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ABSTRACT We propose a new parameter-adaptive uncertainty-penalized Bayesian information criterion
(UBIC) to discover the stable governing partial differential equation (PDE) composed of a few important
terms. Since the naive use of the BIC for model selection yields an overfitted PDE, the UBIC penalizes the
found PDE not only by its complexity but also by its quantified uncertainty. Representing the PDE as the best
subset of a few candidate terms, we use Bayesian regression to compute the coefficient of variation (CV)
of the posterior PDE coefficients. The PDE uncertainty is then derived from the obtained CV. The UBIC
follows the premise that the true PDE shows relatively lower uncertainty when compared with overfitted
PDEs. Thus, the quantified uncertainty is an effective indicator for identifying the true PDE. We also
introduce physics-informed neural network learning as a simulation-based approach to further validate the
UBIC-selected PDE against the other potential PDE. Numerical results confirm the successful application
of the UBIC for data-driven PDE discovery from noisy spatio-temporal data. Additionally, we reveal a
positive effect of denoising the observed data on improving the trade-off between the BIC score and model
complexity.

INDEX TERMS Bayesian regression, data-driven discovery, denoising, information criterion, model selec-
tion, partial differential equations, physics-informed neural networks, SINDy, uncertainty quantification.

I. INTRODUCTION
Data-driven discovery has emerged as an accurate approach
for uncovering the governing partial differential equation
(PDE) of a dynamical system without explicitly handling
complex nonlinear relationships, offering greater flexibility
than deriving physics from first principles (see AI Feyn-
man [1] as a case study). Typically, sparse regression is
leveraged to approximate a linear combination of candidate
terms that balances between the capability to estimate a
system state’s temporal derivatives and the model com-
plexity, hence so-called SINDy (sparse identification of
nonlinear dynamics)-based approaches [2], which were suc-
cessfully applied in aerodynamics [3], biology [4], [5], and
epidemiology [6].

The associate editor coordinating the review of this manuscript and

approving it for publication was Alba Amato .

Regularized regression methods, designed to achieve the
sparse identification were, for example, STRidge (sequential
threshold ridge regression used in PDE-FIND) [7], LASSO
(least absolute shrinkage and selection operator) [8] and SR3
(Sparse relaxed regularized regression) [9]. However, tuning
a regularization hyperparameter(s) of these SINDy-based
methods for model selection is challenging, because an
improper hyperparameter may deliver an overfitted or
underfitted model. Also, it is difficult to control the resulting
model complexity. Thus, there is a risk of overlooking the true
governing equation of a particular complexity.

The mixed-integer optimization (MIO) for best-subset
selection [10] has been introduced to customize the desir-
able sparsity in the provably optimal MIO-SINDy [11].
Various best-subset solvers are utilized to collect potential
PDEs, from which one is automatically selected as the
underlying PDE by an algorithm [12]. Although impressive
progress has been made in deliberate consideration of likely
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PDEs consecutively arranged in an order of increasing
complexity, the important question remains: How do we
select the best model that reveals the true governing PDE
form?

Prior to model selection, we denoise the noisy observed
data as we get a better chance of finding the true PDE
form within a set of higher-quality potential PDEs. This
step can be achieved by, for example, derivative computation
using polynomials [7], spline-based models [13], and Robust
PCA (principal component analysis) [14]. In this paper,
we focus on using a denoising method, configured with a
minimal set of hyperparameters that do not involve strictly
assumed noise statistics (in contrast to a design of the
Kalman filter for noise reduction), to yield a positive impact
on the model selection step: the regularized K-SVD [15],
a dictionary learning for computing sparse representations
used to reconstruct denoised observed data. A performance
comparison of different denoising methods is given in
Appendix C.

In the model selection from a finite set of potential PDEs,
Akaike information criterion (AIC) [16], [17], [18] and
Bayesian information criterion (BIC) [19] are commonly
adopted as metrics for evaluating point estimates of model
parameters. However, when changing the number of nonzero
terms in a linear model fitted on an overcomplete candidate
library, the AIC and BIC values tend to decrease as the
model complexity increases. Therefore, naively selecting the
PDE that minimizes the information criteria, could lead to
overfitted equations with unnecessary candidates [12], [20].
In this paper, we propose a new BIC-based metric that

balances the accuracy of an approximated model not only by
the model complexity but also by the quantified uncertainty
to avoid overfitting. We go beyond point estimates of the
model parameters or coefficients and instead put a posterior
belief on them. Bayesian linear regression is modeled on
each potential PDE to obtain the posterior distribution of
the coefficients. The coefficients’ mean and covariance
are then computed, through the posterior samples or ana-
lytical methods (if available), to quantify the uncertainty
using the coefficient of variation (CV) formula. Unlike
the traditional BIC, our proposed uncertainty-penalized
Bayesian information criterion (UBIC) adaptively exploits
the uncertainty of the estimated coefficients to optimally
select the parsimonious and stable governing PDE, which
separates between overfitted and underfitted PDEs. Fig. 1
visualizes the primary steps of our approach to discover
the underlying PDE starting from denoising data to model
selection.

We suggest that the UBIC-selected PDE can be optionally
validated using simulation-based model selection, mea-
suring the BIC of the PDE simulated state solution for
directly predicting the denoised observed data. We use a
physics-informed neural network (PINN) [21] as a differ-
entiable automatic PDE solver. PINN enables the flexible
PDE-solving approach by incorporating physical laws as a
part of its learning constraints. Physics-informed machine

FIGURE 1. Schematic diagram of the Burgers’ PDE discovery using the
proposed UBIC for the model selection.

learning extends beyond solving PDEs, manifesting recent
applications in learning nonlinear operators [22], [23].
Other than PINNs, frameworks based on Gaussian process
regression [24], [25], [26] were introduced to solve a PDE or
infer the PDE’s parameters.

We list the main contributions in what follows.
• The UBIC uses the quantified uncertainty of each
potential PDE to penalize the BIC, easing the identifi-
cation of the parsimonious and stable governing PDE
without heavy reliance on hyperparameter tuning. The
quantified uncertainty is not exclusive to our approach
but applicable to the existing methods that require model
selection.

• We numerically exhibit the positive impact of denoising
in terms of improving the trade-off given by the BIC.

• We explore the simulation-based model selection that
evaluates the efficiency of the PINN-simulated PDE
state solution in predicting the denoised observed
data.

II. RELATED WORK
Pioneering sparse regression based PDE discovery methods,
namely STRidge, LASSO, and SR3, relied on norm-based
model selection techniques (i.e., minimizing regularized loss
functions within a maximum number of iterations) to uncover
the governing equation. However, the sensitivity to the choice
of regularization hyperparameters, which varied from small
to large values, was problematic. In prior research, an infor-
mation criterion (IC) was used either for simulation-based
model selection [17], [27] or for choosing among models
that estimate the system state’s time derivatives [12], [20].
The former type needs more computational resources, while
each work of the latter type applies a subsequent selection
algorithm to the PDEs pre-screened by the IC to ultimately
find the best PDE form. Because the BIC decreases the
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precision per parameter (candidate) as the sample size
increases [28], it should not be solely used for selecting the
governing PDE.

