and simultaneous equation models and can lead to identification

difficulties (Bentler & Raykov, 2000; Bollen, 1989; Hayduk, 1996).

The constraints outlined in the section about univariate models of observable variables
for the effects, variances and covariances can be added to the models in Figures 5 and 6,
but in Figures 5 and 6 the covariances of contemporaneous measurements can be taken
as being free: Cov(E;,, E; ), Cov(E; 3, E33), Cov(E; 4, E24). In Figures 5 and 6, this

could be represented by lines with arrowheads at both ends that join the respective

measurement errors. The constraint Cov(E; ,, E;3) = Cov(E; 3, Es3) = Cov(E1 4, Es4) {Suprimit: q




Longitudinal data analysis with SEM 8

could still be used in Figures 5 and 6 to add the assumption that the three

contemporaneous covariances have the same value.
Models with latent variables

Models with latent variables (also called factors) suppose the existence of a variable that
is not measured directly, but which determines the values of the observable variables
that are manifestations of that same latent variable. Thus, for a particular person, the
empirical value of an observable variable is a function of the score for the latent
variable obtained by that individual and the measurement error. In this way, if we have
several measurements carried out in different mathematics tests and a latent variable is
established for those same scores, the grade obtained by a child in a test is a function of
the one attained in the factor, plus their corresponding error. Spearman (1904) was the
author who developed the factorial analysis model but, as has been stated above, SEM
embrace regression, path analysis and factorial analysis. It can be hypothesised that the
variables measured in Figure 1 are determined by one factor, and the model would now
therefore be the one shown in Figure 7. Note that, following the convention usually

employed in SEM, the latent variables are represented inside ovals or circles.

Insert Figure 7 about here

This model would correspond to the equation:

y=Am+e, “)
where y’ = [V; 1, V12, V13, Vi4], but now there are no longer values for x, but instead
scores for the latent variable F';; € is the measurement error vector: &” =[ E; 1, E; 2, E; 3,
E, 4], while the effects of the latent variable F; on the dependent variables will be: A’y =
[b;, by, b3, by], and matrix n = [F/].
Notice how this model indicates that the values obtained for each person on the
measurement variable V;, are a function of the value obtained for each child on the
latent variable F';. Note too that, bearing in mind that we are dealing with time data,
each value of V;, can be expected to be a function of /7, but also of V; .;) (that is to say,
Vii=f(F1,Viu1)). If this hypothesis were formulated, the resulting model would be as

shown in Figure 8.

Insert Figure 8 about here

Because the model in Figure 8 is saturated, for it to be estimated (if it is assumed that

the autoregressive effect is the same over time) the parameters can be set by means of

/{ Suprimit: q




Longitudinal data analysis with SEM 9

the following constraint: bs = bs = b;. Alternatively, it can be assumed that the effect of
the latent variable on the observed variables is the same over time: b; = b, = b3 = b,.
The same constraints concerning the variances and the covariances of the errors can be
applied to the models in Figures 7 and 8 as those applied in the section ‘Univariate

models of observable variables’.

Note that the estimation of the values of F'; and of the parameters b,, b,, b; and b, are
related, so that if the variance of F; is multiplied by 2, the values of the parameters b,
b,, bs and b, would be divided by 2 to give the same solution (and the same would occur
with any other value, since on multiplying the variance of the factor, the value of the
corresponding coefficients would automatically be divided), and the system would
therefore admit an infinite number of solutions. This problem in factorial analysis is
solved by standardising the values of F';, that is to say, by setting the mean of F;to 0
and the variance to /. In SEM the most frequent solutions consist in either setting the

variance of F; to I or making one of the coefficients of F'; on its observed variables

P {Suprimit: doing equal to one J

P {Suprimit: equal to one

)

Slegers & Card, 2006). Note that SEM, by default, differentiate variables with regard to
their respective mean; they do not therefore estimate constants and only model the

relation between variances and covariances of the variables.

P { Suprimit: ment

It may be thought that the observed variable, V; 1, Vi, Vi3, V14, is the measure, with -

model would thus now be that shown in Figure 9 (Joreskog, 1974, 1977). The
measurement errors of the factors (or disturbances) are represented by means of the

letter D with the subindex that corresponds to the factor.

Insert Figure 9 about here

Remember that the metrics have to be set for each factor; it is therefore advisable to set
the values of each coefficient by, bs, bs and b; as being equal to unity, the metrics for

each factor being equivalent to those of their corresponding observable variable.

This system of estimation has several advantages, above all when the data obtained do
not have the same time interval. But let us suppose (in the opposite case) that data about
the variable V;, had been measured at 6, 7, 9 and /0 years of age for each child (only

the measurement at the age of 8 is missing). One way of representing and estimating the

. {Suprimit: measure

variable development model would be that shown in Figure 10, in which factor Fs (Suprimit: «




Longitudinal data analysis with SEM 10

would represent the ‘missing’ measurement at the age of 8 (Dunn, Everitt & Pickless,

1993). Note that the effect of F, on F,; is multiplicative (in standardised scores: b,x b3)

P { Suprimit: normally

****************************** S ‘[Suprimit: that

values. “{ suprimit: 1

L

Insert Figure 10 about here

In Figure 10 each value of the effects bs, bs, b7 and bg must also be set to equal unity,
while the effects among latent variables can be left as being equal (b; = b, = b3 = b,), if

it is assumed that the effects among factorial scores are the same over time.

