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Longitudinal data analysis with structural equations 
 

Abstract 

In this paper we review different structural equation models for the analysis of 
longitudinal data: (a) univariate models of observable variables, (b) multivariate models 
of observable variables, (c) models with latent variables, (d) models that are 
unconditioned or conditioned to other variables (depending on the variability of the 
independent variables: time-varying or time-invariant, and depending on the type of 
independent variables: of latent variables or of observable variables), (e) models with 
interaction of variables, (f) models with non-linear variables, (g) models with a 
constant, (h) with single level and multilevel measurement, and (i) other advances in 
SEM of longitudinal data (latent growth curve model, latent difference score, etc.). 

We have paid more attention to the interaction of variables and to non-linear 
transformations of variables because they are not frequently used in empirical 
investigation. They do, however, offer interesting possibilities to researchers who wish 
to verify relations between the variables they obtain. Potential applications are 
described, with their advantages and disadvantages.   
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Longitudinal data analysis with structural equations 

Since Jöreskog (1969), Keesling (1972) and Wiley (1973) first developed the statistical 

model of structural equations, it has become one of the most widely used techniques for 

analysing longitudinal data. So much is this the case that: (a) in most handbooks about 

longitudinal data analysis one or several chapters are devoted to exemplifying structural 

equation models (Amsel & Renninger, 1997; Bijleveld & van der Kamp, 1998; Collins 

& Horn, 1991; Collins & Sayer, 2001; Dwyer, Feinlieb & Hoffmeister, 1992; 

Fitzmaurice, Laird & Ware, 2004; Frees, 2004; Gottman, 1995; Little, Schnabel & 

Baumert, 2000; Plewis, 1985; Singer & Willet, 2003; von Eye & Clogg, 1994); (b) 

centres that provide training in longitudinal research offer courses in structural equation 

modelling (SEM); and (c) there is a steady increase in the number of journal articles in 

which this methodology is applied (Card & Little, 2007). An example of the importance 

of SEM applied to longitudinal studies is reflected by the two chapters that Jöreskog 

(1974, 1977) published on this topic 30 years ago. 

In this article we will briefly review the different models applied to the analysis of 

longitudinal data by means of SEM. We keep the statistical theory down to a basic 

level, but this work is also intended to be a practical guide for researchers who have to 

analyse longitudinal data. For this reason, we largely avoid dwelling on the basics of 

SEM and it is therefore assumed that the reader has some prior knowledge about this 

subject matter.  

One important point to be taken into account in any SEM model is that the researcher, 

on conducting his or her research, must ensure a proper integration of the following 

aspects: (a) a basic theory with the correctly formulated hypotheses so as to be able to 

check whether the data match the theory; (b) a correct research design, with a thorough 

study of the variables to be measured, the time between measurements, the number of 

measurements, the age or ages of the sample, the time the research lasted, and so forth; 

and (c) the statistical model of data analysis that is to be used as a method of confirming 

(or, should it be the case, rejecting) the hypotheses that have been posited (Collins, 

2006; Embretson, 2007; Little, Bovaird & Slegers, 2006; Little, Preacher, Selig & Card, 

2007; Ram & Grimm, 2007). 

Before beginning any longitudinal study it is important to put forward hypotheses about 

the stability of the observable and latent variables, as well as the relations between 

them, in order to check whether: (a) the variances of the latent and observable variables 
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are stable or differ over time; (b) the same is true of the measurements of both the 

observable and latent variables; (c) the loads, or coefficients, between the latent 

variables and their corresponding observable variables are equal at each time of 

measurement; (d) the internal correlations between latent and/or observable variables 

remain stable between different times of measurement; and (e) the effects between 

different times of measurement are equal or changing (Brown, 2006).     

The different models we will be looking at are as follows: (a) univariate and 

multivariate models; (b) observable variable models and latent variable models; (c) 

unconditioned versus conditioned to other variables; (d) with and without interaction 

terms; (e) with linear and non-linear effects; (f) with and without constants; (g) with 

measures at one and more than one level; and (h) diverse advances in longitudinal SEM. 

In fact, there can be as many different models as there are combinations among the 

preceding conditions, which is what makes SEM a highly versatile research tool. 

Univariate models of observable variables 

The theoretical foundation of effect models with observable variables lies in simple 

regression (Pearson, 1896) and in path analysis (Wright, 1918, 1921). Path analyses are 

a further development of regression, but with the addition of intermediate variables to 

predict the response variable of interest. SEM encompasses both these observable 

variable models and those with latent variables (or factors).  

Univariate repeated measures models are those in which the same persons are measured 

on a single variable on several occasions. Thus, if the variable V1 is measured 4 times 

(e.g. let us suppose we are dealing with a group of children for whom the variable ‘level 

of knowledge of mathematics’ is measured at 6, 7, 8 and 9 years of age; in panel designs 

this is represented by 4W1V, that is to say, 4 ‘waves’ or times, and 1 variable), then the 

representation of the variable at the four times would be: V1,1, V1,2, V1,3 and V1,4, where 

the first subscript indicates the variable (in this example it is always the same: V1,t) and 

the second subscript indicates the time of measurement (the first time, at the age of 6, is 

represented by V1,1; the second time, at 7 years old, by V1,2, and so forth). The simplest 

model for representing the nature of these data is shown in Figure 1. 

Insert Figure 1 about here

In the graphic representation of the SEM we have followed Bentler’s (1995) system of 

notation, which uses rectangles to represent the observed variables (V1,1, V1,2, V1,3 and 

V1,4); the effects of some variables on others are represented by arrows (which show the 
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direction of each respective effect), with the corresponding size of the effect (b1, b2 and 

b3); and the arrows that are labelled with the letter “E” (E1,2, E1,3 and E1,4) are the 

residuals.  

The model in Figure 1 is called a first-order autoregressive model (AR(1)), or 

‘simplex’ or Markov model. The term ‘autoregressive’ refers to the fact that each 

value of the variable V1 at time t depends only on the value of that same variable in the 

previous measurement t-1 (V1,t=f(V1,(t-1))). This model was put forward by Guttman 

(1954), but has since been developed by others (Anderson, 1960; Heise, 1969; 

Humphreys, 1960). It should be noted that there is no E1,1 in the model because one of 

the assumptions of the model is that the independent (or explanatory) variables have 

been measured without error. This model can be represented algebraically in a 

compact form: 

y = Βy + Γx + ε,                                                   (1) 

where y is the p×1-order vector of dependent (or response) variables: y’ = [V1,2, V1,3, 

V1,4], x is the q×1-order vector of independent variables: x=[V1,1], ε is the vector of 

residuals: ε’ =[E1,2, E1,3, E1,4], while the relations between the dependent variables are 

represented by matrix Β, of order p×p, and are as follows: 

Β = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

00
00
000

3

2

b
b ,                                                  (2) 

Γ is a coefficient matrix of order p×q that relates the independent variables with the 

dependent ones, which in our case will be: Γ’ = [b1, 0, 0]. 

In order to estimate the corresponding parameters, matrix Ψ = Cov(ε), where Cov is 

the covariance operator so that Cov(Y,Y) = Var(Y), and Ψ is a matrix of order p×p, 

must be added to the previous matrices. In our case, the residual variances (Cov(E1,2, 

E1,2), Cov(E1,3, E1,3), Cov(E1,4, E1,4)) will be represented on the main diagonals of this 

matrix. Matrix Φ = Cov(x), of order q×q, which represents the matrix of the 

covariances of the independent variables, would also have to be added to the model.  