Normally, regression frameworks (e.g., Gaussian processes
and neural networks) combined with model selection [29],
[30] are well suited for data-driven discovery tasks. The
true PDE terms can emerge through various spaces (e.g.,
frequency spaces [31] or manifold’s embedding spaces [29],
[30], [32]) and candidate representations (e.g., polynomial
interactions [2] or weak-form representations [33], [34]).

Bayesian PDE discovery methods, such as uncertainty-
quantified SINDy (UQ-SINDy) [35] and threshold sparse
Bayesian regression with error bars [36], were previously
introduced, but the idea of uncertainty-penalized IC for PDE
discovery remains unexplored. The UQ-SINDy employed
sparsifying priors to induce nonzeros terms identified with
their posterior inclusion probabilities generally once, leading
to risks of missing some correct terms or including incorrect
ones. The threshold sparse Bayesian regression also risked
excluding small yet important PDE coefficients possibly due
to an oversight when choosing the threshold.

Different from all the prior works, our UBIC is the first
IC that integrates quantified uncertainty values of potential
PDEs and adapts to noisy observed data to successfully iden-
tify the stable governing PDE without any PDE simulations.

III. METHODOLOGY
A. PROBLEM FORMULATION
Let us assume without loss of generality that the system
state u in a two-dimensional (2D) spatio-temporal grid of
spatially distributed physical systems satisfies

∂tu = N (u, ∂xu, ∂2x u, . . . ; ξ ). (1)

We aim to discover N , a linear or nonlinear operator
involving spatial derivatives of the state variable u only.
The parametric dependency ξ is a constant vector-valued
coefficient. For convenience, we consider ∂xu ≡ ux and other
notations alike. Since our observed input ũ may be disturbed
with noise, ormathematically given as ũij = u(xi, tj)+z(xi, tj),
we begin our PDE discovery approach by denoising on ũ.
Noise z(xi, tj) ∼

ϵσu
100N (0, 1) is drawn from standard Gaussian

distribution, and scaled proportionally to ϵ% of the standard
deviation (sd) σu calculated over the domain.

B. DENOISING DATA
Suppose the spatio-temporal grid is in a 2D space, we turn ũ
into a zero-mean array stacking flattened patches, regarded
as signals Sp(ũ) ∈ Rp2×f ; where p and f determine
the patch size and the number of features. We seek the
dictionary D ∈ Rp2×c, whose each column is denoted by
dj, along with corresponding sparse code A to approximate
Sp(ũ) by its sparse representation DA ≈ Sp(ũ). To achieve
the approximation, we solve the ρ-regularized dictionary

learning problem:

min
D,A

∥∥Sp(ũ)− DA∥∥2
F + ρ ∥A∥

2
F

subject to
∥∥dj∥∥2 = 1, j = 1, . . . , c

∥al∥0 ≤ L, l = 1, · · · , f . (2)

A couple of optimized D and A is obtain through regularized
K-SVD training iterations.With the final fixedD, the ultimate
sparse code A is then found using the orthogonal matching
pursuit (OMP) algorithm with ⌊ p

2

10⌋ transforming sparsity to
reconstruct the denoised observed data û = S−1p (DA) from
the patches, via the inverse function S−1p . ∥·∥F denotes the
Frobenius matrix norm. We define Gû(xi, tj) = ûij as the
denoised state function.

If we encounter 3D or 4D spatio-temporal data, the
denoised û is instead achieved efficiently by applying 2D
Savitzky-Golay filters [37], [38], which can be used with
SVD (singular value decomposition).

C. PDE IDENTIFICATION
Best-subset regression is subsequently used to recover
a sequence of potential parsimonious PDEs (with their
corresponding coefficients) represented by best-subset solu-
tions with a maximal bound on support sizes (i.e., the
number of nonzero terms). For instance, a careful forward-
backward elimination algorithm [39] can be implemented as
a best-subset solver.

We presume an overcomplete library 8(û) collecting
candidate terms (with a maximum derivative order) of the
denoised observed data. The library 8(û) is supposed to
embed the information on the initial and boundary conditions.
According to the weak formulation [33], i-th numerical value
of j-th candidate (column-wise) in 8(û) ∈ RN�×Nq is given
by integrating over a local spatio-temporal subdomain �i,
whose (rectangular) lengths are Hx and Ht .

8(û) = [· · · qj · · · ], j = 1, . . . ,Nq;

qij =
∫
�i

wφj d�, i = 1, . . . ,N�. (3)

φj is regarded as a candidate function, for example, G2û
and ∂2xGû. N� is the number of domain centers; ∀i, (xci , t

c
i ).

The smooth weight, e.g., w = (x2 − 1)2(t2 − 1)2; where
x = (x − xci )/Hx , t = (t − tci )/Ht conditioned by (x, t) ∈
[−1, 1]2, is a viable function for discovering the Burgers’
PDE as it vanishes along the boundary ∂�i. Note that higher
polynomial orders are possible. By integration by parts on
Equation (3), numerical noisy derivative evaluation of φj is
carried out on the noiseless w instead. We use the implemen-
tation provided in the PySINDy package [40], [41]. Remark
that the noise-tolerant representation by the convolutional
weak formulation (CWF) [34] could be leveraged at the
library construction stage as well.

We attain an estimate ξ̂ k of the PDE coefficients with its
support set, supp(ξ̂ k ) = {ξ̂ kj |

∣∣∣ξ̂ kj ∣∣∣ > 0} of a sk support size
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(cardinality), by solving the best-subset selection problem:

ξ̂ k = argmin
ξ k

∥∥∥∥∥∥q0 −
Nq∑
j=1

qjξ kj

∥∥∥∥∥∥
2

2

, subject to
∥∥∥ξ k∥∥∥

0
= sk ;

(4)

where qi0 =
∫
�i
w∂tGû d� and q0 ≈

∑Nq
j=1 qjξ̂

k
j = 8(û)ξ̂ k .

Best-subset solvers, we experiment with to yield potential
PDEs for an increasing sequence of support sizes (sk )

Ns
k=1;

where Ns ≤ Nq, are based on MIO, SOS-1-formulated
(type-1 specially ordered sets) [42] MIO-SINDy, FROLS
(forward regression with orthogonal least squares) [43],
[44] and L0BnB (branch-and-bound framework for sparse
regression) [45].