SEM mainly model the covariances and variances between the different variables and
factors (especially if no constants are added to the model), but there are cases in which
the variance of the variable measured over time increases or diminishes systematically.
A good system, therefore, for modelling that gradual change consists in using latent
variables of a temporal nature that take into account the variability in the variance.

Figure 11 shows a ‘random walk’ (or Wiener) model in the time factors.

Insert Figure 11 about here

As has been pointed out earlier, in measuring cognitive variables or those concerning
the performance of small children, the dependent variable usually increases with age
and so the variability at measurement time 1 is determined by F;, and the increase in
variability at each age is given by the influence of the successive factors F>, F; and F,.
It is wise to set all the effects of the factors on the variables (from b; to b,9) as having a
value of one; by so doing it is assumed that the effect of the variability of each time
factor is kept constant across the different variables over time and that each successive
factor increases the variability of the measurements in a constant manner. This model
can also be reformed with additional hypotheses about autoregressive effects between
factors, or between observable variables, and constraints on the values of the variances

or covariances of the errors can be added.

From what has been outlined so far about models that have latent variables with a single
(univariate) variable measured at different times, it is easy to generalise the procedure
for multivariate models (in which several variables are measured at each time). If two
variables were measured at each time, it would be possible to put forward the
hypothesis that the measurements at each time are a function of one factor (i.e. if two

performance variables were measured, the factorial capacity of the child at each time

/{ Suprimit: q




Longitudinal data analysis with SEM 11

determines the values obtained on the observable variables). Moreover, the value of
each factor is influenced by that of the factor immediately before it and would result in

the model shown in Figure 12.

Insert Figure 12 about here

It could be hypothesised that the autoregressive coefficients between the factors are
equal (b; = b, = b;) and even that the effects of the factors on the respective observed
variables remain constant over time (of the factors over V; . by = bs = bs = by, and
those of the factors over Va,: bs = b; = bg = by;). As far as the variance of the errors is
concerned, another hypothesis could be formulated by which the variances of each
respective measurement error belonging to the same variable are equal, that is to say,
with respect to the variable V; - Cov(E; 1, E; 1) = Cov(E; 2, E;2) = Cov(E; 3, E;3)=
Cov(E 4, E1 4), and/or alternatively, with respect to V- Cov(Ez 1, Es 1) =

Cov(E; 2, Erp) = ... = Cov(Esy, Ezy).

With regard to the covariance among these errors, the covariance between observable
variables for the same measurement time can be left free, since it is to be expected that
an individual who had a ‘bad’ day at one time of measurement would have lower scores

for that time, and that if he or she had a ‘good’ day then the scores for both variables

- {Suprimit:

-

free. It is even logical to suppose that the previous covariances would be equal.
Likewise, the covariances between consecutive times can be left free, but within the
same variable; that is to say, for the variable V;,: Cov(E; 1, E13), Cov(E; 2, E; 3) and
Cov(E; 3, E; 4), and for V5. Cov(E> 1, E ), Cov(E, 2, Es3), and Cov(E, 3, E,4). Because
we are dealing with a repetition of the same variable, the equality of the covariance
values can be included in the constraints paragraph. Thus, for V;,;: Cov(E; ;, E12) =
Cov(E;,, E13) = Cov(E, 3, E| 4), the same procedure being followed for the covariances

between the errors for V.

The previous model can be expanded by developing a system in which there is an
autoregressive model in the time measurement factors, and with factors indicating the
variables. In Figure 13 the time measurement factors would be F;, F, F; and Fy, and

the factors indicating the variables V;, and V>, are F's and Fj, respectively.

Insert Figure 13 about here

/{ Suprimit: q




Longitudinal data analysis with SEM 12

Thus, if any observable variable is taken, its measurement depends on the time factor
and on the factor indicating the variable, which for the values of V;, will be factor Fs,
whereas for those of V3, it will be Fs. The covariance between the factors indicating the
variables (Cov(F’s,Fg)) is taken because it is assumed that both variables measured are of
the same type; if we were to hypothesise that the factors indicating the variables V;; and
V5. (Fs and F) would covary with the first time of measurement (), then Cov(F';,F’s)
and Cov(F;,Fs) would have to be left free. It will also be necessary for one of the
coefficients of each factor indicating the variables to be given a value of unity (for
example: b;, and by4); in this case it can be assumed that the effect of each indicating
factor on its corresponding variables is the same. If this were true, then we could
confirm the hypothesis about the effect between F’s and its corresponding variables: b3
= b4 = b5, and between Fy and its variables: b;7 = b;s = b;9. The same constraints
concerning the variances and covariances as those stated earlier can be applied to this

model.

If we formulate the hypothesis that there is a second-order factor that influences the
time measurements and the factors indicating the respective variables, then it becomes
possible to create a new latent variable /7, which will exert an influence on: F, F, ...,

Fs (in this case we would also have to add the measurement errors that were previously

- {Suprimit: :

went from F to one of the other factors). This second-order factor (F7) would indicate
that the variables measured are very stable and that people change while maintaining the
same relative position over time in each variable, so that those who maintain a high
score in one of the variables at the first measurement of the first variable tend to have a
high score at the first measurement of the second variable — a pattern that is repeated

over time (Rosel & Elosegui, 1991).

