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Abstract. In this paper, we study the topology of Bott integrable Hamilton-
ian flows on S2

× S1 in terms of some types of periodic orbits, called NMS
periodic orbits. The set of these periodic orbits can be identified by means of
some operations applied on global and local links. These operations come from
the round handle decomposition of these systems on S2

× S1. We apply the
results to obtain a non-integrability criterium.

1. Introduction. Let v = sgrad (H) be a hamiltonian system defined by a smooth
function H on a four-dimensional symplectic manifold. The function H is constant
on trajectories of the vector field, i.e., it is a first integral. The system v is called
Liouville integrable if another integral f is given in involution with H . On the
constant-energy level set Q3 Liouville theorem assures that the level surfaces corre-
sponding to regular values of f that are connected and compact are tori.

A. T. Fomenko [10] defines this second integral f as a Bott integral if its critical
points form non-degenerated critical manifolds. A Bott integral f of the system
v implies that its critical submanifolds must be flow manifolds (see section 1.1),
therefore, its Euler characteristic is zero. So, critical submanifolds in S2 × S1 must
be fixed points, circles, 2-dimensional tori or Klein bottles (see [10]).

The case Q3 ≃ S2 × S1 is interesting for different reasons. In particular, the
manifold S2 × S1 appears as phase space in problems from Celestial Mechanics, as
the Two Fixed Centers problem (see [8]), and also in the study of the dynamics
of a rigid body (see [17], for example). On the other hand, the topological char-
acterization of the set of periodic orbits in terms of links allows the introduction
of invariants of the Hamiltonian system (equivalent Hamiltonian systems have the
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same link of periodic orbits). Moreover, the non integrability of a Hamiltonian sys-
tem can be inferred from the periodic orbits obtained in the phase space and the
links they become.

In this paper we use the close relation between Non-singular Morse-Smale systems
(NMS for short, see section 2.1) and integrable Hamiltonian systems and the results
obtained in [9] about the round handle decomposition of NMS flows on S2 × S1, to
obtain the round handle decomposition of Bott integrable Hamiltonian systems on
S2 × S1 (section 2.3).

This close relation is proved in section ?? (lemma 2.1), by showing that it is
possible to build a Non-singular Morse-Smale flow as closer as necessary to a Bott
Hamiltonian flow in such a way that some periodic orbits belong to both, the NMS
and the Hamiltonian systems. A small radial perturbation can be applied on a
Bott integrable Hamiltonian field in such a way that the flow is transversal to the
invariant 2-tori.

A Bott integral f on a surface Q3 is defined as orientable if its critical manifolds
are orientable. On the other hand, Bott integrable Hamiltonian fields on a non
singular compact constant energy surface can be obtained as a small perturbation of
a NMS field (see section 1.1). The periodic orbits that remain after the perturbation
are called NMS type periodic orbits and belong to both, the NMS system and the
Hamiltonian one.

When f is orientable only periodic orbits that are in the common axis of these
invariant tori (those corresponding to the maximal or minimal critical circles of
f) or in the intersection of two tori (those corresponding to the hyperbolic critical
circles of f) remain; if f is non-orientable, some critical tori collapse into critical
Klein bottles K2. The embedding of a Klein bottle is admissible in S2×S1 but not
in other 3-manifolds as S3. Indeed, Klein bottles are found in S2 × S1 as critical
submanifolds of the Hamiltonian system (section 2.2).

The round handle decomposition of Bott integrable Hamiltonian systems on S2×
S1 (section 2.3) allows to characterize the set of NMS periodic orbits of these systems
in terms of knots and links that define the orbital structure of the system.

In section 3, we also use the round handle decomposition to build the phase
portrait of these flows, with one saddle periodic orbit. We observe that a Klein bottle
appears as the union of invariant manifolds of the saddle orbit and the corresponding
orbits (proposition 5).

In section 4, the set of periodic orbits of NMS systems on S2 × S1 is described
in terms of some operations applied on links of periodic orbits (theorem 4.1).

Finally, in section 5 we apply the non-integrability criterium on a perturbed
pendulum.

1.1. Round handle decomposition and NMS flows. We refer to [14] and [15]
for definitions of the standard terms in 3-dimensional topology. In the following,
we consider a compact, connected, prime, orientable manifold M .