D. UNCERTAINTY-PENALIZED BAYESIAN INFORMATION
CRITERION (UBIC) FOR ADAPTIVE MODEL SELECTION
We now find the best support size presented in Equation (4)
within a given range. The base information criterion,
on which we rely to penalize the maximized log-likelihood
value of a regression model by its complexity, is the BIC:

BIC(ξ̂ k ) = −2 logL(ξ̂ k )+ log(N�)sk ;

logL(ξ̂ k ) = −
N�
2

log(
2π
N�

∥∥∥q0 −8(û)ξ̂ k∥∥∥2
2
)−

N�
2
. (5)

L is the model likelihood function. Our motivating assump-
tion is that the true governing PDE is reliable and thus
parameterized by the stable vector-valued coefficient whose
uncertainty is relatively lower (a good parsimony indicator)
than those that characterize the other potential PDEs.
Addressing the issue that the PDE with the lowest BIC is not
necessarily the best PDE [12], [20], we define the UBIC by
penalizing the BIC formula by tunable quantified uncertainty
as follows:

UBIC(ξ k , λU) = BIC(ξ kµ)+ λU log(N�)Uk

= −2 logL(ξ kµ)+ log(N�)(sk + λUUk ). (6)

Uk represents an estimated total uncertainty for ξ k , scaled
proportionally to log(N�), similar to the penalizing complex-
ity in the BIC, for convenient unification. Like L(ξ kµ) and
sk , Uk is considered as an indicator of the PDE’s parsimony.
The data-dependent λU controlling influence of Uk on model
selection is adaptively adjusted by Algorithm 1. A lower
UBIC conveys a better-discovered PDE. A Bayesian linear
regression probabilistic view is placed on ξ k with Gaussian
conjugate prior N (ξ k | ξ k0 ,V

k
0). Using Bayes rule for linear

Gaussian systems [46], we derive the posterior as follows:

p(ξ k |8k (û), q0, σ 2
q )∼N (ξ k |ξ k0 ,V

k
0)N (q0 |8k (û)ξ k, σ 2

q IN� )

=N (ξ k |ξ kµ,V
k );

ξ kµ=V
k (Vk

0)
−1ξ k0 +

1
σ 2
q
Vk 8k (û)T q0,

Vk
=σ 2

q (σ
2
q (V

k
0)
−1
+8k (û)T8k (û))−1.

(7)

Experimental results are produced with ξ k0 ∈ Rsk , a vector
containing nonzero terms in ξ̂ k , and Vk

0 = Isk as an identity
matrix of size sk . Note that ξ k0 = 0⃗, reducing the posterior
mean to ridge estimate, is also a feasible option. Columns of
8k (û) correspond to sk effective candidates, which are used
to calculate BIC(ξ kµ). By maximum likelihood estimation
(MLE) for the error variance, we set σ 2

q = E[(q0−8(û)ξ̂ k )2].
Based on the obtained posterior, the uncertainty Uk is defined
as follows:

Uk
=

CVk

mink CVk ; CV
k
=

∥∥∥diag(Vk )◦
1
2

∥∥∥
1∥∥ξ kµ∥∥

1

=

∑sk
i=j

√
Vk
ij∥∥ξ kµ∥∥

1

.

(8)

We compute CVk (the relative standard deviation) of the
covariance matrix Vk by taking an element-wise square root
(the ◦ 12 exponent) on its diagonal vector (diag) and then the
l1-norm division by

∥∥ξ kµ∥∥
1
. When all the true terms are

included, the Bayesian linear model relies on them to approx-
imate q0, leaving the contribution of unnecessary terms on
improving the approximate error diminished and uncertain
with potentially high-variance coefficients. As

∑sk
i=j

√
Vk
ij

sums the posterior standard deviation of every effective
candidate, the more unnecessary candidates get included, the
more the PDE risks becoming uncertain and overfitted and
getting penalized more in Equation (6). Each CVk is rescaled
by the minimum mink CVk , resulting in Uk whose value is
comparable to sk .

Once every Uk is obtained, we converge the UBIC by
Algorithm 1, iteratively decreasing λU from its maximum
bound λmax

U derived to maintain the influence of the
log-likelihood value (by not overly penalizing −2 logL(ξ̂ k )
in Equation (6)) for all the discovered PDEs. We compute
λmax
U based on the following constraint:

∀k ≤ Ns, logN�(sk + λUUk ) ≤
∣∣∣−2 log L̂(ξ kµ)∣∣∣ ; λU ≥ 0,

λmax
U = max

k

1
Uk (

2
∣∣∣log L̂(ξ kµ)∣∣∣
logN�

− sk ). (9)

Algorithm 1 finds a proper λU = 10λ by reducing λ

iteratively. We track the current and competitive optimal
support sizes (sk∗ , skc ), and test the stopping condition
at line 12, which essentially checks whether we have
the increased complexity with unsatisfactory improvement
(see τ ), or the decreased complexity with already satisfying
improvement. τ = τ0 might be included in the stopping
condition by choice. Also, τ0 can be set adaptively, yet
offering the same correct selection as the default value.
Such an effective heuristic is τ0 = P75(S); S = {τ k

2

k1
|

k1, k2 = argmin(r) s.t. r = sk2 − sk1 > 0, and ∀sk0 <
sk1 , BIC(ξ

k2
µ ) < BIC(ξ k

1

µ ) < BIC(ξ k
0

µ )}, the 75th percentile
of successive improvement factors respecting just BIC-
decreasing models. If an overfitted model is detected by
line 18, we retry with a stricter percentile of S, e.g.,
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Algorithm 1 Find the Optimal Complexity sk∗ by Tuning λU

Input: 8(û), q0 and ξ̂ k

Parameter: τ0: Improvement threshold (default= 0.02) and
Nδ: maximum number of iterations (default = 3)
Output: The optimal support size s∗k and tuned UBIC’s
hyperparameter λU
1: Compute ∀k ≤ Ns, Vk , ξ kµ and Uk ,

with Gaussian prior N (ξ k | ξ k0 , Isk )
2: Assign λ← log10max(λmax

U , 0) {−∞ if λmax
U ≤ 0}

3: Assign δ← λ
Nδ

and λc← λ− δ {next trial value of λ}
4: Compute ∀k, Ik ← UBIC(ξ k , 10λ) using ξ kµ and Uk

5: Find sk∗ where k∗← argmink Ik
6: while λc ≥ 0 do
7: Compute ∀k, Ick ← UBIC(ξ k , 10λ

c
)

8: Find skc where kc← argmink Ick
9: Assign 1s← skc − sk∗

10: Assign 1BIC← BIC(ξ k
c

µ )− BIC(ξ k
∗

µ )

11: Assign τ ← τ k
c

k∗ ; τ
kc
k∗ =

∣∣∣1BIC/(BIC(ξ k
∗

µ )1s)
∣∣∣

12: if (1s > 0 but (1BIC > 0 or τ < τ0)) or
(1s < 0 but 1BIC > 0 and τ > τ0) then

13: break{stopping condition detected}
14: end if
15: Assign λ← λc and λc← λ− δ

16: Assign ∀k, Ik ← Ick and k∗← kc {sk∗ ← skc}
17: end while
18: if

∣∣∣BIC(ξ k∗µ )− BIC(ξ k
∗
−1

µ )
∣∣∣ / ∣∣∣BIC(ξ k∗−1µ )

∣∣∣ < τ0 then
19: Consider an increased or decreased τ0 value to prevent

overfitted or underfitted models, respectively
20: end if
21: return sk∗ , λU = 10λ and ∀k, Ik {used in plotting}

P80(S). On the contrary, lessening τ0 helps discern selecting
a supposedly underfitted 1-support-size PDE. The cost
of computing UBIC scores is controlled by limiting the
maximum support size sNs because the best subsets for all
the support sizes have to be prepared in advance.

