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Abstract. Categorical data clustering constitutes an important part of
data mining; its relevance has recently drawn attention from several re-
searchers. As a step in data mining, however, clustering encounters the
problem of large amount of data to be processed. This article offers a so-
lution for categorical clustering algorithms when working with high vol-
umes of data by means of a method that summarizes the database. This is
done using a structure called CM-tree. In order to test our method, the K-
Modes and Click clustering algorithms were used with several databases.
Experiments demonstrate that the proposed summarization method im-
proves execution time, without losing clustering quality.
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1 Introduction

Finding a database object homogeneous partition (tuple) constitutes a funda-
mental data mining task. This task is referred to as clustering, defined by [1] [2]
as a method to partition a set of objects in clusters so that objects in the same
cluster are more similar between them than objects from other clusters, ac-
cording to a previously established criterion, and in order to maximize intra-
cluster similarity and minimize inter-cluster similarity. Most of the existing clus-
tering algorithms can be classified into two main categories, namely hierarchi-
cal(agglomerative or divisive) and partitioning algorithms [1]. Most clustering
algorithms in literature must keep the set of data in the main memory, so not
every clustering algorithm can be applied directly when the set of data cannot
be stored in the memory. This constitutes a frequent problem in data mining
applications, which work with high volumes of data. The presence of categorical
data is also frequent.There are clustering algorithms [3] [4] [5] that work with
large databases and categorical data, like ROCK [6] clustering algorithm, which
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deals with the size of databases by working with a database random sample.
However, the algorithm is highly impacted by size of the sample and random-
ness. In this paper, we offer a solution that consists in reducing the size of a
categorical-type database, therefore it possible to used any clustering algorithm.
In our case, we use the clustering algorithm K-Modes and CLICK [8]. Several
scalable clustering algorithms have been recently reported [8] [3] [4]. One of them
is the K-Modes algorithm [4], which is the version of the K-means algorithm
for categorical data. Although K-Modes is a scalable algorithm, some problems
still arise from it. The data mining community has carried out efforts to develop
quick and scalable clustering algorithms for large databases and to make them
work with categorical data; some of them are described as follows: The ROCK
[6] algorithm is an adaptation of an agglomerative hierarchical algorithm. The
algorithm attempts to maximize a goodness measure that favors merging pairs
with a large number of Links. Two objects are called neighbors if their similarity
exceeds a certain threshold 6 given by the user. The number of Links between
two objects is the number of common neighbors. The Rock algorithm selects a
random sample from the databases after a clustering algorithm employing Links
is applied to the sample. Finally, the resulting clusters are used to assign the
remaining objects on the disk to the appropriate clusters. CACTUS [5] is an
agglomerative algorithm that uses data summarization to achieve linear scaling
in the number of rows. It requires only two scans of the data. The CACTUS
algorithm is based on the idea of co-occurrence for attributes-values pairs and
consists of three phases: summarization, clustering and validation. The COOL-
CAT clustering algorithm presented by Barbard in [7] is very similar to the
K-means algorithm. Unlike K-means, it includes a step that has the purpose of
selecting the most adequate representative clusters. It uses entropy as a measure
to compute similarity between objects and, as criterion function, it uses mini-
mization of entropy between clusters. The COOLCAT algorithm depends on a
sample and it is a hierarchical algorithm. It assumes features are independent
from each other. COOLCAT defines a cluster’s entropy and starts with a sample
of objects; it uses a heuristic method to identify the number of initial clusters,
which are the objects with higher entropy. COOLCAT requires as entrance pa-
rameters the number of clusters to be formed and the sample size.The CLICK
clustering algorithm [8] finds clustering in categorical datasets using a seach
method for K- partite maximal cliques. This paper is organized as follows: sec-
tion 2 provides definitions used by the proposed method; section 3 contains a
brief explanation of the K-Modes algorithm; section 4 has the proposed model
to summarize the database. Section 5 offers results obtained and, finally, section
6 contains the analysis of results. This paper is organized as follows: section
2 provides definitions used by the method proposed; section 3 contains a brief
explanation of the K-Modes algorithm; section 4 has the model proposed to
summarize the database. Section 5 offers results obtained and, finally, section 6
contains the analysis of results.
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2 Definitions

This section defines concepts that will be used in the rest of this paper. Let D
be a database described by a set of records (Tuples), where each tuple ¢ : ¢t €
Dy x...x D, and a tuple t is represented by t.A1,t.As, ..., t.A,,; each feature
t.A; takes values in domain D. In clustering, data may be of different types,
numeric and non-numeric; non-numeric are frequently referred to as categorical.
The first use continuous values and, with categorical data, their domain D; takes
values in a finite, disarranged set; therefore, a feature ¢t.A; only takes one value
from D . Like in [9] an object is a logical conjunction of events. An event is a
pair relating features with a value, as follows:

Where z; € D; for 1 < j < m. Then, we define a categorical object as a logical
conjunction of events as follows:

X = [tAl :.771]/\.../\[t.A2 :Qﬁg]A.../\[t.Am :.I'm]

For simplicity purposes, an event will be referred to as feature to an event.