Definition 1.1. Let M be a compact, orientable connected manifold. Let V be
a non singular continuous vector field on M, transversal to the boundary of the
manifold. The negative border of M , denoted by ∂ M , is the union of components
of ∂M such that the flow points inwards M . Let ∂+M denote the complementary
of the negative border in the boundary of the manifold, ∂+M = ∂M − ∂ M where
V points outwards. Then, (M, ∂ M) is called a flow manifold.

As a consequence,
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Proposition 1 ([18]). Let (M, ∂ M) be a flow manifold. Then,

χ (M) = χ (∂ M) = χ (∂+M) = 0

Regular neighborhoods of attractive and repulsive periodic orbits are flow man-
ifolds, diffeomorphic to solid tori; nevertheless, a regular neighborhood of a saddle
orbit is not a flow manifold. The study of this kind of neighborhoods yields to the
definition of round handles.

We use the following additional definitions due to Asimov, where it is assumed
that the flow held by a manifold M points outwards on the so called negative
component of the boundary, ∂−M , and points inwards on the complementary
∂+M = ∂M\∂−M , called positive boundary.

Definition 1.2. A pair (M, ∂−M) of a manifold M and a compact submanifold
∂−M of ∂M, or by abuse of notation, a manifold M is called

a round 2-handle if (M, ∂−M) ∼=
(

D2 × S1, ∅
)

.

a round 1-handle if M ∼= Bs

⊕

S1

Bu is a 2-disk bundle on S1.

a round 0 -handle if (M, ∂−M) ∼=
(

D2 × S1, ∂D2 × S1
)

.

So, a round handle, that is diffeomorphic to a torus, corresponds to a 0-handle
when there is a repulsive periodic orbit in its core, to a 2-handle if there is an
attractive periodic orbit in the core and to a 1-handle if the orbit is a saddle.

There are two possibilities for round 1-handles Bs

⊕

S1

Bu, where Bs and Bu are

both trivial or are both non-trivial: in the first case, the round 1-handle is called
orientable and in the second one it is called non-orientable.

Usually a round k-handle is denoted by Rk, where the index k = 0, 1, 2 is also
known as the index of the periodic orbit.

Definition 1.3. A fattened round handle is obtained attaching a round 1-handle
to a manifold A × [0, 1] , where A is one torus or the union of two disjoint tori.

C = A × [0, 1]
⋃

∂
−

R1

∪R1 (1)

Definition 1.4. [1] A round handle decomposition (RHD) is a sequence:

∂ M × I = M0 ⊂ M1 ⊂ · · · ⊂ Mi ⊂ Mi+1 ⊂ · · · ⊂ MN = M (2)

where each Mi+1 is obtained from Mi by adding a handle.

On the other hand, Morse-Smale flows constitute a class of the simplest flows in
the set of the structurally stable ones. This kind of flows are characterized by their
non-wandering set consisting of a finite number of closed hyperbolic orbits and the
transversal intersections of their stable and unstable manifolds.

The following proposition ensures the existence of a NMS flow when a manifold
admits a round handle decomposition and vice versa:

Proposition 2 ([1], [16]). If a manifold M admits a round handle decomposition

∅ = M0 ⊂ M1 ⊂ . . . ⊂ Mn = M

there is a NMS flow on M such that: (1) the closed orbits of the flow coincide with
the cores of round handles, and (2) the flow is pointing outward of ∂Mj . Conversely,
if M has a NMS flow, M admits a round handle decomposition satisfying (1) and
(2).
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As an example, the 3-manifold S2 × S1 can be obtained from the round handle
decomposition:

∅ ⊂ V1 ⊂ S2 × S1 (3)

attaching a 0-handle V2 to the 2-handle V1 by identifying their boundaries. This is
the simplest round handle decomposition of S2 × S1.

Given a surface S in W 3, it is said to be a separating surface if W 3 − S is not a
connected manifold. Let us note that S2×S1 is not irreducible and a non-separating
sphere can be considered as a section of S2 × S1 for a fixed point of S1 ([3][Lemma
0.6]). Moreover, separating spheres allows us to distinguish between local and global
submanifolds depending on they can be isolated by a 3-disk or not.

2. Round handle decomposition of Bott integrable Hamiltonian systems

on S2 × S1. In this section we are going to study the close relation between NMS
systems and Bott integrable Hamiltonian systems.