E. SIMULATION-BASED MODEL SELECTION
Since Equation (4) optimizes for the regression model that
fits 8(û) to approximate q0 (a weak form of ut ), the attained
models do not offer the direct comparison metric to the PDE
solution. However, they should give rise to the true PDE,
thereby reducing the computational burden of simulating
false governing PDEs.

Conducting an aid validation process, we solve the found
PDEs most likely to be the true PDE based on obtained UBIC
scores. Well-known numerical PDE solvers using spectral
methods are available in Chebfun [47] and Dedalus [48].
The software can accurately solve canonical stiff PDEs given
initial and boundary conditions. Nevertheless, when solving
a PDE containing extraneous high-order derivatives, the
simulated solution may explode over time. While a rigorous
mathematical analysis is beneficial to address ill-posed PDEs,

our focus is on providing a flexible treatment using neural
networks.

1) PHYSICS-INFORMED NEURAL NETWORK (PINN)
LEARNING
PINN learning is an alternative approach for solving PDEs.
The learned solution not only satisfies a specified PDE
but also fits observational data. The general principle is
to learn the mapping function from spatio-temporal data
D = {(xDi , t

D
j )} to denoised sk -support-size PDE solution:

∀i, j : (xDi , t
D
j )

f2k
7→ ûDij by minimizing the physics-informed

loss respecting the discovered function N̂ :

min
2k ,ξ̂ k

( ∥∥∥FD2k
− ûD

∥∥∥2
F
+∥∥∥∂tFD2k

− N̂ (FD2k
, ∂xFD2k

, ∂2xFD2k
, . . . ; ξ̂ k )

∥∥∥2
F

)
.

(10)

We collect (FD2k
)ij = f2k (x

D
i , t

D
j ). DTrain is the train split

containing subsampled discretized spatio-temporal points,
on which the PINN is trained, and likewise DVal for
hold-out validation dataset. Automatic differentiation is used
to compute derivative terms, e.g., ∂tFD2k

and ∂xFD2k
. The full-

batch second-order L-BFGS [49] is used to optimize2k (i.e.,
learning to obtain2∗k ) and ξ̂

k . We initialize ξ̂ k as the solution
of Equation (4).

2) PHYSICS-INFORMED MODEL SELECTION
Deciding whether the sk -support-size PDE is better or worse
than the sk+1-support-size PDE, we adjust the BIC in
Equation (5) as the complexity penalization avoids choosing
the overfitted PDE that also generates the PINN predicted
solution close to ûDVal on the validation split. Here, the
state-level BIC reads

BICû
2∗k

(ξ̂ k ) = |DVal|

(
1+ log

(
2π
|DVal|

∥∥∥ûDVal − FDVal
2∗k

∥∥∥2
F

) )
+ log(|DVal|)(

∣∣2∗k ∣∣+ ∥∥∥ξ̂ k∥∥∥
0
);

(11)
where

∣∣2∗k ∣∣ tells the number of trainable parameters of
the optimized neural network. The modification involves
utilizing the validation data points inDVal for the comparison.
If BICû

2∗k
(ξ̂ k ) < BICû

2∗k+1
(ξ̂ k+1), it is advisable not to increase

the support size to sk+1 under a fair circumstance where
the PINN architecture and learning procedure are identical.
We apply the vanilla paradigm for simplicity, though the
PINN training could be improved, e.g., using multi-task
learning techniques [50], since the network may overfit
on DTrain, stuck in a physics-obeying local minimum [51].
In practice, the PINN network’s size and number of epochs
until convergence would be limited to fit one’s computational
resources.
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TABLE 1. PDE dataset descriptions. The number of discretized spatial and temporal points are specified by the (Nx , Ny , Nz ) and Nt . The intensity of
ϵ%-sd Gaussian noise is listed in the rightmost column.

FIGURE 2. 2D visualization of the noiseless datasets.

IV. NUMERICAL RESULT AND DISCUSSION
The PDE dataset description is given in Table 1. We plot
2D visualization of the datasets we experimented with
in Fig. 2. Experiments were run on a 2.6 GHz 6-Core
Intel i7 CPU with 32 GB RAM. For reproducibility, the
data and code are available at https://github.com/Pongpisit-
Thanasutives/UBIC.

A. BURGERS’ PDE
We tested the PDE solution with the initial condition:
u(x, 0) = e−(x+2)

2
. To denoise ũ, we ran regularized KSVD

with ρ = 0.05 on the stack Sp(ũ) created with square patches
of size 8 × 8. For sparse encoding during the training, OMP
was configured with one target sparsity.

We gathered an overcomplete set of candidate functions,
φj(·) ∈ {(Gd1û ∂

d2
x Gû)(·) | d1 + d2 ≥ 1; d1, d2 = 0, 1, 2}. For

transforming to the integral weak forms (8(û), q0), we stick
with 10000 domain centers throughout this paper. Exhaustive
all subsets selection solved Equation (4), attaining ξ̂ k for
every k ≤ Nq = 8 (no constant term) in 0.29 secs (seconds).

Fig. 3(a) shows the BIC scores of the found PDEs, where
the support sizes are arranged in increasing order. After
the 2-support-size PDE, the improvement in BIC becomes

stagnant. However, the model selection based on BIC does
not choose the 2-support-size PDE as the optimal choice. This
is because the BIC scores continue decreasing beyond the
plateau, and it is the 5-support-size PDE that yields the lowest
BIC score. We inspect that the log-likelihood dominates the
BIC score, when the number of samples in the library N�
is large, causing the penalization by only the support size sk
(model complexity) not strong enough for identifying the true
governing PDE.

To use the proposed UBIC, we quantify the uncertainty
Uk for all the best subsets, as plotted in Fig. 3(a). These
uncertainty values are incorporated to further penalize the
obtained BIC scores, preferring the parsimonious PDE with
the stable coefficient estimates. The PDE with a support size
of 2 (2 effective candidates) exhibits the highest stability
(inversely proportional to the PDE uncertainty). Algorithm 1
suggests the UBIC scores with λU = 100 = 1. The
UBIC-selected PDE aligns with the true Burgers’ PDE form.

B. KORTEWEG-DE VRIES (KDV) PDE
We generated the two-soliton u with the initial condition
u(x, 0) = − sin(πx20 ). We denoise using regularized KSVD
with ρ = 0.01 on the stack Sp(ũ) created with 25×25 patches.
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FIGURE 3. We plot the BIC, uncertainty Uk and UBIC with tuned λU = 10λ for the model selection in the Burgers, KdV, KS, and NS examples arranged from
left to right. We use an arrow (→) to locate where the IC is minimized. ‘‘✓’’ indicates that the UBIC selects the true PDE form.

We set the OMP algorithm with one target sparsity during the
training.