As was pointed out earlier, univariate models of observable variables are the basis for
understanding SEM applied to longitudinal designs, and multivariate models are an
extension of univariate designs. Latent variable models, however, represent an
important leap forward in terms of quality with respect to the previous section and are

an extremely versatile and useful tool with which to study change in processes that take

_{ suprimit: and biological

Unconditioned models versus those conditioned to other variables
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The SEM we have discussed so far are unconditioned because we only measure the
same dependent variable or the same dependent variables several times, the independent
variable being the first measurement of the variable. Thus, the same variable was
independent or dependent according to the time of measurement.
It is possible to formulate models that are conditioned to other variables by making
these the independent (or exogenous) variables inherent to the system itself; these
independent variables can admit two variations, which are: (i) depending on the
variability of the independent variables: time-varying or time-invariant (i.e. that do or
do not change over time, respectively), and (ii) depending on the type of independent
variables: latent variables or observable variables.
So, if in Figure 5 it is assumed that there were a latent variable ‘general cognitive level’
(F;) that was measured at the first time and that this were determined by two variables,
that is, age (X;) and the number of correct answers on Raven’s progressive matrix test !

!

(X>), F; in this case being the independent variable of the system, the model would now

over time.

Insert Figure 14 about here

JThe model in Figure 14 cannot be estimated directly with the LISREL program because J‘

no relation between the observable dependent variables is allowed by this statistical

formulation (when they derive from an observable variable that indicates a latent

variable; that is to say, the LISREL model does not admit relationships between_V; ; and

dependent observable variable, V; ;. Vi Vi Vig Vo1 Voo Vs, Vo g, is identified by

means of a latent variable without error and with an effect on the corresponding

observable variable equal toone.,

Instead of using a latent variable as the ‘motor’ of the system, observable variables can
also be used. Thus, if the independent variables X; and X> do not form a factor, but they

are hypothesised as being the exogenous variables of V; ,and V>, then the model in

Figure 15 can be proposed.

Insert Figure 15 about here
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V> or towards the remaining variables); in contrast, it can be estimated with other o

programs (such as EQS, for example), One way of estimating the model in Figure 14 |

lado, y las variables V5, Vs, Va3
y and V>4, on the otherpor el otro
lado, would be left with a
configuration similar to the one in
Figure 9quedarian con una
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By so doing, the metric of each
observable variable and its
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la métrica de cada variable
observable y su correspondiente
latente seria idéntica,. As a result,
the effects among latent variables
would be the same as those
obtained using another program
(for example, EQS) and,
moreover, the level of fit of the
model and the degrees of freedom
coincide con lo cual, los efectos
entre las variables latentes serian
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mediante otro programa (p.ej.: el
EQS), ademas, el nivel de ajuste
del modelo y los grados de
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/{ Suprimit: ]




Longitudinal data analysis with SEM 14

As in the model in Figure 14, if we propose that X; and X, present a permanent effect
over all the measurement times, the corresponding effects of X; and Xoon Vi, Vis, Vi,

V2, V>3 and V> 4 can be added.

The two time-invariant conditioned models described here, that is, latent variables (see
Figure 14) and observable variables (see Figure 15), can be generalised and applied to
the models of latent variables mentioned above, for example, from Figure 8 to Figure
13.

With respect to the time-varying conditional models, let us suppose the model in Figure
12, in which the cognitive capacity of each child has been measured at each time as the
number of correct answers in an intelligence test (X;,). This exerts an influence at each
respective measurement time and, through the respective factors, would affect their
capacity for language and mathematics; the result would therefore be the model in

Figure 16.

Insert Figure 16 about here

Note that in Figure 16 we have included all the possible covariances between the

- {Suprimit:

independent variables X; ;, X}, X; 3 and X; 42 Cov(X; ), Xi2), Cov(X11, X13), -
Cov(X1 3 X1 4), assuming that there is a correlation between the children’s scores at each
time of measurement. If we assumed that the independent variable X; , was temporally
dependent on itself (instead of covariation), then we would have to remove the
covariances between X; ;, X;», X; 3 and X; 4 and put in the effects that correspond from

X]J tOXI‘g, fI'Oij‘g tOX1‘3 and fI'OIIlX]j tOX1’4.

Figure 17 shows a development model conditioned to time-varying factors. If we
assume that the following are measured in the children: the variable ‘level of knowledge
of mathematics’, represented at the four times by V; ;, V2, Vi3 and V; 4 the variable
‘level of knowledge of language’, represented as V>, V32, V23 and V5 4; and a general
intelligence test (X;,) and Wechsler’s block design test (X,) are used as independent
variables (or covariables), and that both intelligence tests form a temporal intelligence
factor (F’s, Fs, F7 and F) and, furthermore, that there is a time dependence between the

factors, then the model would be the one in Figure 17.

Insert Figure 17 about here

Note that, statistically, the independent variable of the system is factor F’s, which means

it has been measured with no error; if we were to assume that the temporal intelligence

factor (F’s, Fs, F7 and F) is covarying over time (instead of having a temporal {Supnmit; q
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dependence), then we would have to remove effects b4, ;7 and b5, the errors of

measurement of the factors D4, D7 and Ds, and add the covariances among factors Fs,

- { Suprimit:
. { Suprimit: §

The same considerations as those made in the section about ‘Univariate models of

observable variables’ and ‘Multivariate models of observable variables’ can be repeated

here with respect to the measurement errors of the variables V;, and V>, in order to gain

degrees of freedom and facilitate the convergence of the model estimators.