The model in Figure 1 (which has 3 degrees of freedom) can be reformulated so that 

each measurement depends on the measurement immediately before it but also on the 

measurement performed at the last time but one. As a result, the model in Figure 2 

could be proposed.  
Suprimit: ¶
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 Insert Figure 2 about here

The model in Figure 2 (which would have 1 degree of freedom) is called second-order 

autoregressive (AR(2)) because each value is a function of the two measurements 

immediately preceding it (V1,t=f(V1,(t-1),V1,(t-2))), and if there were evidence that the 

measurements of the different times were closely related, a third-order autoregressive 

model could be contemplated, where a new effect (b6) would have to be added to the 

model in Figure 2. This effect would go from V1,1 to V1,4, and in general for any AR(3) 

model it would be: V1,t=f(V1,(t-1),V1,(t-2),V1,(t-3)). To be able to formulate a p-order 

autoregressive model, we need at least p+1 measurements.  

The AR(3) model above would have 0 degrees of freedom, and therefore it would not be 

possible to estimate coefficients of overall fit for the model. Different hypotheses about 

the variables can be tested. The main purpose of these hypotheses (as they are shown in 

Figures 1 and 2) are the equality of the effect parameters, of the variances and between 

covariances of the residuals (Brown, 2006): 

(a) If it is assumed that the effects among variables remain constant over time, they can 

be constrained so that coefficients continue to be equal; thus, in the AR(1) model in 

Figure 1, it could be hypothesised that b1 = b2 = b3 and, following on with the same 

logic, in the AR(2) model in Figure 2, it could be considered that b1 = b2 = b3, and also 

b4 = b5. These assumptions make more sense if the time span between variables is the 

same, and if it is assumed that the process does not change over time (which is more 

likely to occur with adults than with small children). 

(b) Since the same variable V1,t is measured on several occasions, the residual variances 

could be assumed to be equal; thus, in the models in Figures 1 and 2, Cov(E1,2, 

E1,2) = Cov(E1,3, E1,3) = Cov(E1,4, E1,4) can be included in the syntax of the constraints 

paragraph of the input for the statistical software that is being used (Cov is the 

covariance operator so that Cov(Y,Y) = Var(Y)). This assumption makes more sense 

when the variances of the variables have roughly the same value, which is more 

frequent in research conducted with adults. This is due to the fact that when the same 

variable is examined in small children, the variance is usually seen to increase with age 

and the previous constraint will not be fulfilled empirically. 

(c) Different assumptions can be made about the residuals. It might be reasonable to 

suppose that, because the same variable is being measured several times, the residuals at 

time 2 (E1,2) will covary with those from time 3 (E1,3), that is to say, Cov(E1,2,E1,3) will 
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be left free (i.e. ≠ 0), those from time 3 will covary with those from 4 (Cov(E1,3,E1,4)), 

which could also be left free, and so forth, if there were more measurement times 

(Cov(E1,4, E1,5), …). These parameters will therefore be included in the corresponding 

covariance section as being free, since by default they are assumed to be equal to 0. If 

this assumption were added to Figure 1, the resulting model would be like the one in 

Figure 3. From Figure 3 onwards, we will follow the convention of representing 

covariances by means of curved lines with arrowheads at both ends. 

Insert Figure 3 about here

(d) Bearing in mind that it is the same variable, and that the same covariance processes 

occurring between errors can be repeated between consecutive measurements, the 

following constraint can be added: Cov(E1,2, E1,3) = Cov(E1,3, E1,4) = etc. 

(e) The residuals at each occasion can be interpreted as ‘innovations’ of the variable at 

the time of measurement (Box, Jenkins and Reinsel, 1994), as they are a part of the 

same variable that is not explained by the previous variable or variables. Thus, a first-

order moving average model (MA(1)) can be put forward, in which each value of the 

variable at any given time (V1,t) is a function of the previous error for the same person 

(E1,t-1), that is V1,t = f(E1,t-1), which results in the model in Figure 4.  

Insert Figure 4 about here

In fact, the model in Figure 4 is a first-order autoregressive and first-order moving 

average model (ARMA(1,1)). It is possible to add the constraint whereby the effects of 

the moving averages are invariant over time (as is assumed in Box-Jenkins time series 

models), by leaving b4 = b5. The constraints mentioned above for the effects, variances 

and covariances of the residuals can also be applied to the model in Figure 4. 

The foregoing statistical hypothesis must be based on a theoretical justification for the 

model, but if used wisely they help to identify the underlying model that generates the 

data. The models that have been outlined here constitute the basis of SEM, and 

understanding and being able to apply them is an almost indispensable condition before 

moving on to more complex models. 

Multivariate models of observable variables 

Multivariate models of observable variables, as we have already stated, are an extension 

of univariate models. For example, let us suppose that (as in Figure 1) the same children 

are measured at 6, 7, 8 and 9 years of age on the variable ‘level of knowledge of 
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language’ in addition to their ‘level of knowledge of mathematics’:  the design would 

now be represented by 4W2V. As we have seen, the variable ‘level of knowledge of 

mathematics’ was represented at the four times by V1,1, V1,2, V1,3 and V1,4 and now the 

‘level of knowledge of language’ is represented as V2,1, V2,2, V2,3 and V2,4. One 

advantage of measuring two variables is that it becomes possible to study the directional 

effect of one variable on the other. That is to say, the researcher can formulate two 

research questions, namely, do the two variables develop independently of each other, 

or does the variable ‘level of knowledge of mathematics’ exert a greater influence over 

that concerning ‘level of knowledge of language’ or vice versa? This gives us the model 

in Figure 5.  

Insert Figure 5 about here

In Figure 5 the covariance between the variables V1,1, V2,1 is represented by lines with 

arrowheads at both ends that join the two variables; if the variable ‘maths ability’ (V1,1, 

V1,2, V1,3 and V1,4) exerted an influence on ‘language ability’ (V2,1, V2,2, V2,3 and V2,4), 

then the effects b8, b10 and b12 could be expected to be statistically significant; if the 

opposite were true, then the significant effects would be b9, b11 and b13. In each case the 

researcher must have some substantive hypotheses that justify the specification; if only 

a few of the previous effects were significant, the researcher would have to establish an 

explanation for these findings and their meaning.  

The mathematical representation of the model in Figure 5 would have the same form as 

the one in Equation 1, but the y vector of the dependent variables is now of order 6×1: 

y’ = (V1,2, V1,3, V1,4, V2,2, V2,3, V2,4), the x vector is now of order 2×1:  

x’ = (V1,1, V2,1), while ε is the vector of residuals, which in our case is of order 6×1: ε’ = 

(E1,2, E1,3, E1,4, E2,2, E2,3, E2,4), Β being of order 6×6:  

Β = 

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

0000
0000
0000
0000
000000
000000

612

133

510

112

bb
bb

bb
bb , 

and Γ is a coefficient matrix of order 6×2 that relates the independent variables with the 

dependent ones: 
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Γ’ = ⎟
⎠
⎞

⎜
⎝
⎛

0000
0000

49

81

bb
bb . 

Matrix Ψ is of order 6×6, and in our case the variances of the residuals (Cov(E1,2, E1,2), 

Cov(E1,3, E1,3), …, Cov(E2,4, E2,4)) will be represented on its main diagonal; the main 

diagonal of matrix Φ = Cov(x), of order 2×2, will contain the variances of V1,1 and of 

V2,1, while the other two elements of the matrix contain the covariance between V1,1 and 

V2,1. 