2.1. NMS flows on constant energy-level surfaces Q3 . Since submanifolds
corresponding to regular values of f , are homeomorphic to T 2, several copies of
T 2×I are obtained as submanifolds of Q3. The level sets that separate these copies
of T 2 × I correspond to the critical values of f. The following lemma assures the
round handle decomposition of a constant-energy level Q3.

Lemma 2.1. Let Q3 be a compact, non singular constant-energy level surface of a
Bott integrable Hamiltonian system. Then, Q3 admits a Non singular Morse-Smale
flow.

Proof. Let v = sgrad f be a smooth vector field on Q3. As a NMS system holds a
round handle decomposition, we are going to build a NMS vector field arbitrarially
closer to v by continuous deformations.

Let
(

S1 × I1

)

× I be a reference system on T 2 × I. Polar coordinates (r, θ) can

be considered for
(

S1 × I1

)

⊂ D2. Let η be v|T 2×I and let η be the modified vector
field obtained when a small radial perturbation is applied to η. Then, a modified
vector field v is obtained corresponding to η. The radial perturbation leads to v has
not periodic orbits on T 2 × I and it is transversal to the invariant tori.

When f varies, the invariant tori can suffer one of the following changes ([10]):

1. A torus T 2 is contracted to the axial circle of a solid torus and then “vanishes”
from the level surface of the integral f . The notation is: T 2 → S1 → ∅.

2. Two tori T 2 move towards each other along a cylinder, flow together into one
torus, and “vanish”. The notation is: 2T 2 → T 2 → ∅.

3. A torus T 2 splits into two tori as it passes through the centre of the trousers
(oriented saddle) when they “stay” on the level surface of the integral f . The
notation is: T 2 → 2T 2.

4. A torus T 2 spirals twice round a torus T 2, following the topology of the non
orientable saddle and then “stays” on the level surface of the integral f . The
notation is: T 2 → T 2.

5. A torus T 2 transforms into a Klein bottle (covering it twice) and “vanishes”
from the level surface of the integral f. The notation is: T 2 → K2 → ∅.

Let us analyze the modified flow v in each of these cases:

1. The radial component c goes smoothly to zero when it moves to the core of the
solid torus. The critical manifold S1 changes to be a repulsive or attractive
periodic orbit.
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2. Let us consider two T 2 × I separated by a critical torus. When a radial
perturbation is applied these thick tori collapse in one T 2×I with the modified
flow v.

3. The critical S1 corresponds to one hyperbolic periodic orbit in the common
boundary of two tori. We can introduce a small change in the flow in a
neighbourhood of T 2

⋃

S1

T 2 (see figure 1) and we assign a radial perturbation

ci to each set of invariant tori in such a way that this radial perturbation yield
to the modified flow v.

Figure 1. Section of the modified flow in a neighbourhood of T 2
⋃

S1

T 2

4. This case is similar to the previous one. The iterates p0, p1, p2, ... go from one
invariant torus to the other one (see figure 2).

Figure 2. Modified flow in a neighbourhood of T 2
⋃

S1

T 2

5. In the last bifurcation of the Liouville tori, the flow is modified on a Klein
bottle K2 in such a way that only remain two periodic orbits of β type (section
2.2), one of the periodic orbits becames attractive and the other one repulsive.
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In the complete system, the radial perturbation transforms these periodic
orbits on the Klein bottle in one attractive (saddle) periodic orbit and one
saddle (repulsive) periodic orbit (see figure 3).

Figure 3. NMS periodic orbits on K2.

As Q3 is a compact 3-manifold, after a finite number of perturbations, the vector
field v is modified to a close v, but v is NMS field.

Therefore, Q3 admits a round handle decomposition ([1], [16]).

2.2. NMS flow on the critical submanifold K2. In this section a NMS flow is
built on a Klein bottle with two periodic orbits, one attractive and one repulsive,
(proposition 4).

In figure 4, an embedding of the Klein bottle in S2 × S1 is shown. Let us note
that S2 is obtained by identifying the upper lines of a rhomboid with the lower
ones and S2 × S1 is obtained when this rhomboid is multiplied by an interval, that
becomes S1 by identifying their extremal points.