As can be seen, including substantive (‘time-invariant’ or ‘time-varying’) independent
variables in SEM adds new possibilities to the estimation of effects between variables,

and to the search for dependence among them.
Models with interaction of variables

When two or more variables are being measured, one of them, or a new dependent
variable, can be hypothesised as being a function of the interaction of two (or more)
independent variables (Aiken & West, 1991; Aiken, West & Pitts, 2003; Jaccard,
Turrisi & Wan, 2003). Interaction of variables is understood to mean the product of
them. Thus, if we propose that the interaction between consuming alcohol and tobacco

favours the appearance of cancer, then we have to measure the rate of alcohol and

- {Suprimit: rate

the product of both for each person, while at the same time, as a dependent variable, it
would serve as an indicator of cancer. In interaction of variables, an overriding principle
is that of ‘nesting’: when an interaction of variables is used, we must utilise the
variables and corresponding interactions that lie on a lower level. Thus, if the
interaction of the variables X, Y and Z were used in a model, the variables and
interactions XYZ, XY, XZ, YZ, X, Y, and Z would have to be employed so that the model
makes substantive sense and the forecasts established by the model can be performed

correctly.

There are three interaction procedures in SEM: interaction between independent
observable variables, interaction when the observed variables are part of the same factor
and interaction between factors, with their corresponding observable variables (Jaccard,
Turrisi & Wan, 1999; Kenny & Judd, 1984; Ping, 1995; Schumacker, 2002;
Schumacker & Marcoulides, 1998; Schumacker & Lomax, 2004).
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Let us suppose that in Figure 5 the interaction of V;, and V>, exerts an influence on the
development of the variables V;, and V>,. Thus, if a new variable is generated, it should

be the interaction of V;, and V,, for each time:

Visoi=Vii*Vay, 1)

P { Suprimit: in

mind that it has an influence on V;, and V>, we would propose the model in Figure 18.

Insert Figure 18 about here

Note that in Figure 18: (a) the interaction between variables V;x;;, Vi+2, and Vs« ; have
been included in the model; (b) the covariances between all the independent variables of
the model have also been included; (c) the variable V; , is a function of V; ;, of V,;and
of the interaction between both of them (V2 ;). The same thing happens with the
variables V; ;[ Vi3=1(Vi2, Voo, Visoo)and Vi 4[Vi4=fV13, V23, Vix3)], and the
variable V,, depends on the interaction of V., that is to say: Vo ,=fV;.1, Va1, Vis21),

Vos=fVi2 Vo Viszo)and Vo y=£Vi3, Va3 Viss3).

It can also be supposed that the interaction between variables is time dependent and, in

- {Suprimit:

Vit 2= f(Vixo,1) and Vi 5= f(Vix,2).

Should there be an interaction between variables within the same factor, so that they
affect another factor, we would have to create a new factor resulting from the
interaction between the two of them. Thus, if in Figure 12 it is assumed that the
interaction of the variables V;; and V>, within each factor F; affects the factor Fi.;, we
would have to obtain the product of the variables from equation (6), including the

product within a new factor, as shown in Figure 19.

Insert Figure 19 about here

We can hypothesise that F's, Fsand F7 are time dependent, and therefore we would need

- {Suprimit: ,

It is easy to apply the interaction of variables between factors and the references cited

above can be consulted for further information on this matter.

In models of interaction of variables it is also possible to use the same procedure as that
proposed in relation to the errors in measuring the variables V;, and V>, in the previous

sections.

/{ Suprimit: q




Longitudinal data analysis with SEM 17

Models with non-linear variables
Strictly speaking, these ought to be called models with transformation to non-linear
variables; thus, it becomes possible to propose a model in which a variable (Y;) is a

function of the value of the same variable at a previous time (Y;.;) and of the square of

- {Suprimit: :

indicates that the relation between Y;and Y;; is quadratic. This non-linear relation can be
of any other type (and not only quadratic): cubic, quadratic, logarithmic, square rooted,
and so forth, or other more complex, exponential-type functions: logistic, Gomperz, and
so forth. Even interaction models are a special case of non-linear transformation
(Etezadi-Amoli & McDonald, 1983; Jaccard, Turrisi & Wan, 1999; Joreskog & Yang,
1996; Kenny & Judd, 1984; McArdle & Nesselroade, 2003; Schumacker, 2002;
Schumacker & Marcoulides, 1998; Seber & Wild, 1989).

If, in the model in Figure 1, it were assumed that ¥,=f(Y,,, th_ 1), then the graphic

representation would be that shown in Figure 20.

Insert Figure 20 about here

In Figure 20: (a) the squares of the respective independent variables have been included
in the model; (b) the covariances between all the independent variables in the model are
also included, Cov(V7;,;, V21, I V? 12 V? 1.3) meaning all the pairwise covariances of the
independent variables, that is to say, Cov(V; , V2 .5 V? 1.2, VZJ, 3): Cov(Vy, VZJ_ 1)
Cov(Vyy, v 1.2), -, Cov( V? 1.2, v’ 1.3); and (c) note that the variable V; ; is a function of
V,.1, and of the square of the same variable [V, ;=f(V,.,V*1.;)]. The same thing happens
with the variable V; 3, which is a function of V;, and of the square of this same variable
(V1) (thatis: ¥y 3=£(V15, V1)), and lastly: V=V 3 V"1 3).