Sometimes the crossed effects between variables V1,t and V2,t are contemporaneous 

(either reciprocal or unidirectional) rather than lagged; thus, it can be supposed that in 

the model in Figure 5 the variables ‘level of knowledge of mathematics’ and ‘level of 

knowledge of language’ influence each other at the same time. The model would 

therefore be non-recursive (two or more variables exert an influence on each other); a 

feasible representation of such a model is shown in Figure 6.  

Insert Figure 6 about here

If the variable ‘level of knowledge of mathematics’ (V1,1, V1,2, V1,3 and V1,4) influenced 

‘level of knowledge of language’ (V2,1, V2,2, V2,3 and V2,4), then only effects b9, b11 and 

b13 in Figure 6 would be significant. If, in contrast, the variable ‘level of knowledge of 

language’ were the one that exerted an influence on ‘level of knowledge of 

mathematics’, then parameters b8, b10 and b12 would be significant. If no crossed effects 

between the variables (b8, b9, b10, …, b13) were significant, then this would indicate that 

the variables V1,t and V2,t develop independently, with just the initial covariance 

(Cov(V1,1, V2,1)) representing the preliminary relation between the two.  

The model in Figure 6 is non-recursive because there are one or several interdependence 

‘loops’ between variables; note that there is a reciprocal influence between V1,2 and V2,2, 

between V1,3 and V2,3, as well as between V1,4 and V2,4. These models are also called 

interdependence and simultaneous equation models and can lead to identification 

difficulties (Bentler & Raykov, 2000; Bollen, 1989; Hayduk, 1996). 

The constraints outlined in the section about univariate models of observable variables 

for the effects, variances and covariances can be added to the models in Figures 5 and 6, 

but in Figures 5 and 6 the covariances of contemporaneous  measurements can be taken 

as being free: Cov(E1,2, E2,2), Cov(E1,3, E2,3), Cov(E1,4, E2,4). In Figures 5 and 6, this 

could be represented by lines with arrowheads at both ends that join the respective 

measurement errors. The constraint Cov(E1,2, E2,2) = Cov(E1,3, E2,3) = Cov(E1,4, E2,4) 
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could still be used in Figures 5 and 6 to add the assumption that the three 

contemporaneous covariances have the same value.  

Models with latent variables 

Models with latent variables (also called factors) suppose the existence of a variable that 

is not measured directly, but which determines the values of the observable variables 

that are manifestations of that same latent variable. Thus, for a particular person, the 

empirical value of an observable variable is a function of the score for the latent 

variable obtained by that individual and the measurement error. In this way, if we have 

several measurements carried out in different mathematics tests and a latent variable is 

established for those same scores, the grade obtained by a child in a test is a function of 

the one attained in the factor, plus their corresponding error. Spearman (1904) was the 

author who developed the factorial analysis model but, as has been stated above, SEM 

embrace regression, path analysis and factorial analysis. It can be hypothesised that the 

variables measured in Figure 1 are determined by one factor, and the model would now 

therefore be the one shown in Figure 7. Note that, following the convention usually 

employed in SEM, the latent variables are represented inside ovals or circles. 

Insert Figure 7 about here 

This model would correspond to the equation:  

y = Λyη + ε,                                                   (4) 

where y’ = [V1,1, V1,2, V1,3, V1,4], but now there are no longer values for x, but instead 

scores for the latent variable F1; ε is the measurement error vector: ε’ =[ E1,1, E1,2, E1,3, 

E1,4], while the effects of the latent variable F1 on the dependent variables will be: Λ’y = 

[b1, b2, b3, b4], and matrix η = [F1].  

Notice how this model indicates that the values obtained for each person on the 

measurement variable V1,t are a function of the value obtained for each child on the 

latent variable F1. Note too that, bearing in mind that we are dealing with time data, 

each value of V1,t can be expected to be a function of F1, but also of V1,(t-1) (that is to say, 

V1,t = f(F1,V1,(t-1))). If this hypothesis were formulated, the resulting model would be as 

shown in Figure 8.  

Insert Figure 8 about here 

Because the model in Figure 8 is saturated, for it to be estimated (if it is assumed that 

the autoregressive effect is the same over time) the parameters can be set by means of 
Suprimit: ¶
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the following constraint: b5 = b6 = b7. Alternatively, it can be assumed that the effect of 

the latent variable on the observed variables is the same over time: b1 = b2 = b3 = b4. 

The same constraints concerning the variances and the covariances of the errors can be 

applied to the models in Figures 7 and 8 as those applied in the section ‘Univariate 

models of observable variables’.  

Note that the estimation of the values of F1 and of the parameters b1, b2, b3 and b4 are 

related, so that if the variance of F1 is multiplied by 2, the values of the parameters b1, 

b2, b3 and b4 would be divided by 2 to give the same solution (and the same would occur 

with any other value, since on multiplying the variance of the factor, the value of the 

corresponding coefficients would automatically be divided), and the system would 

therefore admit an infinite number of solutions. This problem in factorial analysis is 

solved by standardising the values of F1, that is to say, by setting the mean of F1 to 0 

and the variance to 1. In SEM the most frequent solutions consist in either setting the 

variance of F1 to 1 or making one of the coefficients of F1 on its observed variables 

equal to unity (in this case, b1=1 is usually set); another solution is to make equal to one 

the mean of the effects of the latent variable on their own observed variables (Little, 

Slegers & Card, 2006). Note that SEM, by default, differentiate variables with regard to 

their respective mean; they do not therefore estimate constants and only model the 

relation between variances and covariances of the variables.  

It may be thought that the observed variable, V1,1, V1,2, V1,3, V1,4, is the measure with 

error at each time of measurement implicit in its corresponding latent variable; the 

model would thus now be that shown in Figure 9 (Jöreskog, 1974, 1977). The 

measurement errors of the factors (or disturbances) are represented by means of the 

letter D with the subindex that corresponds to the factor. 

Insert Figure 9 about here 

Remember that the metrics have to be set for each factor; it is therefore advisable to set 

the values of each coefficient b4, b5, b6 and b7 as being equal to unity, the metrics for 

each factor being equivalent to those of their corresponding observable variable. 

This system of estimation has several advantages, above all when the data obtained do 

not have the same time interval. But let us suppose (in the opposite case) that data about 

the variable V1,t had been measured at 6, 7, 9 and 10 years of age for each child (only 

the measurement at the age of 8 is missing). One way of representing and estimating the 

variable development model would be that shown in Figure 10, in which factor F3 
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would represent the ‘missing’ measurement at the age of 8 (Dunn, Everitt & Pickless, 

1993). Note that the effect of F2 on F4 is multiplicative (in standardised scores: b2× b3) 

and not additive, but the values of b2 and b3 are usually smaller than one in standardized 

values.  

Insert Figure 10 about here 

In Figure 10 each value of the effects b5, b6, b7 and b8 must also be set to equal unity, 

while the effects among latent variables can be left as being equal (b1 = b2 = b3 = b4), if 

it is assumed that the effects among factorial scores are the same over time.  

SEM mainly model the covariances and variances between the different variables and 

factors (especially if no constants are added to the model), but there are cases in which 

the variance of the variable measured over time increases or diminishes systematically. 

A good system, therefore, for modelling that gradual change consists in using latent 

variables of a temporal nature that take into account the variability in the variance. 

Figure 11 shows a ‘random walk’ (or Wiener) model in the time factors.  

Insert Figure 11 about here 

As has been pointed out earlier, in measuring cognitive variables or those concerning 

the performance of small children, the dependent variable usually increases with age 

and so the variability at measurement time 1 is determined by F1, and the increase in 

variability at each age is given by the influence of the successive factors F2, F3 and F4. 