Figure 4. K2 embedded in S2 × S1
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Let α and β denote the generators of π1

(

K2
)

such that αβ = βα−1. A non-

trivial closed curve on K2 is represented by one of the following homotopy types
(see Godbillón [12], for example)

α, α−1, β2, β−2, β−1αn, n ∈ Z

and can be represented as in figure 5. Moreover, a Jordan curve can be either
orientable or nonorientable depending on an arbitrary neighborhood of it is home-
omorphic to the cylinder or to the Möbius band, respectively (see Soler [19]).

Figure 5. Different curves on K2 :(a) Trivial curve; (b) α folia-
tion; (c) β2 foliation; (d) β−1αn foliation.

The following result tell us that all the trajectories on K2 must be non trivial,
closed, and also that α, α−1 curves are not admissible orbits.

Proposition 3. Let K2 be a critical Klein bottle in a non-singular compact contant-
energy surface Q3 of a Bott integrable Hamiltonian system on M4. Then, all the
orbits are periodic and have to be β±2 or β−1αn type, n ∈ Z.

Proof. If the trajectory on K2 is closed it is a periodic orbit. If it is open, its
clausure is a 2-dimensional manifold. But, the Poincaré-Bendixon theorem can be
applied on K2, so limit sets of trajectories contain fixed points or they are closed
orbits. Non singularity of the flow implies that all the limit sets must be closed
orbits, so, it is not possible to have trajectories whose clausure are a 2-dimensional
manifold. Therefore, all the trajectories defined on K2 must be closed curves.

Let us show the second part of the proposition.
Firstly, trivial closed curves bound 2-disks D2 in the Klein bottle, so an equilib-

rium point inside D2 is needed and the flow is singular.
Moreover, if all the closed trajectories of the flow follows curves of α and α−1

type, the topology of the Klein bottle implies that an odd number of inversions of
the orientation on the closed orbits is made. So, the vector field must be canceled
out at some point and this leads to a contradiction with the non-singularity of the
flow. Therefore, all the periodic orbits have to be β±2 or β−1αn type, n ∈ Z. This
conclusion is also obtained by applying some results of [19].

As a consequence, for this kind of flow:

Corollary 1. A NMS flow on K2 is transversal to the α and α−1 type curves.
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Furthermore, proposition 3 allows us to build a NMS flow on the Klein bottle:

Proposition 4. Let K2 be a critical Klein bottle in a non-singular compact contant-
energy surface Q3 of a Bott integrable Hamiltonian system on M4. A NMS flow
can be built on K2 with one attractive and one repulsive orbits.

Proof. K2 is obtained by identifying the two boundary circles S1 of α type by means
of a reversing homeomorphism and the two boundary circles of β type by means
of an orientation preserving homeomorphism. Every reversing homeomorphism on
S1 has two fixed points. When these two fixed point are multiplied by S1 two
closed curves of β type are defined. The reversing homeomorphism implies that the
other closed curves has to be β±2 type. So, a foliation of K2 can be obtained with
an infinite number of double-period orbits and two simple-period orbits, where the
period denotes the exponent of β.

As we have seen before, the flow of the Hamiltonian system can be perturbed
in order to obtain NMS type orbits. Then, it is observed that the double-period
orbits on K2 vanish and only the two simple-period orbits remain. Also, the revers-
ing homeomorphism defined in order to obtain the Klein bottle involves that the
trajectories of the flow go from one periodic orbit to the other. Therefore , these
two simple-period orbits become one attractive and one repulsive orbits on K2 (see
figure 3) and a NMS flow is obtained.

Let us remark that the two simple-period orbits that remain after the perturba-
tion of the Hamiltonian system correspond to the only nonorientable Jordan curves
admissible on K2. Moreover, for any NMS flow on K2 these two simple-period
orbits must be attractive or repulsive periodic orbits. The other period orbits of
the flow correspond to orientable Jordan curves.

In the following section, we observe that the NMS orbits on the critical K2,

due to the radial perturbation, become one saddle and one attractive (or repulsive)
orbits, when it is the core of a fattened Klein bottle, K3 = K2× [0, 1], that appears
in the round handle decomposition of S2 × S1. Let us note that, in spite of K2 is
non-orientable, the boundary of K3 is a global 2-torus.