If the quadratic effects were not significant, it would be necessary to withdraw effects
bs, bs and b, together with their corresponding independent variables (VZ Ine V2 12 and

12, 3). By so doing, the model would become the one shown in Figure 1 again.

Instead of the quadratic model between observable variables suggested here, any other

non-linear transformation of the variables could also be hypothesised.

The non-linear model of observed variables can be generalised to latent variables and,
thus, a quadratic model of the effect of one factor (F' 2;) on another factor (F+;) could
also be proposed and, hence, F+;=f(F,, F*,). The model in Figure 9 would then become

the one in Figure 21.
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Insert Figure 21 about here

as we have explained in the previous section.

The covariances among the pairwise independent variables, Cov(F, Fs, Fg, F7) =
Cov(F,, Fs), Cov(F,, Fg), ..., Cov(Fs, F7), must be added to Figure 21.

Supposing the quadratic factors were not significant, then the corresponding effects b;>,
b3 and b4 would not be significant either. If the quadratic effect b;; were significant
(that is to say, from F to F73), but one of the effects of Fs on its indicator variables were
not significant, then all the effects and their corresponding indicator variables would
have to be left (due to the principle of hierarchy, for the appropriate forecast of F3).

We can also assume that F’s, Fsand F7 are time dependent and, therefore, we would

have to remove Cov(F’s, Fg, F7) and add Fs = f(F's) and F; = f(F).

When the time intervals between successive measurements are different and it is also

- { Suprimit: over
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each measuring unit is identified by a constant (e.g. a); (ii) each autoregressive
coefficient is made equal to the constant a raised to the power of the time interval;
additionally, (iii) the value of @ must be less than unity, so that the more time has
passed, the lower the effect of the passage of time will be. Thus, let us suppose in
Figure 21 that one year passes between the first and the second measurement, a year and
a half between the second and the third, and 10 months between the third and the fourth
measurement. In the constraints paragraph of the syntax of an SEM statistical program

it could be indicated (by reducing the time unit to months) that b,= a’*, b,= a’®, bs=a'’,

and a<l/.

The criteria of the variances and covariances of the errors that were proposed earlier can

be applied.

Both the procedures of interaction between variables and those involving their non-

linear transformation enable the researcher to optimise the information that is available.

This is because, although generally speaking data collection tends to be the most

_ - Suprimit: In factor Fs (factor of
Fsquared), the parameters have
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following criterion: b,5=(b4)2;
bis=bs*bs; b17:(b5)2; bm:(ho)zf
big=bs*bs; bzn:(b7)i; bu:(b8)zf
byy=bs*by; br;=(by)’; that is to
say, the variable V; ; squared
(V2,,) that receives the effect of
Fs must have the square of the
coefficient of F;0on V;;, the same
being true for the factors Fsand F;
: with respect to their variables.
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demanding part, with the data already available to the researcher it is possible to test
more hypotheses concerning the same variables with their corresponding

transformation.
Models with constant

SEM initially relate covariances and variances between the variables. The model
differentiates (or centres) the observable and latent variables with respect to the mean,
with the resulting loss of information about the constants. Nevertheless, it is sometimes
very important to obtain the value of the constants of the model. In longitudinal designs,
this is the case when comparing the results in terms of an intervention in different
groups or to determine the change of level in a variable.

As an example, let us suppose that in the case of Figure 1 we were interested in
verifying the constant at each measurement time; this would therefore give us the model

in Figure 22.

Insert Figure 22 about here

In the representation of the constants we followed the system put forward by McArdle
and Epstein (1987), in which the constants are distinguished by an arrow with a triangle
placed at the origin with a number ‘1’ inside it. It must be borne in mind that the
variable V; ; now admits forecast error (£, ;). The substantive interpretation of the other
elements and symbols in Figure 22 is the same as that for Figure 1 (except in the

constants that have been added).
The model in Figure 22 can easily be extended by including the vector of constants in
equation (1):

y=0y,+By+Ix+eg, 6)
where additionally: x = ay+ A& + 0.
Interpretation of the symbols is the same as that explained in Equation 1. In our case,
oy’ = [k; k> ks ky), 0x, Ay, & and  are null matrices, and ¥° = [(Cov(E 1, E11), (Cov(E 5,
E;,), Cov(E; 3, E;3), Cov(E, 4, E; 4)]. Similarly, the substantive interpretation of the

- Suprimit: )J;

other elements and symbols in Figure 22 is the same as that for Figure 1 (except in the
constants that have been added).

One important aspect to be taken into account in Figure 22 is that, as in the other
regression models, the values of the constants do not necessarily have to be those of the

means (Rosel, Arnau & Jara, 1998; Rosel, Jara & Arnau, 2002). Instead, they are

il {Suprimit: similarly
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conditioned to the value of the mean of the variable that they have as a dependent

variable, and also that of the effects they receive through the independent variables. For

example, in Figure 1, let us suppose that the means of each variable were V_L1 =50, 1,

=60, V,, =70 and ¥, ,= 80 and that the results of the coefficients were b; = 0.60, b,

=0.70 and b; = 0.85; the equation of the variable V; ; would be V;; =k; + E; ;, and its

expected values E(V; ;) = E(k; + E; ;). As aresult, V_L1 = k;, and the value of k; would

,,,,,,,,,,,,,,,,,,,,,,,, v _

Vi, =kt brV,,, ka=V,,-b;V, =60 -0.60-50 =30. Hence, the value of k;no longer

depends only on the mean of V; », but also on the coefficient b; and on the mean of V; ;.