Next, the candidate functions φj(·) were chosen from
{(Gd1û ∂

d2
x Gû)(·) | d1 + d2 ≥ 1; d1 = 0, 1, 2 and d2 =

0, 1, 2, 3, 4} before building their weak forms and q0.
We exhaustively searched for all the optimal subsets respect-
ing every support size, achieving ∀k ≤ Nq = 14, ξ̂ k in
19.04 secs.

In Fig. 3(b), we observe that the true equation favored by
the UBIC with tuned λU = 102.28 stands out, in accordance
with the minimal uncertainty, from the other potential PDEs.

C. KURAMOTO-SIVASHINSKY (KS) PDE
Following the PDE-FIND paper [7], we experimented with
the identical chaotic PDE generated with the initial condition:
u(x, 0) = cos( x16 )(1+sin(

x
16 )). We used the same regularized

KSVD settings as detailed in the KdV example.
Given that the set of candidate functions adopted in the

KdV examplewas considered to build aweak-form library for
recovering the KS PDE, we completed the same best-subset
regression strategy in 32.22 secs.

As seen in Fig. 3(c), the lowest BIC and UBIC score with
λU = 1 determine the true equation form.

D. NAVIER-STOKES (NS) PDE
We consider the explicit form of the NS equation given in the
3D spatio-temporal grid. As seen in Table 1, w denotes the
vorticity. The components of the velocity field are denoted
by u (x-component) and v (y-component), which are both
treated as known terms to construct an overcomplete library.
We generated the dataset according to the instructions given
in the PDE-FIND paper and focused on the bounded spatial
domain (x, y) ∈ [2, 8.48] × [0.3, 3.68] after the cylinder.
We were left with N� = 8342750 data points for each
variable—w, u, and v—to which we add 1%-sd noise after
the subsampling.

TABLE 2. The better is underlined (%CE) or on bold (RBIC).

To obtain each noise-reduced variable, we applied 2D
Savitzky-Golay filters for spatial denoising at every time
step, then employed the denoising SVD. As experimented
in the PDE-FIND, we specifically retained the top singular
values, which were 26, 20, and 20 for w, u, and v
(reshaped as metrics with 325× 170 rows and 151 columns),
respectively. The process enhanced the variables’ quality,
thereby preserving the correct equation form to be captured at
the discovered 4-support-size PDE. The 19 non-weak terms
included the following variables: ψ1 ∈ {w, u, v}, the spatial
derivatives of the vorticity w: ψ2 ∈ {wx ,wxx ,wy,wyy}, and
ψ1ψ2 (all possible polynomial interactions included). Every
best subset, whose cardinality ranges from 1 to 10 was
initially approximated by the MIQP (mixed-integer quadratic
programming) with the l0-norm based budget constraint [10].
The computational runtime taken was 99.48 secs. We then
performed an all-subsets exhaustive search over the top
candidates, each at least existing in one of the 10 best subsets.

Despite the underlying PDE form being dependent on the
4 candidate terms, it is the most stable one, as illustrated in
Fig. 3(d) (bottom). Undoubtedly, the quantified uncertainty
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FIGURE 4. Robust adaptive model selection by the UBIC with the preceding denoising step under the extremely noisy scenarios.

FIGURE 5. Robust model selection by the UBIC without the preceding denoising step under the highly noisy scenarios. For the Burgers and KS cases,
we assign τ0 = P75(S). For the KdV cases, we assign τ0 = P85(S).

associated with each discovered PDE is a beneficial indicator
for finding the correct model by the UBIC with λU = 106.11.

E. DENOISING EFFECT
The positive effect of denoising is evident from the overall
drop (shaded area) in BIC, observed throughout the previous

examples. We evaluate the trade-off by the maximum
reduction in the BIC: RBIC = mink BIC(ξ̂ kµ)−maxk BIC(ξ̂ kµ)
in Table 2. In Fig. 3(c), the reduction in BIC scores is not as
pronounced as what is demonstrated in the Burgers and KdV
examples, implying the challenge of restoring the chaotic
solution of the KS PDE. In the NS example, the omission of
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FIGURE 6. Model selection results for the RD and GS PDEs.

the true PDE when no denoising processes were performed
causes a noticeable gap in the BIC values between the two
cases, as illustrated in Fig. 3(d), confirming the usefulness
of the denoising step to the model selection. RBIC or the
area between trade-offs is a prospective metric for tuning
denoising hyperparameters, possibly facilitating a clearer
identification of the governing PDE.

F. ROBUST ADAPTIVE MODEL SELECTION
We fully harness the capability of our proposed method in
such extremely noisy scenarios that, without the denoising
step, the true governing PDE would be omitted or poorly
recovered from the best subsets. Fig. 4 shows that we cor-
rectly identify the governing PDEs selected using the adaptive
UBIC despite the severe noise interference. Particularly in the
Burgers example, neither the BIC nor the uncertainty alone
can recover the true equation form.

We also tried ablating the denoising step to solely justify
the usability of the UBIC with just the weak formulation
and the adaptive model selection. As illustrated in Fig. 5, the
correct identification of the governing PDEs emphasizes the
advantage of incorporating penalizing uncertainty informa-
tion for the model selection.

G. DISCOVERY ACCURACY
We evaluate the proximity of each discovered ξ̂ kj to the
ground truth ξj by the percentage relative coefficient error:

100 ×
∣∣∣ξ̂ kj − ξj∣∣∣ / ∣∣ξj∣∣. The %CE reported in Table 2 denotes

the average over every effective coefficient. In most of the
cases, ξ̂ k obtained on the denoised data delivers a lower %CE
than when we omit the denoising step.

H. REACTION-DIFFUSION (RD) PDE
The PDE governs a system that simulates double spiral
waves on a periodic domain, consisting of 7 actual terms.
To countermeasure 10%-sd noise that perturbed a stack of the
u and v variables, 2D Savitzky-Golay filters were employed

for spatial denoising at each time step, the results were then
collected to construct the noise-reduced data.

The candidate library encompassed the following variables
and their transformations: ψ1 ∈ {u, v, u3, v3, u2v, uv2},
the spatial derivatives (up to second-order) of either u or
v: ψ2 ∈ {ux , uy, uxx , uyy, uxy, vx , vy, vxx , vyy, vxy}, or ψ1ψ2
(polynomial interaction). To identify the best subset for
each cardinality from 1 to 10, an initial approximation was
obtained (in 2.56 + 2.62 secs for ut and vt ) using the MIQP
with the budget constraint based on the l0-norm. We then
ensured the optimality of the subsets with support sizes
not greater than 10, respecting the set of unique effective
candidates.

As evidenced by Fig. 6(a), the uncertainty positively
correlated with the support size, as implied by Equation (8).
The uncertainty alone without the base BIC in Equation (6)
is thus not enough for model selection. The 1-support-size
PDE exhibits the least uncertainty. Nevertheless, an intriguing
observation emerges at the 7-support-size PDE, where the
uncertainty drops relatively to the surrounding PDEs plotted
alongside. This local minimum is exploited by the tuned
UBIC with λU = 101.32 for ut and λU = 100 for vt to
successfully identify the 7 true candidates.