2.3. Fattened round handles in Bott integrable Hamiltonian systems on

S2×S1. Admissible fattened round handles for Bott integrable Hamiltonian systems
come from essential attachment of the round 1-handle on tori, (see [7], Lemma 12).
The following cases are obtained:

Theorem 2.2. Let γ be a saddle periodic orbit in the core of a round 1-handle R1.
A fattened round 1-handle C of a Bott integrable Hamiltonian system on S2 × S1,
corresponds to one of the following cases:

1. C ∼= T 2×[0, 1]−(N (k′)) ∼= Fp+1×S1, p ≥ 1, where k′ and γ are (p, q)-cables of
a component k = {∗}×S1 for {∗} ∈ int (Fp+1) , and ∂ C = T1×{0}∪T2×{0}
or ∂ C = T 2 × {0}.

2. Let C ∼= T 2× [0, 1]−
(

S3 − N (k)
)

be local, where ∂−C = T 2×{0} , N (k) is a

regular neighborhood of a nontrivial knot k and γ = {∗} × S1 for a point {∗}
of a transversal section of C.

3. C ∼= K3 − int (W ), where W is a global solid torus, ∂W = ∂ C = T 2 × {0}
and γ is a global knot.

4. C ∼= D2 × S1 − int
(

W
)

, where W is a regular neighborhood of (2, q)-cable of

{0}×S1 in D2 ×S1, ∂−C = ∂W and γ is a local knot in the core of D2 ×S1.
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Proof. The fattened round handles C ∼= T 2 × [0, 1] − (N (k′)) ∼= Fp+1 × S1 and
C ∼= T 2× [0, 1]−

(

S3 − N (k)
)

correspond to the attachment of a round 1-handle to
one torus or two tori by using two essential attaching circles. When a non-separating
round 1-handle is attached to a global torus by means of two longitudinal circles,
C ∼= K3 − int (W ) is obtained. The last one, C ∼= D2 × S1 − int

(

W
)

, is obtained
when the round 1-handle is not orientable and it is attached to one torus by using
one essential longitudinal circle.

Fattened handles corresponding to cases 1, 2 and 4 are equivalent to the obtained
in S3 ([20]). Let us study the third fattened handle. It is obtained when A = T 2 is
a global torus and the round 1-handle R1 is attached by means two essential circles.
Different cases can be considered depending on the saddle orbit is local or global.

If A is one global torus, R1 can be attached to the global torus by means of two
transversal or two longitudinal circles. When the saddle orbit is local it is attached
by means of two transversal circles, the global torus must go round S2 × S1 twice
(figure 6). The fattened handle has two boundary components: ∂ C = T 2 × {0}
global; the positive boundary of C is equivalent to a local torus built with two
non-separating spheres glued by means of two handles, so it is linked to T 2 × {0}.
Then, the fattened handle is equivalent to K3 − int (W ) and the flow is not a NMS
flow, because the union of the invariant manifolds of the saddle, W s ∪ Wu, is a
Klein bottle and the topology of K2 requires an odd number of inversions of the
orientation on the local closed orbits. So, the vector field must be canceled out at
some point. This leads to a contradiction with the non-singularity of the flow.

Figure 6. Non admissible K3 − int (W )

When R1 is attached by means of two longitudinal circles to a global torus, the
boundary components are a (2, 1)-torus and a separating torus. The (2, 1)-torus is
the boundary of a fattened Klein bottle K3 embedded in S2 × S1. So, the fattened
round handle is again C ∼= K3 − int (W ) , where W is a global solid torus (figure
7), such that ∂W = ∂−C.
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Figure 7. K3 − int (W )

If A is a local torus, the attaching curves must be longitudinal; in this case, the
boundary components are a (2, 1)-torus and a local separating torus. As before, the
(2, 1)-torus defines a fattened Klein bottle K3 embedded in S2 ×S1 but W is local,
and the flow is not a NMS flow (figure 8).

Figure 8. Non admissible K3 − int (W )

Let us remark that when the saddle orbit is local, the flow is not NMS and the
only admissible case is the obtained when the round 1-handle is attached to a global
torus by means of two longitudinal circles.
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From this round handle decomposition, proposition 2 allows us to build a NMS
flow on S2 × S1, whose periodic orbits are located in the cores of the tori. The
indexed links formed by these orbits are called admissible links.