Likewise, we would have k;= 28, and k,= 20.50, which proves that the value of the
constants diminishes over time, despite the fact that the means of the variables increase.
As can be seen with this simple example, there does not necessarily have to be a relation
between the means and the constants, and therefore the magnitudes of the constants

cannot be taken directly to compare the means.

JIn conclusion, the values of what most authors call ‘structural means’ are not these

recommend comparing the means of the observable variables taking the covariances

among variables (with no effects among them) as the reference model, which thus

(2006), which constrains the mean of the effects of the latent variable on its

corresponding observable variables to a value of one,

With single level versus multilevel measurement

Up to this point the models have been developed under the assumption that the
parameters are fixed. In other words, we have not considered the possibility that these
parameters (for example: b, in Figure 1) might vary across units, perhaps from one

higher level unit such as a geographical area to another. Suppose we have a response or

pattern of missing data after the first occasion. Let us also suppose that our sample is
structured in such a way that each case is located in one and only one cluster (pupils (7)

within schools (j), for example). Our observations are Vy;, ¢ (measurement occasion) =
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U

| 1, ... T; (max. T; =4); i (case) = I, ..., n;; j (cluster) = /, ..., J and we will assume that V </’}2:Z:::I
~MVN (n, Q).  {‘suprimit:
We can approach the analysis of these data in a number of ways, depending on our
underlying research question. The first method is to model V; as a function of one or
more earlier or lagged measures of V, that is V., k > 0, along with other explanatory -~ {suprimit: e
variables. This approach is particularly useful if we seek causal conclusions about, for
example, the effect of an intervention in the absence of randomisation (see, for example, {

_ | suprimit: ,

Plewis, 1985). We can regard each of the three responses V;, f > [,as a multivariate set -~

. {Suprimit: exogeneous

Vaig =bay; + b2V + €3 (2.a)
Vig = by, +b3Viy + b3V + ey (2.b)
Vaig =bag; +b3Vyy; bV +b,5V5 +ey (2.c)
kaj =b,00 +u,g.,k =123 2.d)

The intercept terms (byg;, k = 2, 3 ,4) vary randomly from cluster to cluster around an

overall mean by as shown in equation (2.d). The regression coefficients by; represent

P {Suprimit: exogeneous
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previous or lagged value.

Equations (2.a) to (2.c) define a recursive model for the cases, equation (2.d) defines the
model at the cluster level and we assume that the case residuals are uncorrelated with
the cluster residuals. Maximum likelihood estimation is relatively straightforward, albeit

iterative, and can be carried out in most statistical packages as well as with the more

- {Suprimit: specialist

are ‘missing at random’, in other words, any missing V; (¢ > 1) depend only on V4, k >
0, then the algorithms are fully efficient.
The model generates two covariance matrices, one for the cases and the other for the
clusters. The multivariate model allows all the residuals at the case level to be correlated
as might happen if there is an omitted explanatory variable that is related to V; (¢ > 1)

| after controlling for V4, £ > 0, in other words, to the change in V' from occasion to
occasion. This part of the model is essentially the same as the model for ‘seemingly

unrelated regressions’ as introduced into the econometrics literature by Zellner (1962).

) /{Suprimit: ;
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and b4 to be zero so that any response V; depends only on its immediately preceding
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measure as in Figure 1 for a single level model. In the same vein, we might also
constrain some of the elements of the covariance matrix at both levels to be zero so that
only the first-order autoregressive elements are non-zero. On the other hand, it will
sometimes be appropriate to make the model more complicated. In particular, we might
want to allow some or all of the regression coefficients b to vary across clusters so that
we replace b,, by b, and the covariance matrix at the cluster level is extended to
include both the extra variances but also the covariances between the intercepts (bxq)
and the slopes (b,,;). We might also want to introduce explanatory variables measured at
the cluster level and these might include cluster variables created from the explanatory

variables at the case level, such as the cluster mean.

Rather than relating the response at one occasion to lagged measures of the response, a
second approach to analysing repeated measures data comes from modelling the
evolution of the response over time (or age). In other words, we model V; as a function
of time within a growth curve or unconditional framework. This can be particularly

useful in a developmental or ageing context. Our model is now:

%)
Viy =2 Bual +e, (3.a)
gq=0
'qui = 'BqO./‘ + ”q/‘ (3‘b)
'BqO.i = ﬂqOO + vqi (3.0)

the restriction that QO <<max_T}, and f5, are the model coefficients that show how the
response varies with age. These (random) coefficients can vary from case to case and

from cluster to cluster.

1. 2 .. 1t
within cases (level one), represented by o, , variation between cases within clusters

(level two) represented by the random effects u for the intercept, slope etc., and
variation between clusters (level three) represented by a second set of random effects v.
It can be estimated with the same algorithm used for model 3, with equations (3.a) to
(3.¢). In the structural equations literature, the random effects U and v are sometimes
treated as latent variables that are determined by the observed responses over time

The multilevel growth curve model is a flexible tool that can be adapted and extended.