I. GRAY-SCOTT (GS) PDE
The GS PDE governs the reaction-diffusion system in the 4D
spatio-temporal grid. For each variable in the noisy stack,
we looped through the t-temporal and then z-spatial axes to
perform spatial denoising using 2D Savitzky-Golay filters.
Hereafter, similarly to the NS example, each variable was
reconstructed via the denoising SVD, retaining the 10 most
significant singular values.

We comprised an overcomplete candidate library with
the variables (including a constant term) and their trans-
formations: {1, u, v, u3, v3, u2v, uv2}, the spatial derivatives
of u: {ux , uy, uz, uxx , uyy, uzz, uxy, uxz, uyz}, and the spatial
derivatives of v: {vx , vy, vz, vxx , vyy, vzz, vxy, vxz, vyz}. The
best subsets were approximated (in 0.18 + 0.18 secs for ut
and vt ) using the FROLS solver with a maximum support size
of 12. These subsets were guaranteed to be at their optimum
within all the effective candidates, each once delivered by the
solver.

According to Fig. 6(b), it is evident that the best subsets,
which align with the true complexity of the PDE system
with support sizes of 6 and 5 for ut and vt , exhibit the
minimal uncertainty values. The tuned UBIC (with λ ≈ 1.51)
leverages the uncertainty pattern to penalize the BIC values,
hence the successful identification of the true PDE system.

J. COMPARISON WITH CONVENTIONAL BAYESIAN PDE
DISCOVERY METHODS
1) UQ-SINDY: SPARSE BAYESIAN REGRESSION BY
SPARSIFYING PRIORS
We study the PDE discovery approach based on sparsifying
priors, as inspired by [35]. Particularly, we examine sparse
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FIGURE 7. Sparse Bayesian regression with the SS prior (β = 0.3125) for discovering the Burgers’ PDE. The candidates are listed in the following order:
[u, u2, ux , uxx , uux , u2ux , uuxx , u2uxx ]. (a) Marginal posterior density of the top candidates. (b) PIP of the candidates (c) PIP of the best subsets of
different support sizes (d) Quantified uncertainty factor of the candidates that have PIPs greater than 0. Note that these comments on (a), (b), (c), and
(d) apply to Fig. 8 and Fig. 9.

FIGURE 8. Sparse Bayesian regression with the SS prior (β = 0.01) for discovering the KdV PDE. The candidates are listed in the following order:
[u, u2, ux , uxx , uxxx , uxxxx , uux , u2ux , uuxx , u2uxx , uuxxx , u2uxxx , uuxxxx , u2uxxxx ].

FIGURE 9. Sparse Bayesian regression with the SS prior (β = 0.1) for discovering the KdV PDE. The candidate list is given in Fig. 8.

Bayesian regression with the spike and slap prior (SS)
[52], [53], [54] and the regularized horseshoe prior (RH)
[55] to solve Equation (4) through Bayesian inference,
where we draw samples from the posterior distribution using
either Markov chain Monte Carlo (MCMC) or sequential
Monte Carlo (SMC) methods implemented in the PyMC
package [56].
For the SS prior, each coefficient is given hierarchically as

ξSSj | Bj ∼ N (ξ̂bj , 1)Bj; Bj ∼ Bernoulli(β), (12)

where β is the probability of success of the Bernoulli
distribution. As a result that Bj ∈ {0, 1}, the spike and
slap prior enables sparse coefficients. Here, b is the index of
the user-specified maximum number of effective candidates.
Employing the UQ-SINDy based approach, we limit the total
number of effective candidates to 8 and 7 for discovering the
Burgers’ PDE and the KdV PDE, respectively.

After completing the Bayesian inference, the quantified
uncertainty factor of each coefficient is given by the following
calculation over its posterior samples of ξ̂SSj :

USS
j =

CVSS
j

minj CVSS
j

; CVSS
j =

√
V[ξ̂SSj ]

E[ξ̂SSj ]
. (13)

Under our core assumption, USS
j would be comparatively

low for the jth effective candidate that corresponds to one
of the true terms. For a candidate to be considered effective,
its posterior inclusion probability (PIP) must be greater than
zero. By counting the number of times a unique subset occurs
in the posterior samples, we can also estimate the posterior
inclusion probability (PIP) for each (best) subset. For the RH
prior, the uncertainty factor URH

j is computed likewise.
In Fig. 7 and Fig. 8, the desirable outcomes are expected by

inspecting that the best subsets with the correct support size
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FIGURE 10. Sparse Bayesian regression with the RH prior for discovering
the Burgers and KdV PDEs. The global shrinkage parameter is set to 10−3.
The candidate lists are given in Fig. 7 and Fig. 8. In the first row, the
marginal posterior density of the top candidates is plotted, while the
second row shows the quantified uncertainty factor of the potential
posterior candidates.

(2 in these cases) present the highest PIPs. The marginal pos-
terior of the negligible candidates primarily distributes a spike
around the origin, whereas wider or slapped distributions are
observed for the true nonzero candidates. However, achieving
the results necessitates appropriate settings of the Bernoulli
distribution’s probability of success in Equation (12): β =
0.3125 and 0.01 for the Burgers and KdV examples,
respectively. If a bigger β = 0.1 is asserted for the KdV
example, the best subset with the highest PIP is comprised
of 3 candidates instead, which does not convey the true
sparsity as shown in Fig. 9, hence the troublesome sensitivity
caused by β. On the contrary, the uncertain pattern remains
insensitive to the change in β from 0.01 to 0.1. Also, the uxxx
and uux (5th and 7th) candidates yield the least uncertainty
factor values. The uncertainty factors of uxx and uux (4th and
5th candidates) are found to be minimal for the Burgers’ PDE
case, as illustrated in Fig. 7.

By the RH prior design [35], the coefficients sampled from
the posterior distribution are not strictly sparse, exhibiting
values close to, but not precisely, zero(s). Thus, a definition of
pseudo-probabilities may be introduced. In this study, we are
inclined to consider the uncertainty factor as our preferred
alternative. Fig. 10 reveals that the true nonzero candidates
have the lowest uncertainty factor, akin to the cases where the
spike and slap priors are utilized. We set the global shrinkage
parameter of the RH prior equal to 10−3 for both examples.

2) THRESHOLD SPARSE BAYESIAN REGRESSION
Another approach for achieving the sparse identification of
the governing PDE with quantified uncertainty (error bars)
is through iterative thresholding until no further changes in
sparsity are detected. This approach is known as threshold
sparse Bayesian regression [36]. We adhere closely to their

TABLE 3. Nonoverlapping train and validation domains bounded for
performing the PINN-based model selection.

iterative thresholding algorithm. In our implementation,
we leveraged fast automatic relevance determination (ARD)
that uses sparse Bayesian learning [57], [58] to estimate mean
regression coefficients from the posterior distribution.