3. Building NMS flows on S2 × S1 . As it has been shown, fattened round
handles corresponding to Bott integrable Hamiltonian systems come from the es-
sential attachment of round 1-handles on one or two tori. In this section, we use
them to build the corresponding NMS flows on S2 × S1 with one saddle orbit. In
the following figures, attractive, repulsive and saddle periodic orbits are denoted,
respectively, by a, r and s.

Firstly, let us consider that the round 1-handle is orientable and separating. So,
it is attached by using two attaching circles. Moreover, if its associated saddle
orbit is global, the round 1-handle must be attached to global tori by means of
longitudinal circles. When it is attached to one global torus, the fattened round
handle is Fp+1 × S1 and the saddle orbit is parallel to the (p, q)-toroidal hole left
when the round 1-handle is attached. The corresponding flow can be seen in figure
9, for p = 1.

Figure 9. NMS flow for a global fattened handle Fp+1 × S1

If the round 1-handle is attached to two global tori, the corresponding flow is the
reverse of the previous one.

If the saddle orbit u is local, its associated round 1-handle must be attached to
global tori by means of transversal circles. Then, the fattened handle is F2 × S1.

The flow shown in figure 10 corresponds to the attachment of the round 1-handle
to one global torus by means of two transversal circles. The reverse flow is obtained
when it is attached to one global and one local torus by means of one transversal
and one longitudinal circles, respectively.

If some component of the complementary of the fattened round handle in S2×S1

is not a solid torus (see [4]) and the fattened round handle is local, it is equivalent
to T 2 × [0, 1]−

(

S3 − N (k)
)

where N (k) is a regular neighborhood of a non trivial
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Figure 10. NMS flow associated to a local round 1-handle at-
tached to a global tori by means of two transversal circles

knot k. In this case the complementary of the fattened round handle must also be
a fattened round handle and more than one saddle orbit is needed.

Secondly, let us consider a non separating round 1-handle attached to a global
torus by means of two longitudinal circles. In this case the boundary components
are two global tori and one of them must be a (2, 1)-torus. This (2, 1)-torus is the
boundary of a fattened Klein bottle K3 embedded in S2 × S1. So, the fattened
round handle is K3 − int (W ) , where W is a global solid torus.

Finally, let the round 1-handle be not orientable. It must be attached to one
torus by using one attaching circle and the fattened round handle is equivalent to
D2 ×S1 − int

(

W̄
)

; the corresponding flow is the reverse of the previous one and it
can be seen in figure 11.

Moreover, in the last two phase portraits, invariant manifolds of the saddle orbit
are not orientable. In fact, it can be observed that a Klein bottle appears as critical
submanifold.

Proposition 5. The Klein bottle K2 is a critical submanifold of the fattened round
handles D2 × S1 − int

(

W
)

and K3 − int (W ) .

Proof. When the fattened round handle is K3 − int (W ) , a non separating round
1-handle is attached to a global torus by using two longitudinal circles. The saddle
and the repulsive orbits must be of the same homotopy type. Then the stable
manifold of the saddle orbit and the repulsive orbit, W s ∪ r, form a Klein bottle,
that is found in the core of K3. The attractive orbit is the core of a (2, 1)−solid
torus, that is the complementary of K3 in S2 × S1.

The fattened round handle D2 × S1 − int
(

W
)

is obtained by attaching a non
orientable round 1-handle to one global torus by means of one attaching circle. In
this case, the stable and unstable manifolds of the saddle follow a Möbius band,
being the saddle orbit γ a trivial knot in the core of the fattened Möbius band. The
attractive orbit a is also a trivial knot parallel to the saddle orbit; so, to build the
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Figure 11. NMS flow associated to D2 × S1 − int
(

W̄
)

flow two Möbius bands are glued along their boundaries, with the saddle and the
attractive orbits in their cores. Then, a Klein bottle is obtained as K2 = Wu∪a.

4. Characterization of the set of periodic orbits in Bott integrable Hamil-

tonian systems on S2 × S1. The set of periodic orbits in a NMS system are in
the core of the handles in a round handle decomposition of the manifold. Periodic
orbits on a 3-dimensional manifold can be characterized as knots and the set of
periodic orbits is characterized as a link. In the following, we see that fattened han-
dles defined in section 2.3 can be associated to different operations that describe
the indexed links corresponding to the orbits is the core of the round handles for a
RHD of S2 × S1 involving these fattened handles.