Thus, it can accommodate the fact that there is often variation in the age or time of
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measurement within any one measurement occasion. It is possible to allow the level-one
residuals to be autocorrelated (Goldstein et al., 1994) and to allow the variance at level
one to change with age or time. Explanatory variables can be introduced at each level
(time-varying variables at level one, case-level variables at level two and cluster
variables at level three) and these variables can be used to explain variation in any of the

growth parameters f,.

The conditional (or regression) and the unconditional (or growth curve) approaches can,

with sufficient occasions of measurement, be combined, as shown by Plewis (1996).

- {Suprimit: -

i - {Suprimit: -

cases starting off at the same point. Other extensions are also possible — for example, to
binary, unordered and ordered categorical responses (Plewis et al., 2006), to

multivariate responses (Plewis, 2005), and to combinations of these.

Other advances in SEM of longitudinal data
Although we do not intend to go into great depth on the matter, other advances in SEM
of longitudinal data have been made in recent years, some of the most important being
the following:
(a) Latent growth curve models (Bollen & Curran, 2006; Duncan, Duncan & Strycker,
2006; Meredith & Tisak, 1984, 1990), which use latent variables and constants. One of
the latent variables would thus represent the starting level and the other latent variable

would represent the rate of growth of the group, but now adding indicator constants to

each latent variable. New latent variables that represent the quadratic, cubic or some /{ Suprimit: En

J { Suprimit: la Figura
/

other tendency of the development curve can also be added. In this model the respective ,
/// { Suprimit: se muestra un

variances of the latent variables indicate the random variability of the individuals that B 1/'| ejemplo de modelo de

! L

//’/ Suprimit: con una constante
I

]

make up the sample, and therefore each latent variable becomes a variable with a /| aleatoria y un efecto lincal

U
random (multilevel) coefficient. This latent curve model is thus directly related to the ,//// J ,{Supf'm't- Obsérvese
. i 1 / //// Suprimit: que todos los
multilevel model. Figure 23 shows an example of a Jinear latent growth curve model {17 /] cocticientes dosde 1as variables
. o ," 7| latentes hacia las variables

with a random constant and a linear effect, Note that all the coefficients from the latent / /| observables son efectos fijos
/ (fixed effects) y que

variables towards the observable variables are fixed effects and that /; represents the S {Suprimit: representa
level of the constant (fixing the values: b; = b, = b; = by = 1), while F>js the linear - {f;l‘;;;‘e't elnivel de la
slope of the model (fixing the values: bs =1, by =2, b,=3), N { suprimit: mientras

. h \\\ \[Suprimit: es

Insert Flgure 23 about here ) Suprimit: la pendiente lineal del
modelo
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(b) Another model that is useful for explaining development is that known as the latent

difference score model (McArdle, 2001), shown in Figure 23, which has the following

measurement (AF;, or latent difference score), which would represent the gain in latent
scores (AF,= F,- F ), (iii) a third-order latent variable, which would exert an influence
over each second-order latent variable, and would denote an overall gain factor for each
person (or slope), and (iv) a constant that affects the initial second-order and third-order
factor. Thus, it is found that the change in the true scores at each time depends on: (1)
the initial level of each person, (2) the overall gain (slope), (3) the scores on the same
variable at the previous time, and (4) if we are dealing with a multivariate model, the
true score of the other variables at the previous time. If the variance of the initial level
and the overall gain are seen to be significant, then we would have two random values
for each person, and this model is therefore also related with the random coefficients

model (the article by Ferrer, Balluerka and Widaman (2008) in this journal can be

consulted for more complex second-order latent growth curve and latent difference

score models). Fl,qure 24 shows a univariate model of the latent difference score model

bgz e &

and should include some constraints on the parameters b; =

1,and b;; = b;» = b;; (proportional change) and b4 =_b;5s =_b;s (additive change). It is

advisable to perform more than two measurements (variables) each time. The advantage

of the dlfference score model is that it can also be applied to cross-sectional data |

articulo de Ferrer, Balluerka8

Insert Figure 24 about here

(c) One system of analysis also developed within the context of longitudinal designs in
SEM is the one described by Nagin (1999, 2005) and by Muthén and Shedden (1999;
Muthén, 2001), which classifies individuals in clusters, according to a probability of
assignment to the group. This procedure is called the ‘growth mixture model’, and sorts
individuals into classes according to patterns of development profile. The drawback
with this procedure is that it is an exploratory system, and must therefore be used with

caution.

was developed (Judd & Kenny, 1981; Baron & Kenny, 1986), several attempts have

been made to adapt the procedure to Jongitudinal designs, One of the most interesting

/
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approaches is the one put forward by Cole & Maxwell (2003), who make a distinction -~

aproximaciones mas interesantes

es lade

,W Suprimit: Una de las
between mediation and direct effects in panel designs, and outline a series of steps to be { Suprimit: & ]

used to check whether real mediation exists among the variables under study, . { suprimit: and

(e) Steyer (2005; Steyer, Eid & Schwenkmezger, 1997; Steyer, Krambeer & Hannover,

mediacion y efectos directos o

N Suprimit: que distingue entre
\
\ | indirectos en disefios en panel

2004) proposed a latent variable model to determine the values of both individual and Suprimit: proporcionando una

. [ . .. . serie de pasos para comprobar si
overall change; this model is similar fo the latent difference score model, but it is easier existe mediacion real entre las

NN variables de estudio

***************************************************** N AN ‘[Suprimit: partly inspired
N

time. N {Suprimit: in

(NN N,

{ Suprimit: requires

Discussion

Following this quick overview of SEM applied to longitudinal designs, we might be
lulled into thinking that it is easy to fit a model to the data obtained, but nothing could
be further from the truth. It is difficult to make a model fit the data properly but when

we do manage to do so, explaining the data becomes a simple matter.