We showcase the experimental results with 3 different
pre-specified threshold values, as depicted in Fig. 11.We find
the sensitivity with respect to the threshold. Overly high
or low threshold values respectively yield underfitted and
overfitted PDE models, hence the indecisive model selection
results. We address this issue by aggregating the best subsets
from the three cases (Threshold = 10−1, 10−2, 10−3) and
selecting the one that minimizes the UBIC, as seen in
Fig. 11(d).

K. SENSITIVITY ANALYSIS
We assess the sensitivity of Algorithm 1 by its success rate in
identifying or converging to the true equation under different
values of τ0 and a fixed Nδ = 3. Recall that we mention the
two distinct strategies for assigning τ0 values that result in the
selection of PDEs whose support sizes are greater than one:
(i) using raw numerical values and (ii) adopting percentiles
of successive improvement factors S, considering only BIC-
decreasing models. We focus on the following strategies.

• (i): τ0 = 10−3(1+ h); where h ∈ {0, 1, 2, . . . 99}.
• (ii): τ0 = Pi(S); where i ∈ {55, 60, 65, . . . 100}.
Pi calculates the ith percentile of the set S.

The success rate of each strategy is given by the number of
times we successfully identify the true equation form over
the number of all τ0 values that lead to the selection of PDEs
whose support sizes (sk ) is more than one (to avoid overly
high values of τ0).
We achieve the perfect 100% success rate for some of the

examples listed in Table 1. For the examples, in which the
success rates are less than 100% using one of the strategies,
we create Fig. 12, showing the suggested support sizes (by
Algorithm 1) against the τ0 values within the specified range.
In spite of the possible inappropriate uses of excessively low
τ0 that causes the selection of overfitted PDEs, the success
rates exceeding 80% are deemed acceptable, implying the low
sensitivity of Algorithm 1.

L. SIMULATION-BASED MODEL COMPARISON
We simulated the PDE selected by the tuned UBIC and
another potential PDE with an additional candidate, using the
PINN learning. The PINN architecture comprised 4 hidden
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FIGURE 11. Threshold sparse Bayesian regression for discovering Burgers’ PDE. The candidate list is given in Fig. 7. The algorithm’s threshold is varied to
the three different values in (a), (b), and (c). The UBIC scores of the best subsets from the three cases are plotted in (d).

FIGURE 12. Sensitivity analysis on the KdV, NS, and RD examples, where one (or both) of the success rates of the strategies falls below 100%.

TABLE 4. Simulation-based model comparison between the PDEs with
(optimal) sk∗ and (suboptimal) sk∗+1 support sizes.

layers, each with 5 neurons. The learning rate parameter of
the L-BFGS optimization algorithm was initialized equal to
0.1. The number of training epochs was set to 500 (taking
approximately less than 1.5 hours when training on a Quadro

RTX graphics processing unit with 49152 MiB memory to
converge to the local optimum).

Comparing the two PDEs, we measured the proximity
of their simulated solutions to the denoised observed data
using the BIC in Equation (11). Table 4 warrants that the
sk∗ -support-size PDE has indeed the sufficient complexity
in yielding the lower-BIC simulated state variable than its
competitor, the sk∗+1-support-size PDE with the dispensable
candidate. Ensuring our findings, we also solve the PDEs
on their entire spatio-temporal domain using the Chebfun
and Dedalus software, which is unlike the PINN approach
that necessitates a train-validation data split. The symbolic
representation of the initial condition required by the software
is recovered using the PySR package [59]. In addition,
symbolic regressionwith searching for simplifying properties
(see AI Feynman [1]) can be useful for understanding the
boundary condition, which may further help us decide on the
governing PDE.
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TABLE 5. Frobenius and infinity matrix norm-based errors (lF and l∞)
between the simulated solution of the UBIC-selected PDE and the
noiseless PDE solution.

In Table 5, we evaluate the UBIC-selected PDE by the
Frobenius and infinity matrix norms (lF and l∞) of the
difference between its simulated solution to the noiseless
PDE solution. For the Burgers and KdV PDEs, the results
confirm that the simulated solution of the UBIC-selected
PDE captures the noiseless solution. For the KS PDE, it is
more difficult to simulate the chaotic solution better than
the denoised û even though the slightly inaccurate PDE
coefficients (with %CE = 0.38) are used. Regarding the
simulation methods, the PINN-based solver, learning from
both the physical constraint and the denoised observed data û,
performs competitively to the Dedalus or Chebfun software.
Our best-simulated solutions are visualized in Fig. 14 (see
Appendix A).

V. CONCLUSION
A. SUMMARY
We extend the BIC to the parameter-adaptive UBIC, which
incorporates the model uncertainty for selecting the govern-
ing PDE amidst noisy data. The quantified uncertainty from
the model coefficient posterior promotes the reliability of
the model selection, preventing the selection of overfitted
PDEs unaddressed by the BIC. Thanks to the derived
analytical posterior, the proposedUBIC quickly demonstrates
the successful identification of the true hidden equation,
taking less than 0.1 secs except for the NS case, where
Algorithm 1 completes in 17.2 secs. Validating consistency
in model selection results, we perform a comparison between
the PDE selected by the UBIC and its competitor with an
extra candidate to choose the better PDE that delivers a lower
BIC value calculated between the PINN-simulated state and
the denoised observed data. Finally, we show that the PDE
discovery from denoised data positively improves the BIC
trade-off.

B. LIMITATIONS AND FUTURE WORK
For future work, we encourage the development of
data-driven PDE discovery in the following directions, which
are geared toward addressing existing limitations.

• Relaxing the overcomplete assumption by gradually
improving a set of candidates instead of keeping a

large candidate library unvaried during the optimization
process. The concept involves removing bad candidate
functions and introducing new ones to refine the set of
candidates.

• Robust PDE discovery method against different types
of noise to compensate for not having access to
good-quality training data.

• Accelerated computation by reducing a candidate library
size (search space) before running sparse or best-subset
regression solvers.

For example, researchers may consider employing the UBIC
with genetics algorithms [60] to discover parametric PDEs
with temporal or spatial dependence under the relaxed
overcompleteness assumption.

APPENDIX A
DISCOVERY OF VISCOUS BURGERS’ PDE WITH SHOCK
WAVES
Developing upon the Burgers’ PDE studied in the main
text, we investigated our proposed approach against shock
waves by considering a smaller fluid viscosity of 0.01

π
≈

0.003183 instead of 0.1. The clean PDE dataset utilized
in this section was borrowed from [21]. The system state
variable perturbed by 30%-sd noise was regarded as the noisy
observed data.