2.1 Dissimilarity measure

The similarity measure used in this paper is described in [4]. Let us take two
categorical objects X and Y described in m features. The dissimilarity measure
between the objects X and Y is defined by the number of feature-to-feature
non-coincidences of objects, formally defined as follows:

d(X,Y) = 6w, y;) 1)
j=1
where:
segu) ={ o f 7Y @)

2.2 Frecuency and mode vectors

Definition 1. Let C = (t.4;,t.A;41,...,t.Ay) be a frecuency vector, where
1=1,...,m; m = number of attributes and t.A; is defined as follows:

tA; = (@iglfigl = @ijelfijel =5 @ialfialnull) ; where d = |Dy|,z; 5 is
some value of A;; fi; is the relative frecuency of x; ; and — is a link to x; j41

Definition 2. Let FC = (f;. Ay, f;.As, ..., fi.An ) be a mode vector from C,
J J J

where f;.A; is x;,5 value from A; with the highest relative frecuency, which we cal-
culated as follows: f;.Ai = Max [x; ;| fi;| =, %ij+1lfij+2] = -, Tial fa| Null].
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2.3 CM structure

A CM structure is a pair for summarizing the information that we maintain
about a subcluster of objects.

Definition 3. Given N m — Dimensional categorical objects in a cluster:[N;)
where 1 = 1,2, ..., N, the structure CM entry of the cluster is defined as a pair

CM = (C’, FC’), where C is a frecuency vector and FC' is a mode vector from

C.

2.4 Definition of CM — tree

A CM —tree is a tree balanced by height (see Fig. 1); it is formed by two types
of nodes: non-leaf nodes and leaf nodes. These nodes have, in turn, a number of
entries, B for the non-leaf nodes and L for leaf nodes, which determine the tree
expansion factor, and an absorption threshold 7" that should meet entries of leaf
nodes. Leaf and non-leaf node entries store CM‘s. At a certain point of the tree
construction, leaf nodes contain vector FC representing the cluster of objects
that have been absorbed in this entry. Non-leaf nodes store CMs formed by
CM:s of children nodes (leaf or non-leaf nodes). The construction algorithm is
described hereinbelow. Each entry of a leaf and non-leaf node (see Fig.3) stores
CMs

2.5 Calculation of threshold T

To compute T, a heuristic function is proposed to go from 7T; to T;y; , which
depends on the number of rebuilding and features:

m — dec
Tivi=—— (3)
m

where m is the number of features, dec is a constant taking values between 0 and
m, which may be increased in 1 at each rebuilding to obtain a more compact
CM — tree.

3 K-Modes Algorithm

The K-Modes [3] algorithm is an extension of the K- means algorithm for cate-
gorical data.

General description: The K-Modes algorithm was designed to group large
sets of categorical data and its purpose is to obtain K-modes representing the
data set and minimizing the criterion function. Three modifications are carried
out in the K-modes algorithm with respect to the K-means algorithm:

1. It uses different dissimilarity measures,
2. It substitutes K means by K modes to form centers and
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Fig.1. CM-Tree with L=3 and B=3

3. It uses a method based in frequencies of attribute values to update modes.

Mode update is carried out at each allotment of an object to its set. The K-
Modes algorithm produces local optimum solutions depending on initial modes
and the objects’ entrance order.

4 Proposed method

The method proposed to reduce the database consists in building a CM-tree that
allows obtaining a database summarization.

4.1 Method Overview

Figure 2 shows the details of the summary method. Assume that we know values
L, B, T; and M bytes of memory available for building the CM —tree. Summary
starts with a CM — tree of a small initial threshold value, say 1, scans the data
and inserts objects into the CM —tree t; using the insertion algorithm described
in Section 4.3. If it runs out of memory before it finishes scanning the data, it
then increases the threshold value (T;) and rebuilds a new CM — tree t;41 from
CM — tree t; and T;41, using the rebuilding process described in Section 4.2.
When all objects in the database have been scanned, it has the reduced database
into the entry leaves (F'C) of the last formed CM — tree.

4.2 Rebuilding Process

Assume t; is a CM — tree of threshold T;. Its height is h and its size (number of
nodes) is ;. Given T;41 > T;, we use all the leaf node entries of C M — tree t; to
rebuild a CM — tree t;11 of threshold T;4; such that the size of ¢;11 should not
be larger than S;. The building process obtains a CM —tree t;;1 from CM —tree
t; using the CM structure from entry leaf nodes of CM — tree t;41
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BEGIN
READL, B, T:
M= MEMORY AVAILABLE
\WHILE (EOF)
{

SCAN DATA (ent)
1S THERE MEMORY?