A closed orbit of a flow on a 3-manifold is repulsive, saddle or attractive if the
dimension of its stable manifold is equal to one, two or three, respectively. The
dimension of this manifold minus one, is called the index of the periodic orbit.

The topological characterization of NMS links and Bott integrable Hamiltonian
systems on the sphere S3 is already made ([20], [7]), although it is not the case of
S2 × S1. In this section we are going to study the characterization of the periodic
orbits in S2×S1 for Bott integrable Hamiltonian systems in terms of operations on
local and global links. Let O4, O5 and O6 denote these operations.

Theorem 4.1. Let Q3 ∼= S2×S1 be a non-singular level surface of a Bott integrable
Hamiltonian. The link of indexed periodic orbits formed by the set of NMS periodic
orbits of the Hamiltonian on Q3 can be obtained from global and local links by means
of the following operations:

1. O4 (L, l) = (L#l) ∪ m. The connected sum L#l is obtained by composing a
component K of L and a component k of l each of which has index 0 or 2.
The index of the composed component is the index of K, m is a meridian of
K#k with index 1.

2. O5 (L). Choose a component K1 of L of index 0 or 2, and replace a neigh-
borhood of K1 in S2 × S1, N

(

K1, S
2 × S1

)

, by D2 × S1 with three indexed
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circles in it; {0} × S1 (where {0} ∈ D2), K2 and K3. Here, K2 and K3

are (p, q)-cables on the boundary of the neighborhood ∂N
(

{0} × S1, D2 × S1
)

.

The indices of {0} × S1and K2 are either 0 or 2, and one of them is equal to
the index of K1. The index of K3 is 1.

3. O6 (L). Choose a component K1 of L of index 0 or 2, and replace
N

(

K1, S
2 × S1

)

by D2 × S1 with two indexed circles in it; {0} × S1 and the

(2, q)−cable K2 of {0}×S1, the index of {0}×S1 is 1 and ind (K1) = ind (K2).

where L is an admissible link and l denotes a local admissible link.

Proof. Let

S2 × S1 =

n
⋃

j=1

Cj

be a round handle decomposition of S2 × S1 and let L denote the indexed link
formed by the periodic orbits in the core of this decomposition.

Let C ≡ Cj be a component associated to a round 1-handle. The fattened handle
C must be equivalent to one of the manifolds described in theorem 2.2. Our aim
is to associate each one of the operations in the statement of the theorem to the
different fattened handles in order to characterize the indexed link associated to the
set of periodic orbits in the cores of the round handles.

Let us consider global fattened handles, that allow us to complete S2 × S1 by
gluing solid tori.

1. Let C be equivalent to Fp+1×S1. Two cases must be distinguished depending
on all the components of the boundary of C are global tori or one of them is
a local torus.
(a) When all the components of ∂C are global tori, let C1, C2 and C3 de-

note the connected components of the complementary of C in S2 × S1.

This fattened handle has been obtained by attaching a round 1-handle
by means of two longitudinal circles either to one global torus or to two
global tori.
When it is attached to one global torus, ∂C1 = T 2×{0} and C∪C1∪C2

∼=
D2 × S1 are global, so D2 × S1 and C3 give rise to a RHD of S2 × S1.

Moreover, the periodic orbit in the core of C2 and the saddle orbit are
(p, q)-cables of the core of C1. Then, the corresponding indexed link is
described by operation O5.

When it is attached to two global tori, A = T 2
1 ∪ T 2

2 , ∂C1 = T 2
1 × {0}

and ∂C2 = T 2
2 × {0}; C ∪ C1 ∪ C2

∼= D2 × S1 is global and a RHD of
S2×S1 is obtained by gluing C3. The periodic orbit in the core of C2 and
the saddle orbit are (1, 0)-cables of the core of C1, and the corresponding
indexed link is also described by operation O5 with p = 1 (see figure 9).
Let us notice that the saddle orbit is parallel to the periodic orbit in the
core of the solid torus that fills C2.