It is wise to set all the effects of the factors on the variables (from b1 to b10) as having a 

value of one; by so doing it is assumed that the effect of the variability of each time 

factor is kept constant across the different variables over time and that each successive 

factor increases the variability of the measurements in a constant manner. This model 

can also be reformed with additional hypotheses about autoregressive effects between 

factors, or between observable variables, and constraints on the values of the variances 

or covariances of the errors can be added.  

From what has been outlined so far about models that have latent variables with a single 

(univariate) variable measured at different times, it is easy to generalise the procedure 

for multivariate models (in which several variables are measured at each time). If two 

variables were measured at each time, it would be possible to put forward the 

hypothesis that the measurements at each time are a function of one factor (i.e. if two 

performance variables were measured, the factorial capacity of the child at each time 
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determines the values obtained on the observable variables). Moreover, the value of 

each factor is influenced by that of the factor immediately before it and would result in 

the model shown in Figure 12.  

Insert Figure 12 about here 

It could be hypothesised that the autoregressive coefficients between the factors are 

equal (b1 = b2 = b3) and even that the effects of the factors on the respective observed 

variables remain constant over time (of the factors over V1,t: b4 = b6 = b8 = b10, and 

those of the factors over V2,t: b5 = b7 = b9 = b11). As far as the variance of the errors is 

concerned, another hypothesis could be formulated by which the variances of each 

respective measurement error belonging to the same variable are equal, that is to say, 

with respect to the variable V1,t: Cov(E1,1, E1,1) = Cov(E1,2, E1,2) = Cov(E1,3, E1,3)= 

Cov(E1,4, E1,4), and/or alternatively, with respect to V2,t: Cov(E2,1, E2,1) = 

Cov(E2,2, E2,2) = … = Cov(E2,4, E2,4).  

With regard to the covariance among these errors, the covariance between observable 

variables for the same measurement time can be left free, since it is to be expected that 

an individual who had a ‘bad’ day at one time of measurement would have lower scores 

for that time, and that if he or she had a ‘good’ day then the scores for both variables 

would be higher. Thus, Cov(E1,1, E2,1), Cov(E1,2, E2,2), …, Cov(E1,4, E2,4) would be left 

free. It is even logical to suppose that the previous covariances would be equal. 

Likewise, the covariances between consecutive times can be left free, but within the 

same variable; that is to say, for the variable V1,t: Cov(E1,1, E1,2), Cov(E1,2, E1,3) and 

Cov(E1,3, E1,4), and for V2,t: Cov(E2,1, E2,2), Cov(E2,2, E2,3), and Cov(E2,3, E2,4). Because 

we are dealing with a repetition of the same variable, the equality of the covariance 

values can be included in the constraints paragraph. Thus, for V1,t: Cov(E1,1, E1,2) = 

Cov(E1,2, E1,3) = Cov(E1,3, E1,4), the same procedure being followed for the covariances 

between the errors for V2,t.  

The previous model can be expanded by developing a system in which there is an 

autoregressive model in the time measurement factors, and with factors indicating the 

variables. In Figure 13 the time measurement factors would be F1, F2, F3 and F4, and 

the factors indicating the variables V1,t and V2,t are F5 and F6, respectively. 

Insert Figure 13 about here 
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Thus, if any observable variable is taken, its measurement depends on the time factor 

and on the factor indicating the variable, which for the values of V1,t will be factor F5, 

whereas for those of V2,t it will be F6. The covariance between the factors indicating the 

variables (Cov(F5,F6)) is taken because it is assumed that both variables measured are of 

the same type; if we were to hypothesise that the factors indicating the variables V1,t and 

V2,t (F5 and F6) would covary with the first time of measurement (F1), then Cov(F1,F5) 

and Cov(F1,F6) would have to be left free. It will also be necessary for one of the 

coefficients of each factor indicating the variables to be given a value of unity (for 

example: b12 and b16); in this case it can be assumed that the effect of each indicating 

factor on its corresponding variables is the same. If this were true, then we could 

confirm the hypothesis about the effect between F5 and its corresponding variables: b13 

= b14 = b15, and between F6 and its variables: b17 = b18 = b19. The same constraints 

concerning the variances and covariances as those stated earlier can be applied to this 

model.  

If we formulate the hypothesis that there is a second-order factor that influences the 

time measurements and the factors indicating the respective variables, then it becomes 

possible to create a new latent variable F7, which will exert an influence on: F1, F2, …, 

F6 (in this case we would also have to add the measurement errors that were previously 

independent variables, D1, D5 and D6, and establish a value of unity for any effect that 

went from F7 to one of the other factors). This second-order factor (F7) would indicate 

that the variables measured are very stable and that people change while maintaining the 

same relative position over time in each variable, so that those who maintain a high 

score in one of the variables at the first measurement of the first variable tend to have a 

high score at the first measurement of the second variable – a pattern that is repeated 

over time (Rosel & Elósegui, 1991).  

As was pointed out earlier, univariate models of observable variables are the basis for 

understanding SEM applied to longitudinal designs, and multivariate models are an 

extension of univariate designs. Latent variable models, however, represent an 

important leap forward in terms of quality with respect to the previous section and are 

an extremely versatile and useful tool with which to study change in processes that take 

place in the human, biological and social sciences.  

Unconditioned models versus those conditioned to other variables 
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The SEM we have discussed so far are unconditioned because we only measure the 

same dependent variable or the same dependent variables several times, the independent 

variable being the first measurement of the variable. Thus, the same variable was 

independent or dependent according to the time of measurement.  

It is possible to formulate models that are conditioned to other variables by making 

these the independent (or exogenous) variables inherent to the system itself; these 

independent variables can admit two variations, which are: (i) depending on the 

variability of the independent variables: time-varying or time-invariant (i.e. that do or 

do not change over time, respectively), and (ii) depending on the type of independent 

variables: latent variables or observable variables.   

So, if in Figure 5 it is assumed that there were a latent variable ‘general cognitive level’ 

(F1) that was measured at the first time and that this were determined by two variables, 

that is, age (X1) and the number of correct answers on Raven’s progressive matrix test 

(X2), F1 in this case being the independent variable of the system, the model would now 

be the one shown in Figure 14, which would have a latent variable (F1) that is invariant 

over time.    

Insert Figure 14 about here 

The model in Figure 14 cannot be estimated directly with the LISREL program because 

no relation between the observable dependent variables is allowed by this statistical 

formulation (when they derive from an observable variable that indicates a latent 

variable; that is to say, the LISREL model does not admit relationships between V1,1 and 

V2,1 or towards the remaining variables); in contrast, it can be estimated with other 

programs (such as EQS, for example). One way of estimating the model in Figure 14 

with the LISREL program is by using ‘phantom variables’ (Rindskopf, 1984) (i.e., each 

dependent observable variable, V1,1, V1,2, V1,3, V1,4, V2,1, V2,2, V2,3, V2,4, is identified by 

means of a latent variable without error and with an effect on the corresponding 

observable variable equal to one.  

Instead of using a latent variable as the ‘motor’ of the system, observable variables can 

also be used. Thus, if the independent variables X1 and X2 do not form a factor, but they 

are hypothesised as being the exogenous variables of V1,t and V2,t, then the model in 

Figure 15 can be proposed. 

Insert Figure 15 about here 
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As in the model in Figure 14, if we propose that X1 and X2 present a permanent effect 

over all the measurement times, the corresponding effects of X1 and X2 on V1,2, V1,3, V1,4, 

V2,2, V2,3 and V2,4 can be added. 