Under the same experimental setting, the best subsets are
retrieved in 0.30 secs, and then our PDE discovery approach
successfully identifies the governing Burgers’ PDE form
with a good %CE of 12.59 despite the abrupt transition
(discontinuity), as depicted Fig. 13. The UBIC with λU =
101.33 correctly selects the PDE read as follows: ∂tu =
0.003746∂2x u− 0.925141u∂xu.
The PINN-simulated solution of the discovered 2-support-

size PDE (BIC = 15101) is better than that of the
discovered 3-support-size PDE (BIC = 44666) on the
validation set bounded by x ∈ [ 3

255 , 1] and t ∈

[0.51, 0.99]. The Dedalus software endorses our decision
on selecting the best PDE, providing the BIC scores of
−67174 and −36774 for the PDEs with 2 and 3 support
sizes, respectively. As shown in Fig. 14(d), the simulated
solution of the UBIC-selected PDE resembles the clean
solution with lF = 4.96916, 3.08782, 3.09236 and l∞ =
7.81370, 5.80897, 5.94630 using the PINN learning, the
Dedalus software, and the Chebfun software, respectively.

APPENDIX B
UNCERTAINTY-PENALIZED WAIC (UWAIC)
We conduct a pilot extension of the uncertainty penalization
to the WAIC (widely applicable information criterion) [61],
defining UWAIC =WAIC+ λUCVk ; where WAIC = BL+
FV
N�

. BL and FV are the Bayes training loss and the functional
variance, respectively. UWAIC is more computationally
expensive than the proposed UBIC because it involves full
Bayesian inference to compute the WAIC before adding the
penalizing unnormalized uncertainty CVk . The UWAIC with
its λU specified in Figure 15 is capable of identifying the
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FIGURE 13. Model selection results for the Burgers’ PDE with shock
waves.

FIGURE 14. Our best-simulated solution of each UBIC-selected PDE.

true PDE terms, similar to the UBIC. These results suggest
the possibility of incorporating the proposed uncertainty
penalization into other related information criteria.

APPENDIX C
DENOISING METHOD COMPARISON
To assure the superiority of the K-SVD algorithm over
traditional denoising methods, such as those based on
SVD, PCA, and wavelet transformation, we conducted a
comparative analysis of the quality of denoised observed data
in Table 6. The results reveal that the wavelet transform-based
method can generate denoised data that resembles the
noiseless PDE solution, but the %CE of the UBIC-selected
PDE derived from the denoised data is inaccurate. On the
other hand, denoised data obtained using SVD or PCA based
methods may result in an accurate UBIC-selected PDE, but
the error from the noiseless solution is high, possibly leading
to inaccurate symbolic recovery of the initial and boundary
conditions. Considering each evaluation metric, the K-SVD
algorithm demonstrates the best performance on average
(across the datasets), outperforming both the robust PCA and
the denoising discrete Fourier transform (DFT). Therefore,
the K-SVD algorithm is our preferred choice for denoising
2D spatio-temporal (image-like) data.

TABLE 6. Each denoising method is evaluated by two metrics: (i) the
Frobenius matrix norm error (lF ) between the noiseless PDE solution and
the denoised observed data produced by the method, and (ii) the %CE of
the UBIC-selected PDE based on the denoised data.

APPENDIX D
COMPARISON WITH CONVENTIONAL MODEL SELECTION
METHODS
A. CROSS-VALIDATION BASED MODEL SELECTION
One might presume that the cross-validation strategy would
suffice for selecting the optimal support size from Eq. (4).
To examine this assumption, we conducted experiments
using various data splitters available in the Scikit-learn
package [63]. We experimented with the following splitter
classes.
• RepeatedKFold(n_splits=2, n_repeats=5)
• ShuffleSplit(n_splits=10, test_size=0.5)

The former splitter was configured with 2-folds and repeated
5 times with different randomization in each repetition.
Contrarily, the latter splitter was configured with 10 re-
shuffling and splitting iterations but did not guarantee
that all folds were different. We also employed the single
train-validation split procedure, wherein the first half of the
samples were allocated for training and the second half for
validation.

In the cases of Burgers and KS, as shown in Fig. 16, the
use of validation sets safeguards against the wrong selection
of the overfitted PDEs. Nevertheless, none of the splitters
was found effective for the KdV example, where there are
noticeable BIC drops observed during the transition from the
2-support-size PDE to the 5-support-size PDE. We call this
scenario the ‘‘cross-validation pitfalls,’’ which could have
misinformed us that the support size of 5 is optimal.

B. CANDIDATE IMPORTANCE FOR MODEL SELECTION
We explored whether importance scores of candidate terms
could guide the discovery of the true terms constituting
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FIGURE 15. Model selection results by the uncertainty-penalized WAIC (UWAIC).

FIGURE 16. Using cross-validation based model selection to find the optimal support sizes for Burgers, KdV, and KS examples. ‘‘Avg.’’ is an abbreviation
for ‘‘average.’’

the governing PDE. We studied two distinct assignments
of the importance of a candidate: (i) the coefficient of
determination (R-squared) of a single-regressor (univariable)
linear model and (ii) the mean absolute SHAP (Shapley
additive explanations) value [64] of a linear model fitted on
every candidate.

In Fig. 17, we rank the candidates in the Burgers’ PDE
example. The R-squared concerning one regressor ranks
the variables uux and ux as the top two single predictors.
However, the top single predictors do not necessarily
compose the governing PDE. It is noteworthy that using
this metric for candidate elimination may risk discarding a
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FIGURE 17. Ranking the candidates in Burgers’ PDE (without no shock
wave) by the R-squared and the mean absolute SHAP value (stated in
Appendix D-B). The candidate importance scores are normalized such
that the total summation is 1.

FIGURE 18. For discovering the Burgers’ PDE (in the main text), the model
selection results are provided for the different sample sizes.

true candidate (e.g., uxx) that is not predictive when used
alone. The SHAP values of the multivariable model yield a
satisfactory result, ranking the variables uux and uxx as the
top two candidates. Unfortunately, neither of the candidate
rankings by either assignment is enough to entail the optimal
complexity of the governing equation.

C. F-TEST FOR COMPARING TWO MODELS
We explored whether the F-test (implemented in the
statsmodels’sanova_lm function [65]) could be a beneficial
tool to determine the optimal complexity of the governing
PDE in the Burgers’ PDE example in the main text. Note that
2-support-size and 3-support-size PDEs we discovered were
composed of variables from {uxx , uux} and {ux , uxx , uux},
respectively. Thus, we used the F-test to statistically test if
adding the ux candidate to the best subset of 2 supports
results in significant improvement in estimating the weak
form q0. The resulting F-statistic and p-value are 11.3496 and
0.000757 (< 0.001) in order, persuading that we reject the
null hypothesis stating that the 3-support-size PDE does not
perform significantly better than 2-support-size PDE. Such
results could have misled us to select an overfitted PDE.
Therefore, we cannot recommend relying on the F-test result
to determine when to stop increasing the model complexity.

APPENDIX E
SAMPLE SIZE EFFECTS ON MODEL SELECTION
In this section, we utilize the Burgers example in the
main text to show that the proposed UBIC can select the
true governing PDE despite the varying sample size N�
(representing the number of domain centers when applying
the weak formulation in this example), ranging from 500,
4000, 10000, to 50000. A consistent pattern in uncertainty
values favoring the correct support size of 2 is observed.
Remarkably, with the sample size up to 50000, the %CE of
the estimated coefficients is impressively reduced to 0.21.
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