(b) Now, let us consider that one of the boundary components of C is a local
torus: as we have seen before, the fattened handle has been obtained
by the attachment of the round 1-handle to a global torus by means of
transversal circles or when it is attached to one global and one local tori
by means of one transversal and one longitudinal circles, respectively.
Let C1, C2 and C3 be the connected components of the complementary
of C in S2 × S1; in both cases, C ∪ C1 ∪ C2

∼= D2 × S1 can replace
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(

D2 × S1, K1

)

in a RHD of S2 ×S1 formed by this solid torus joint with
(C3, K2). In this RHD, the saddle orbit and the periodic orbit in the core
of C2 are meridians of the orbit in the core of C1 (see figure 10). The
index of K1 depends on ∂C2 ⊂ ∂ C. So, the corresponding link can be
characterized by O4.

Let us notice that the saddle orbit that appear in O4 is local and a merid-
ian of the connected component.

2. Finally, when C ∼= K3 − int (W ) or C ∼= D2 × S1 − int
(

W
)

, let P denote

C − int (N (γ)) where γ is the global saddle orbit. Then, P ∼= F2 × S1. Let
C2 be the component in the complementary of C in S2 × S1 such that ∂C2 is
a (2, 1)-torus. So, P ∪ C2

∼= T 2 × [0, 1] .
Therefore, C ∪ C2 is equivalent to D2 × S1 with two indexed knots: γ ≡

{∗}× S1, with index 1, in the core of a Möbius band and K2, that is a (2, q)-
cable of γ with index i, i = 0 or 2 depending on ∂0 ⊂ ∂−C or not (see figure
11). In a RHD of S2 ×S1 a round i-handle

(

D2 × S1, K1

)

can be substituted
by C ∪ C2, so a new round handle decomposition is obtained. Let L denote
the indexed link that consist of the cores of the first RHD. Then, a new link
is obtained from L by the operation O6.

Let us notice that when a local fattened handle C is considered, other fattened
handles are needed in order to complete the manifold; the set of periodic orbits will
have more than one saddle orbit and the resulting link can be written in terms of
the previous operations. In this case, at least one of the periodic orbits have to be
global in order to obtain a round handle decomposition of S2 × S1. Therefore, the
resulting link must be obtained from global and local links.

Let us notice that these three operations are similar to operations IV , V and V I

of Wada on S3, but in these case Klein bottles appear as invariant manifolds, that
can not been embedded in S3. Moreover, global and local links are admissible in
S2 × S1, meanwhile only local links appear in S3.

The following corollaries can be obviously deduced from the previous result:

Corollary 2. Let H be a Hamiltonian associated to an integrable system on Q3 ∼=
S2×S1 by means of an orientable Bott integral. If L is a link of periodic orbits of H

then L is obtained from global and local links through connected sums and cabling.

A connected sum of iterated toroidal knots it is called a generalized toroidal knot.

Corollary 3. Let H be a Hamiltonian associated to an integrable system on Q3 ∼=
S2 × S1 by means of an orientable Bott integral. Then, the set of NMS periodic
orbits of H on Q3 is a non separable link and all the periodic orbits are generalized
toroidal knots.

5. Nonintegrability of a perturbed pendulum. As a consequence of corollary
3 the presence of a periodic orbit in a Hamiltonian system on S2 × S1 whose as-
sociated knot is not a generalized toroidal knot implies the non-integrability of the
system.

This is also true in a Hamiltonian system defined on a phase space that is a piece
of a decomposition of S2 × S1 by means of solid or thick tori.

As an application, consider the time-perturbed pendulum defined by

H =
y2

2
− cosx + ε sin t sinx
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and −1 ≤ H ≤ a, a > 1.
If ε = 0 we have an autonomous integrable system defined on S2 × [0, 1]. The

enlarged phase space is a thick torus.

1 2 3 4 5 6

-2

-1

1

2

Figure 12. Poincare section

Let 0 < ε and small enough and consider the system defined on a thick torus
bounded by invariant KAM tori; in figure 12 a Poincare section (t = 0) is shown for
ε = 1

10 . Numerically we found (see in figure 13 the initial conditions as a function
of ε) that the system has a periodic orbit whose associated knot is an eight knot
(see figure 14). Therefore, the system is not integrable.
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Figure 13. Relation between initial conditions and ε
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Figure 14. Periodic orbit associated to an eight knot
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