The two time-invariant conditioned models described here, that is, latent variables (see 

Figure 14) and observable variables (see Figure 15), can be generalised and applied to 

the models of latent variables mentioned above, for example, from Figure 8 to Figure 

13. 

With respect to the time-varying conditional models, let us suppose the model in Figure 

12, in which the cognitive capacity of each child has been measured at each time as the 

number of correct answers in an intelligence test (X1,t). This exerts an influence at each 

respective measurement time and, through the respective factors, would affect their 

capacity for language and mathematics; the result would therefore be the model in 

Figure 16. 

Insert Figure 16 about here 

Note that in Figure 16 we have included all the possible covariances between the 

independent variables X1,1, X1,2, X1,3 and X1,4: Cov(X1,1, X1,2), Cov(X1,1, X1,3), …, 

Cov(X1,3, X1,4), assuming that there is a correlation between the children’s scores at each 

time of measurement. If we assumed that the independent variable X1,t was temporally 

dependent on itself (instead of covariation), then we would have to remove the 

covariances between X1,1, X1,2, X1,3 and X1,4 and put in the effects that correspond from 

X1,1 to X1,2, from X1,2 to X1,3 and from X1,3 to X1,4. 

Figure 17 shows a development model conditioned to time-varying factors. If we 

assume that the following are measured in the children: the variable ‘level of knowledge 

of mathematics’, represented at the four times by V1,1, V1,2, V1,3, and V1,4; the variable 

‘level of knowledge of language’, represented as V2,1, V2,2, V2,3, and V2,4; and a general 

intelligence test (X1,t) and Wechsler’s block design test (X2,t) are used as independent 

variables (or covariables), and that both intelligence tests form a temporal intelligence 

factor (F5, F6, F7 and F8) and, furthermore, that there is a time dependence between the 

factors, then the model would be the one in Figure 17. 

Insert Figure 17 about here 

Note that, statistically, the independent variable of the system is factor F5, which means 

it has been measured with no error; if we were to assume that the temporal intelligence 

factor (F5, F6, F7 and F8) is covarying over time (instead of having a temporal 
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dependence), then we would have to remove effects b16, b17 and b18, the errors of 

measurement of the factors D6, D7 and D8, and add the covariances among factors F5, 

F6, F7 and F8: Cov(F5, F6), Cov(F5, F7), …, Cov(F7, F8). 

The same considerations as those made in the section about ‘Univariate models of 

observable variables’ and ‘Multivariate models of observable variables’ can be repeated 

here with respect to the measurement errors of the variables V1,t and V2,t in order to gain 

degrees of freedom and facilitate the convergence of the model estimators.  

As can be seen, including substantive (‘time-invariant’ or ‘time-varying’) independent 

variables in SEM adds new possibilities to the estimation of effects between variables, 

and to the search for dependence among them.  

Models with interaction of variables 

When two or more variables are being measured, one of them, or a new dependent 

variable, can be hypothesised as being a function of the interaction of two (or more) 

independent variables (Aiken & West, 1991; Aiken, West & Pitts, 2003; Jaccard, 

Turrisi & Wan, 2003). Interaction of variables is understood to mean the product of 

them. Thus, if we propose that the interaction between consuming alcohol and tobacco 

favours the appearance of cancer, then we have to measure the rate of alcohol and 

tobacco consumption for each person, and we must create a third variable that will be 

the product of both for each person, while at the same time, as a dependent variable, it 

would serve as an indicator of cancer. In interaction of variables, an overriding principle 

is that of ‘nesting’: when an interaction of variables is used, we must utilise the 

variables and corresponding interactions that lie on a lower level. Thus, if the 

interaction of the variables X, Y and Z were used in a model, the variables and 

interactions XYZ, XY, XZ, YZ, X, Y, and Z would have to be employed so that the model 

makes substantive sense and the forecasts established by the model can be performed 

correctly. 

There are three interaction procedures in SEM: interaction between independent 

observable variables, interaction when the observed variables are part of the same factor 

and interaction between factors, with their corresponding observable variables (Jaccard, 

Turrisi & Wan, 1999; Kenny & Judd, 1984; Ping, 1995; Schumacker, 2002; 

Schumacker & Marcoulides, 1998; Schumacker & Lomax, 2004). 
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Let us suppose that in Figure 5 the interaction of V1,t and V2,t exerts an influence on the 

development of the variables V1,t and V2,t. Thus, if a new variable is generated, it should 

be the interaction of V1,t and V2,t for each time:  

V1*2,t = V1,t*V2,t,                                                      (1) 

In this way we would have a new variable for each measurement time and, bearing in 

mind that it has an influence on V1,t and V2,t, we would propose the model in Figure 18. 

Insert Figure 18 about here 

Note that in Figure 18: (a) the interaction between variables V1*2,1, V1*2,2 and V1*2,3 have 

been included in the model; (b) the covariances between all the independent variables of 

the model have also been included; (c) the variable V1,2 is a function of V1,1, of V2,1 and 

of the interaction between both of them (V1*2,1). The same thing happens with the 

variables V1,3 [V1,3 = f(V1,2, V2,2, V1*2,2)] and V1,4 [V1,4 = f(V1,3, V2,3, V1*2,3)], and the 

variable V2,t depends on the interaction of V1*2,t-1, that is to say: V2,2 = f(V1,1, V2,1, V1*2,1), 

V2,3 = f(V1,2, V2,2, V1*2,2)] and V2,4 = f(V1,3, V2,3, V1*2,3).  

It can also be supposed that the interaction between variables is time dependent and, in 

that case, we would need to remove Cov(V1*2,1, V1*2,2, V1*2,3) and add both 

V1*2,2= f(V1*2,1) and V1*2,3= f(V1*2,2).   

Should there be an interaction between variables within the same factor, so that they 

affect another factor, we would have to create a new factor resulting from the 

interaction between the two of them. Thus, if in Figure 12 it is assumed that the 

interaction of the variables V1,t and V2,t within each factor Ft affects the factor Ft+1, we 

would have to obtain the product of the variables from equation (6), including the 

product within a new factor, as shown in Figure 19. 

Insert Figure 19 about here 

We can hypothesise that F5, F6 and F7 are time dependent, and therefore we would need 

to remove Cov(F5, F6, F7) and add F6 = f(F5) and F7 = f(F6). 

It is easy to apply the interaction of variables between factors and the references cited 

above can be consulted for further information on this matter. 

In models of interaction of variables it is also possible to use the same procedure as that 

proposed in relation to the errors in measuring the variables V1,t and V2,t in the previous 

sections.  
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Models with non-linear variables 

Strictly speaking, these ought to be called models with transformation to non-linear 

variables; thus, it becomes possible to propose a model in which a variable (Yt) is a 

function of the value of the same variable at a previous time (Yt-1) and of the square of 

the same variable at the previous time (Y2
t-1). In other words Yt=f(Yt-1,Y2

t-1), which 

indicates that the relation between Yt and Yt-1 is quadratic. This non-linear relation can be 

of any other type (and not only quadratic): cubic, quadratic, logarithmic, square rooted, 

and so forth, or other more complex, exponential-type functions: logistic, Gomperz, and 

so forth. Even interaction models are a special case of non-linear transformation 

(Etezadi-Amoli & McDonald, 1983; Jaccard, Turrisi & Wan, 1999; Jöreskog & Yang, 

1996; Kenny & Judd, 1984; McArdle & Nesselroade, 2003; Schumacker, 2002; 

Schumacker & Marcoulides, 1998; Seber & Wild, 1989).  