INSERT (ent) TO CM-TREE t;
3
ELSE
{Ti1=Ti+1;

REBUILDING (CM-TREE ti ,Tis1);
DELETE CM-TREE t:;
CM-TREE ti CM-TREE ti.1;

Ti =Tis;

}

Fig. 2. Overview of reduced method

4.3 Insertion Algorithm

The insertion algorithm offered here is very similar to the one presented in [10];
the main difference is node entries.

1. Identifying the appropriate leaf: starting from the root, it recursively de-
scends the CM-tree by choosing the closest child node according to the sim-
ilarity metric given in Sect. 2.1.

2. Updating the leaf: when a leaf node is reached, it finds the closest leaf entry,
say L;, and then tests whether L; can absorb ent without violating the
threshold condition. If so, the new entry is absorbed by L;. If not, it tests
whether there is space for this new entry on the leaf. If so, a new entry for
ent is added to the leaf. Otherwise, the leaf node must be split. Splitting is
done by choosing the farthest pair of entries as seeds and redistributing the
remaining entries based on the closest criteria.

3. Updating the path to the leaf: after inserting ent into a leaf, the information
for each non-leaf entry must be updated on the path from the root to the leaf.
If no splitting was done, this simply involves the leaf entry that absorbed ent.
Conversely, a leaf split means that a new non-leaf entry has to be inserted
into the parent. If the parent has space for this new entry, at all higher
levels, it is only necessary to update the corresponding entries to reflect the
addition of ent. However, it may be required to split the parent as well, and
so on up to the root. If the root is split, the tree height increases by one.

5 Experimental Evaluation

This section offers the results of applying our database reduction method, for
which we selected the K-Modes and Click clustering algorithms. Experiments
were carried out to test that, when reducing the database, clustering quality
is not impacted and execution time is improved. The main task of clustering
algorithms is to discover the grouping structures inherent in data. For this pur-
pose, the assumption that a certain structure may exist in a given database is
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first made and, then, a clustering algorithm is used to verify the assumption
and recover the structure. [2] presents three types of criteria used to evaluate
the performance of clustering algorithms. In evaluating our database reduced
method, we chose an external criterion, which measures the degree of correspon-
dence between the clusters obtained from clustering algorithms and the classes
assigned a priori. We have used the clustering accurancy as a measure of a clus-
tering result. Clustering algorithms were run in two ways: first, we ran them
throughout the entire database; the clustering results obtained are called En-
tire DB; when we ran algorithms throughout the reduced database (using our
method), the clustering results are called Reduced DB.

5.1 Set of data used

Our experiments were carried out with data sets taken from UCI achina Learning
Repository: http://www.ics.uci.edu/ mlearn/MLRepository.html. The data sets
used were Kr-vs-Kp with 3198 objects, Connect-4 with 67557 and Mushroom
with 8124, all of them with categorical data.

5.2 Tests

To measure the results of our model, the k-Modes and Click clustering algorithms
were both executed with the reduced and the entire database for different values
of K. The execution time and clustering quality (accuracy) were compared, as
shown in Figs. 3 and 5.

5.3 Discussion

— About the K-Modes Algorithm: Figure 3.a presents both clustering results,
with the mushroom entire and reduced database for different values of K.
On the Reduced DB clustering results, we can see that accuracy was better
when K took values between 2-10; however, when K took values between
11 to 25, both clustering results were almost similar. Figure 3.b shows clus-
tering results of the Kr-vs-Kp database, with the Reduced DB clustering
results accuracy being slightly better than with the Entire DB clustering
results. Figure 3.c shows the Entire DB and Reduced DB clustering results
of the Connect-4 database. In this case, accuracy reported on the Reduced
DB clustering results was better than with the Entire DB clustering results
when K took values between 6 to 23. Figure 5 presents execution times ob-
tained by means of the K-Modes algorithm for both the entire and reduced
database. When the K-Modes algorithm was run with the reduced database,
better run times were obtained than with the K-modes algorithm and the
entire database. We can therefore state that the proposed database reduc-
tion method considerably improves the efficiency of the K-Modes algorithm
due to the reduction of execution times and because the clustering quality
is not affected by this reduction.
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— About the Click Algorithm: Figure 4 presents the results obtained by the
Click and K-Modes algorithms. The first was run with the reduced DB and
the second with the entire DB, using different values of K. For the mushroom
dataset, accuracy obtained with K-Modes (Reduced DB) was better than
with the Click algorithm (Entire DB). Results obtained with the Kr-vs-Kp
dataset were similar (see Figure 4a and Figure 4b). Figure 6 shows the time
run, evidencing its decrease when using the reduced DB.
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Fig. 3. Accuracy vs Number of clusters (K-Modes)

6 Conclusions and future works

We offer a solution for categorical data clustering algorithms considering the size
of data sets. This solution consists in a database reduction method using a tree-
type structure balanced by the height of the CM-tree; it adjusts to the memory
availability and, as it reduces the data set, it also carries out semi-clustering.
When reducing the data set, tests demonstrated that clustering quality is not
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affected and execution time decreases considerably. We consider applying this
method to other clustering algorithms in the future.
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