In this review, we have paid more attention to interaction between variables and to non-

- {Suprimit: lineal J

- {Suprimit: investigation J

verify relations between the variables they obtain.

The researcher has to put forward several foregoing hypotheses about his or her data
and then look for the model that best fits them rather than trying out an array of models
(mining the data) with nothing to offer guidance about their nature. Some authors,
however, following on from Tukey (1977), argue that statistical theory must be adapted
to the needs of scientific method and that the search for a new statistical model capable
of generating real data is an unavoidable stage in the processes of constructing scientific

theories and models that explain the data (Marcoulides & Drezner, 2001).

/{Suprimit: For J

To statistically verify, which model is the best among nested models, we can use the y* -~ {'suprimit: ing )

comparison procedure proposed by Joreskog (1974, 1979) or, if the models are not
nested, the values from the Bayesian information criterion (or BIC) can be used

(Raftery, 1995; Schwartz, 1978).

In recent years the number of publications that utilise SEM in data analysis has risen
sharply and this percentage is very likely to remain steady and even increase, due to the
enormous possibilities offered by this method for analysis and the ease with which it

can be adapted to different data collection circumstances.
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Figure 1. First-order autoregressive univariate model (4R(1)), 4W1V.
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Figure 2. Second-order autoregressive univariate model (AR(2)), 4W1V.
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Cov(Ei3, Ei4)

Figure 3. First-order autoregressive model with covariance between the measurement

errors (AW1V).
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Vi

Figure 4. First-order moving average and autoregressive model, ARMA(1,1),

design 4W1V.
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Figure 5. AR(1) bivariate model with crossed effects between the two
variables, corresponding to the design 4W2V.
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Figure 6. Recursive model with reciprocal influences between variables

at the same moment of , measurement. __—{ suprimit: medition
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Figure 7. Simple factor model in repeated measures.
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Figure 8. Simple factor model in repeated measures, with AR(1) effects.
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Figure 9. AR(1) univariate model in the factor.
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Figure 10. AR(1) univariate model in the factor, with no measure at the time
corresponding to F.
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Figure 11. ‘Random walk’ model of measurement factors.
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Figure 12. AR(1) bivariate model in the time measurement factors.
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Figure 13. AR(1) bivariate model in time measurement factors (from £ to
F,), and with factors indicating the variables (Fs and Fy).
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Figure 14. AR(1) bivariate model with crossed effects between the two variables, with
one exogenous latent variable (F;) that has two observable variables (X; and X>).

/{ Suprimit: 1



Longitudinal data analysis with SEM

Ei Ei Eis
bia b b, l
X Vi > Vi, > Vi3
bis bg bio
COV(Xl,Xz)
16 b b1
X Vai > Vi, > Vi3
b7 bs I bs I
Ez; Es» Es;s

bs

15

Vau

Eoxs

Figure 15. AR(1) bivariate model with crossed effects between the two variables, with
two exogenous observable variables (X; and X>).
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Cov(X1,1, Xi2, X13, X1.4)

Figure 16. Time-varying model conditioned to the variable X; ,.

Cov(X,1, Xi12, X131, X1.4) indicates all the possible covariances between the
variables Xl,l, X]ﬂz, X173 and X174Z COV(XU, Xl,z), COV(XL], X1ﬂ3), ooy
COV(X1,3, X1,4).
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Exi,1 Ex2,1 Exip  Exa; Exis  Exs3 Exis  Exaa
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Figure 17. Time-varying model conditioned to the intellectual capacity time
factor, indicated from F’s to Fs.
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Figure 18. Variable interaction model, with effects on the next time of measurement.
Cov(V1.1, Va1, Vi1, Vixao, Visn3) indicates all the possible (pairwise) covariances
between the variables.
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Figure 19. Observed variable interaction model within the measurement time
factors. Double-headed arrows must be added to the model to represent the
covariances between the independent variables: Cov(F, F's, Fs, F7;)= Cov(F},

F5), COV(F], Fg), veey COV(F@ F7)'
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Figure 20. Lag 1 quadratic effects model. Cov(V| 1, V21,1, Vzl,z, V21,3) indicates
all the (pairwise) covariances of the independent variables: Cov(V}, 1,V21,1),

Cov(V1.1,V*12), ..., Cov(V?12,V?13).
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Figure 21. Model of quadratic effects of one factor (F°;) on another factor
(Fi+1). Double-headed arrows must be added to the model to represent the
covariances between the independent variables: Cov(F, F's, Fs, F7;)= Cov(F},

F5), COV(F], Fg), ceey COV(F5, F7).
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Figure 22. Univariate model AR(1) with constants in the variables.
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Figure 24. Latent growth difference score model, with a constant initial level and an - { Suprimit: random
additive coefficient. _— { suprimit: random
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