If, in the model in Figure 1, it were assumed that Yt=f(Yt-1,Y2
t-1), then the graphic 

representation would be that shown in Figure 20. 

Insert Figure 20 about here 

In Figure 20: (a) the squares of the respective independent variables have been included 

in the model; (b) the covariances between all the independent variables in the model are 

also included, Cov(V1,1, V2
1,1, V2

1,2, V2
1,3) meaning all the pairwise covariances of the 

independent variables, that is to say, Cov(V1,1, V2
1,1, V2

1,2, V2
1,3): Cov(V1,1,V2

1,1), 

Cov(V1,1,V2
1,2), …, Cov(V2

1,2,V2
1,3); and (c) note that the variable V1,2 is a function of 

V1,1, and of the square of the same variable [V1,2=f(V1,1,V2
1,1)]. The same thing happens 

with the variable V1,3, which is a function of V1,2  and of the square of this same variable 

(V2
1,2) (that is: V1,3=f(V1,2,V2

1,2)), and lastly: V1,4=f(V1,3,V2
1,3). 

If the quadratic effects were not significant, it would be necessary to withdraw effects 

b4, b5 and b6, together with their corresponding independent variables (V2
1,1, V2

1,2 and 

V2
1,3). By so doing, the model would become the one shown in Figure 1 again.  

Instead of the quadratic model between observable variables suggested here, any other 

non-linear transformation of the variables could also be hypothesised.  

The non-linear model of observed variables can be generalised to latent variables and, 

thus, a quadratic model of the effect of one factor (F2
t) on another factor (Ft+1) could 

also be proposed and, hence, Ft+1=f(Ft, F2
t). The model in Figure 9 would then become 

the one in Figure 21. 
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Insert Figure 21 about here 

Each quadratic factor must contain its respective squared variables and the 

corresponding interaction of the variables. It is strongly advisable to include orthogonal 

coefficients in the product and the power of the variables in order to avoid colinearity 

(Little, Bovaird & Widaman, 2006); this is also valid for interaction between variables, 

as we have explained in the previous section.  

The covariances among the pairwise independent variables, Cov(F1, F5, F6, F7) = 

Cov(F1, F5), Cov(F1, F6), ..., Cov(F6, F7), must be added to Figure 21.   

Supposing the quadratic factors were not significant, then the corresponding effects b12, 

b13 and b14 would not be significant either. If the quadratic effect b13 were significant 

(that is to say, from F6 to F3), but one of the effects of F6 on its indicator variables were 

not significant, then all the effects and their corresponding indicator variables would 

have to be left (due to the principle of hierarchy, for the appropriate forecast of F3). 

We can also assume that F5, F6 and F7 are time dependent and, therefore, we would 

have to remove Cov(F5, F6, F7) and add F6 = f(F5) and F7 = f(F6). 

When the time intervals between successive measurements are different and it is also 

assumed that the passage of time exerts a constant effect on the different measures, the 

following strategy can be used to include non-linear effects among the variables: (i) 

each measuring unit is identified by a constant (e.g. a); (ii) each autoregressive 

coefficient is made equal to the constant a raised to the power of the time interval; 

additionally, (iii) the value of a must be less than unity, so that the more time has 

passed, the lower the effect of the passage of time will be. Thus, let us suppose in 

Figure 21 that one year passes between the first and the second measurement, a year and 

a half between the second and the third, and 10 months between the third and the fourth 

measurement. In the constraints paragraph of the syntax of an SEM statistical program 

it could be indicated (by reducing the time unit to months) that b1= a12, b2= a18, b3= a10, 

and a<1.  

The criteria of the variances and covariances of the errors that were proposed earlier can 

be applied. 

Both the procedures of interaction between variables and those involving their non-

linear transformation enable the researcher to optimise the information that is available. 

This is because, although generally speaking data collection tends to be the most 
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demanding part, with the data already available to the researcher it is possible to test 

more hypotheses concerning the same variables with their corresponding 

transformation. 

Models with constant 

SEM initially relate covariances and variances between the variables. The model 

differentiates (or centres) the observable and latent variables with respect to the mean, 

with the resulting loss of information about the constants. Nevertheless, it is sometimes 

very important to obtain the value of the constants of the model. In longitudinal designs, 

this is the case when comparing the results in terms of an intervention in different 

groups or to determine the change of level in a variable.  

As an example, let us suppose that in the case of Figure 1 we were interested in 

verifying the constant at each measurement time; this would therefore give us the model 

in Figure 22. 

Insert Figure 22 about here 

In the representation of the constants we followed the system put forward by McArdle 

and Epstein (1987), in which the constants are distinguished by an arrow with a triangle 

placed at the origin with a number ‘1’ inside it. It must be borne in mind that the 

variable V1,1 now admits forecast error (E1,1). The substantive interpretation of the other 

elements and symbols in Figure 22 is the same as that for Figure 1 (except in the 

constants that have been added). 

The model in Figure 22 can easily be extended by including the vector of constants in 

equation (1): 

y = αy + Βy + Γx + ε,                                                 (6) 

where additionally: x = αx +  Λxξ + δ.  

Interpretation of the symbols is the same as that explained in Equation 1. In our case, 

αy’ = [k1 k2 k3 k4], αx, Λx, ξ and δ are null matrices, and Ψ’ = [(Cov(E1,1, E1,1), (Cov(E1,2, 

E1,2), Cov(E1,3, E1,3), Cov(E1,4, E1,4)]. Similarly, the substantive interpretation of the 

other elements and symbols in Figure 22 is the same as that for Figure 1 (except in the 

constants that have been added). 

One important aspect to be taken into account in Figure 22 is that, as in the other 

regression models, the values of the constants do not necessarily have to be those of the 

means (Rosel, Arnau & Jara, 1998; Rosel, Jara & Arnau, 2002). Instead, they are 
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conditioned to the value of the mean of the variable that they have as a dependent 

variable, and also that of the effects they receive through the independent variables. For 

example, in Figure 1, let us suppose that the means of each variable were 1,1V = 50, 1,2V  

= 60,  1,3V = 70 and 1,4V = 80 and that the results of the coefficients were b1 = 0.60, b2 

= 0.70 and b3 = 0.85; the equation of the variable V1,1 would be V1,1 = k1 + E1,1, and its 

expected values E(V1,1) = E(k1 + E1,1). As a result, 1,1V = k1, and the value of k1 would 

therefore be the mean of V1,1, that is, k1 = 50; for V1,2 it would be V1,2 = k2 + b1·V1,1 + 

E1,2, and its expected values would be E(V1,2) = E(k2 + b1·V1,1 + E1,2), which results in 

1,2V  = k2 + b1· 1,1V , k2 = 1,2V - b1· 1,1V = 60 - 0.60·50 =30. Hence, the value of k2 no longer 

depends only on the mean of V1,2, but also on the coefficient b1 and on the mean of V1,1.  

Likewise, we would have k3 = 28, and k4 = 20.50, which proves that the value of the 

constants diminishes over time, despite the fact that the means of the variables increase. 

As can be seen with this simple example, there does not necessarily have to be a relation 

between the means and the constants, and therefore the magnitudes of the constants 

cannot be taken directly to compare the means. 

In conclusion, the values of what most authors call ‘structural means’ are not these 

means at all but instead constants from each respective forecast equation. We 

recommend comparing the means of the observable variables taking the covariances 

among variables (with no effects among them) as the reference model, which thus 

allows the respective means to be compared directly. On the other hand, for the latent 

variables it is advisable to use the procedure proposed by Little, Slegers and Card 

(2006), which constrains the mean of the effects of the latent variable on its 

corresponding observable variables to a value of one. 

With single level versus multilevel measurement 

Up to this point the models have been developed under the assumption that the 

parameters are fixed. In other words, we have not considered the possibility that these 

parameters (for example: b1, in Figure 1) might vary across units, perhaps from one 

higher level unit such as a geographical area to another. Suppose we have a response or 

dependent variable, V, measured on four possibly unequally spaced occasions with any 

pattern of missing data after the first occasion. Let us also suppose that our sample is 

structured in such a way that each case is located in one and only one cluster (pupils (i) 

within schools (j), for example). Our observations are Vtij, t (measurement occasion) = 
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1, …, Tij (max. Tij =4); i (case) = 1, …, nj; j (cluster) = 1, …, J and we will assume that V 

~ MVN (µ, Ω). 

We can approach the analysis of these data in a number of ways, depending on our 

underlying research question. The first method is to model Vt as a function of one or 

more earlier or lagged measures of V,  that is Vt-k, k > 0, along with other explanatory 

variables. This approach is particularly useful if we seek causal conclusions about, for 

example, the effect of an intervention in the absence of randomisation (see, for example, 

Plewis, 1985). We can regard each of the three responses Vt, t > 1 as a multivariate set 

(V1 is assumed to be exogenous here) and so our model is: 

ijijjij eVbbV 2121202 ++=                                                           (2.a) 

ijijijjij eVbVbbV 3232131303 +++=                                               (2.b) 

ijijijijjij eVbVbVbbV 4343242141404 ++++=                                              (2.c) 
3,2,1,000 =+= kubb kjkjk                                                                     (2.d) 

The intercept terms (bk0j , k = 2, 3 ,4) vary randomly from cluster to cluster around an 

overall mean bk00 as shown in equation (2.d).  The regression coefficients bk1 represent 

the relations between each response and the exogenous V1; bk2, k = 3, 4 link the last two 

responses to their value on the second occasion and b43 links the final response to its 

previous or lagged value. 

Equations (2.a) to (2.c) define a recursive model for the cases, equation (2.d) defines the 

model at the cluster level and we assume that the case residuals are uncorrelated with 

the cluster residuals. Maximum likelihood estimation is relatively straightforward, albeit 

iterative, and can be carried out in most statistical packages as well as with the more 

specialised multilevel packages such as MLwiN and HLM. Providing any missing data 

are ‘missing at random’, in other words, any missing Vt (t > 1) depend only on Vt-k, k > 

0, then the algorithms are fully efficient. 

The model generates two covariance matrices, one for the cases and the other for the 

clusters. The multivariate model allows all the residuals at the case level to be correlated 

as might happen if there is an omitted explanatory variable that is related to Vt (t > 1) 

after controlling for Vt-k, k > 0, in other words, to the change in V from occasion to 

occasion. This part of the model is essentially the same as the model for ‘seemingly 

unrelated regressions’ as introduced into the econometrics literature by Zellner (1962). 

The model can be simplified. For example, we might constrain the parameters b31, b41 

and b42 to be zero so that any response Vt depends only on its immediately preceding 
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measure as in Figure 1 for a single level model. In the same vein, we might also 

constrain some of the elements of the covariance matrix at both levels to be zero so that 

only the first-order autoregressive elements are non-zero. On the other hand, it will 

sometimes be appropriate to make the model more complicated. In particular, we might 

want to allow some or all of the regression coefficients b to vary across clusters so that 

we replace bpq by bpqj and the covariance matrix at the cluster level is extended to 

include both the extra variances but also the covariances between the intercepts (bk0j) 

and the slopes (bpqj). We might also want to introduce explanatory variables measured at 

the cluster level and these might include cluster variables created from the explanatory 

variables at the case level, such as the cluster mean. 

Rather than relating the response at one occasion to lagged measures of the response, a 

second approach to analysing repeated measures data comes from modelling the 

evolution of the response over time (or age). In other words, we model Vt as a function 

of time within a growth curve or unconditional framework. This can be particularly 

useful in a developmental or ageing context. Our model is now: 

∑
=

+=
Q

q
tij

q
tijqijtij eaV

0
β                                                         (3.a) 

qjjqqij u+= 0ββ                                                           (3.b) 

qjqjq v+= 000 ββ                                                                      (3.c) 

Here Q is the order of the polynomial at age (or time) a, determined by the data but with 

the restriction that Q << max Tj, and βq are the model coefficients that show how the 

response varies with age. These (random) coefficients can vary from case to case and 

from cluster to cluster.  

The equations (3.a) to (3.c) are a three-level model with variation between occasions 

within cases (level one), represented by 2
eσ , variation between cases within clusters 

(level two) represented by the random effects u for the intercept, slope etc., and 

variation between clusters (level three) represented by a second set of random effects v. 

It can be estimated with the same algorithm used for model 3, with equations (3.a) to 

(3.c). In the structural equations literature, the random effects u and v are sometimes 

treated as latent variables that are determined by the observed responses over time 

(Meredith & Tisak, 1984, 1990).  

The multilevel growth curve model is a flexible tool that can be adapted and extended. 

Thus, it can accommodate the fact that there is often variation in the age or time of 
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measurement within any one measurement occasion. It is possible to allow the level-one 

residuals to be autocorrelated (Goldstein et al., 1994) and to allow the variance at level 

one to change with age or time. Explanatory variables can be introduced at each level 

(time-varying variables at level one, case-level variables at level two and cluster 

variables at level three) and these variables can be used to explain variation in any of the 

growth parameters βq. 

The conditional (or regression) and the unconditional (or growth curve) approaches can, 

with sufficient occasions of measurement, be combined, as shown by Plewis (1996). 

Then it is possible to condition on the measure at the first occasion (the baseline 

measure), thereby making it possible to compare growth parameters across groups for 

cases starting off at the same point. Other extensions are also possible – for example, to 

binary, unordered and ordered categorical responses (Plewis et al., 2006), to 

multivariate responses (Plewis, 2005), and to combinations of these. 

Other advances in SEM of longitudinal data 

Although we do not intend to go into great depth on the matter, other advances in SEM 

of longitudinal data have been made in recent years, some of the most important being 

the following:  

(a) Latent growth curve models (Bollen & Curran, 2006; Duncan, Duncan & Strycker, 

2006; Meredith & Tisak, 1984, 1990), which use latent variables and constants. One of 

the latent variables would thus represent the starting level and the other latent variable 

would represent the rate of growth of the group, but now adding indicator constants to 

each latent variable. New latent variables that represent the quadratic, cubic or some 

other tendency of the development curve can also be added. In this model the respective 

variances of the latent variables indicate the random variability of the individuals that 

make up the sample, and therefore each latent variable becomes a variable with a 

random (multilevel) coefficient. This latent curve model is thus directly related to the 

multilevel model. Figure 23 shows an example of a linear latent growth curve model 

with a random constant and a linear effect. Note that all the coefficients from the latent 

variables towards the observable variables are fixed effects and that F1 represents the 

level of the constant (fixing the values: b1 = b2 = b3 = b4 = 1), while F2 is the linear 

slope of the model (fixing the values: b5 =1,  b6 = 2,  b7 = 3). 

Insert Figure 23 about here 
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(b) Another model that is useful for explaining development is that known as the latent 

difference score model (McArdle, 2001), shown in Figure 23, which has the following 

components: (i) some first-order latent variables, which represent the true measure of 

each observable variable, (ii) a second-order latent variable at each time of 

measurement (ΔFt, or latent difference score), which would represent the gain in latent 

scores (ΔFt= Ft - Ft-1), (iii) a third-order latent variable, which would exert an influence 

over each second-order latent variable, and would denote an overall gain factor for each 

person (or slope), and (iv) a constant that affects the initial second-order and third-order 

factor. Thus, it is found that the change in the true scores at each time depends on: (1) 

the initial level of each person, (2) the overall gain (slope), (3) the scores on the same 

variable at the previous time, and (4) if we are dealing with a multivariate model, the 

true score of the other variables at the previous time. If the variance of the initial level 

and the overall gain are seen to be significant, then we would have two random values 

for each person, and this model is therefore also related with the random coefficients 

model (the article by Ferrer, Balluerka and Widaman (2008) in this journal can be 

consulted for more complex second-order latent growth curve and latent difference 

score models). Figure 24 shows a univariate model of the latent difference score model, 

and should include some constraints on the parameters: b1 = b2 = … = b9 = b10 = b17 = 

1, and b11 = b12 = b13 (proportional change) and b14 = b15 = b16 (additive change). It is 

advisable to perform more than two measurements (variables) each time. The advantage 

of the difference score model is that it can also be applied to cross-sectional data.l 

artículo de Ferrer, Balluerka8   

Insert Figure 24 about here 

(c) One system of analysis also developed within the context of longitudinal designs in 

SEM is the one described by Nagin (1999, 2005) and by Muthén and Shedden (1999; 

Muthén, 2001), which classifies individuals in clusters, according to a probability of 

assignment to the group. This procedure is called the ‘growth mixture model’, and sorts 

individuals into classes according to patterns of development profile. The drawback 

with this procedure is that it is an exploratory system, and must therefore be used with 

caution.  

(d) Since the mediational model of effects among variables in cross-sectional designs 

was developed (Judd & Kenny, 1981; Baron & Kenny, 1986), several attempts have 

been made to adapt the procedure to longitudinal designs. One of the most interesting 
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approaches is the one put forward by Cole & Maxwell (2003), who make a distinction 

between mediation and direct effects in panel designs, and outline a series of steps to be 

used to check whether real mediation exists among the variables under study.  

(e) Steyer (2005; Steyer, Eid & Schwenkmezger, 1997; Steyer, Krambeer & Hannöver, 

2004) proposed a latent variable model to determine the values of both individual and 

overall change; this model is similar to the latent difference score model, but it is easier 

to parametrise. It is wise to collect at least two observed variables at each measurement 

time.  

Discussion 

Following this quick overview of SEM applied to longitudinal designs, we might be 

lulled into thinking that it is easy to fit a model to the data obtained, but nothing could 

be further from the truth. It is difficult to make a model fit the data properly but when 

we do manage to do so, explaining the data becomes a simple matter. 

In this review, we have paid more attention to interaction between variables and to non-

linear transformation of variables because they are not frequently used in empirical 

research. They do, however, offer interesting possibilities to researchers who wish to 

verify relations between the variables they obtain.  

The researcher has to put forward several foregoing hypotheses about his or her data 

and then look for the model that best fits them rather than trying out an array of models 

(mining the data) with nothing to offer guidance about their nature. Some authors, 

however, following on from Tukey (1977), argue that statistical theory must be adapted 

to the needs of scientific method and that the search for a new statistical model capable 

of generating real data is an unavoidable stage in the processes of constructing scientific 

theories and models that explain the data (Marcoulides & Drezner, 2001).  

To statistically verify which model is the best among nested models, we can use the χ2 

comparison procedure proposed by Jöreskog (1974, 1979) or, if the models are not 

nested, the values from the Bayesian information criterion (or BIC) can be used 

(Raftery, 1995; Schwartz, 1978). 

In recent years the number of publications that utilise SEM in data analysis has risen 

sharply and this percentage is very likely to remain steady and even increase, due to the 

enormous possibilities offered by this method for analysis and the ease with which it 

can be adapted to different data collection circumstances.  
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Figure 1. First-order autoregressive univariate model (AR(1)), 4W1V. 
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Figure 2. Second-order autoregressive univariate model (AR(2)), 4W1V. 
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Figure 3. First-order autoregressive model with covariance between the measurement 
errors (4W1V). 
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Figure 4. First-order moving average and autoregressive model, ARMA(1,1),  
         design 4W1V. 

V1,1 V1,2 V1,3 V1,4 

E1,2 E1,3 E1,4

b1 b2 b3 

b4 b5 

Suprimit: 1



Longitudinal data analysis with SEM  

 

5

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

V1,1 V1,2 V1,3 V1,4 

E1,2 E1,3 E1,4

b1 b2 b3 

V2,1 V2,2 V2,3 V2,4 

E2,2 E2,3 E2,4

b4 b5 b6 

Cov(V1,1,V2,1) 

b8 

b9 

b10 

b11 

b12 

b13 

Figure 5. AR(1) bivariate model with crossed effects between the two 
variables, corresponding to the design 4W2V. 
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 Figure 7. Simple factor model in repeated measures. 
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   Figure 8. Simple factor model in repeated measures, with AR(1) effects. 
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 Figure 9. AR(1) univariate model in the factor.  
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Figure 10. AR(1) univariate model in the factor, with no measure at the time 
corresponding to F3. 
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Figure 11. ‘Random walk’ model of measurement factors. 
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Figure 12. AR(1) bivariate model in the time measurement factors. 
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Figure 13. AR(1) bivariate model in time measurement factors (from F1 to 
F4), and with factors indicating the variables (F5 and F6). 
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Figure 14. AR(1) bivariate model with crossed effects between the two variables, with 
one exogenous latent variable (F1) that has two observable variables (X1 and X2). 
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Figure 15. AR(1) bivariate model with crossed effects between the two variables, with 
two exogenous observable variables (X1 and X2). 
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Figure 16. Time-varying model conditioned to the variable X1,t. 
Cov(X1,1, X1,2, X1,3, X1,4) indicates all the possible covariances between the 
variables X1,1, X1,2, X1,3 and X1,4: Cov(X1,1, X1,2), Cov(X1,1, X1,3), … , 
Cov(X1,3, X1,4).   
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Figure 17. Time-varying model conditioned to the intellectual capacity time 
factor, indicated from F5 to F8. 
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Figure 18. Variable interaction model, with effects on the next time of measurement. 
Cov(V1,1, V2,1, V1*2,1, V1*2,2, V1*2,3) indicates all the possible (pairwise) covariances 
between the variables. 
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Figure 19. Observed variable interaction model within the measurement time 
factors. Double-headed arrows must be added to the model to represent the 
covariances between the independent variables: Cov(F1, F5, F6, F7)= Cov(F1, 
F5), Cov(F1, F6), …, Cov(F6, F7) 
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Figure 20. Lag 1 quadratic effects model. Cov(V1,1, V2
1,1, V2

1,2, V2
1,3) indicates 

all the (pairwise) covariances of the independent variables: Cov(V1,1,V2
1,1), 

Cov(V1,1,V2
1,2), …, Cov(V2

1,2,V2
1,3). 
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Figure 21. Model of quadratic effects of one factor (F2
t) on another factor 

(Ft+1). Double-headed arrows must be added to the model to represent the 
covariances between the independent variables: Cov(F1, F5, F6, F7)= Cov(F1, 
F5), Cov(F1, F6), …, Cov(F6, F7). 
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Figure 22. Univariate model AR(1) with constants in the variables. 
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Figure 23. Linear latent growth curve model, with a random constant and a random 
slope 
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Figure 24. Latent growth difference score model, with a constant initial level and an 
additive coefficient.  
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