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Abstract— Some advancements are proposed to the theory of
simultaneous conjugate match (SCM) of N-ports. It is shown
that, if a network qualifies for geometrical unconditional stability
(g-US), then it can be matched simultaneously at all ports. The
proof serves as the basis for constructing an iterative algorithm
(AlgG) which is guaranteed to converge to the SCM condition
for all N-ports exhibiting g-US. In addition to the main results
above mentioned, two more iterative algorithms are presented
(AlgS and AlsA), which are conjectured to work for all networks
satisfying g-US. AlgS can be shown to converge globally for N = 2
and AlgA to converge locally for all N . Besides their theoretical
interest, these results find a natural application in the matching of
passive networks, and in particular of N-element phased arrays.
However, they can be applied to any (i.e., also active) N-port as
long as this is known to exhibit g-US.

Index Terms— Linear networks, simultaneous conjugate match
(SCM), unconditional stability.

I. INTRODUCTION

HIGH-FREQUENCY circuits are typically required to be
matched to a common impedance (usually, Z0 = 50 �).

In this way, at least as a first approximation, they can be
directly connected to build more complex systems without the
need for taking into account mutual loading effects. In the case
of purely passive components (filters, combiners, hybrids),
Z0-matching is generally built in the design equations them-
selves. On the other hand, transistor-based components (in
particular, amplifiers) are matched to Z0 by means of ad hoc
two-ports called “matching networks.”

In general, cascading a matching network to one port of a
circuit affects the matching level at all other ports too, in a
complicated manner. Fortunately, if the circuit under analysis
is a two-port (which is by far the most common case), closed-
form expressions are available for the terminations realizing
a simultaneous conjugate match (SCM), as well as the con-
ditions under which those terminations are passive. Passivity
of the terminations is a key feature, since it allows using
lossless, reciprocal matching networks to transform the exter-
nal standard impedance (which is passive) to the computed
SCM terminations. It turns out that (strictly) passive values
of the SCM terminations are possible at a given frequency
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if and only if the two-port has a stability factor K [1], [2]
greater than unity (see Appendix). Notice that all uncondi-
tionally stable (us) two-ports satisfy this condition (asymptotic
stability is considered in this article when not specified
otherwise).

As to N -ports with N > 2, little information is available in
the literature, mostly limited to lossless networks (see [3] and
references therein). One noteworthy result from the theory of
linear time-invariant networks states that no such three-port
can be realized which is at the same time lossless, recipro-
cal and matched at all ports [4]. However, the problem of
simultaneous matching of N -ports does not seem to have been
addressed for general networks (i.e., including the active ones
and for arbitrary N ).

In this article, the main result will be shown first: namely,
Section IV proves that, if an N -port network (with arbitrary N )
is geometrically us (g-us, where the terminology follows
from [5], [6]), then SCM can always be attained by iteratively
improving the driving-point reflectances at all ports. Further,
Section V shows how to translate the iterative scheme into a
numerical algorithm (AlgG).

In addition to the main results above, two additional algo-
rithms are presented in Section VI, namely AlgS and AlgA.
Unlike AlgG, which is integral to the core of this contribution,
AlgS and AlgA are presented as a starting point for further
developments. The possibility of brute optimization is also
commented on in Section VI. It is important to stress that
the advantage of AlgG lies in the guarantee that, under
g-US, it converges to the SCM condition. On the contrary,
with general-purpose optimizers there is no mathematical
guarantee that the global optimum is actually found, since the
optimization problem is not convex. On top of that, the link
between g-US and matching for arbitrary N would not have
emerged if lazy reliance on brute optimization had not been
questioned.

Examples of applications of the presented theory to actual
networks are proposed in Section VII. First, a circuit example
is worked out in full, from the design of ideal matching
networks to a full-fledged electromagnetic (EM) simulation,
to realization and measurement. Notice that the presented
results can be directly applied to the problem of simulta-
neously matching phased arrays composed by an arbitrary
number of elements [7]: thus, two examples represented by
a ten-element and a three-element array are provided. Finally,
a paraphase amplifier is selected to show the application of
the presented results to an active circuit.
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TABLE I
DEFINITION OF MAIN N -PORT CLASSES IN SECTION II

II. TERMINOLOGY AND GENERAL FRAMEWORK

Given a network realized by connecting N terminations and
an N -port linear circuit (possibly representing the linearized
solution of a nonlinear one), the N -port is said to be uncondi-
tionally stable (us) if and only if the network functions of the
overall connection cannot exhibit unstable poles irrespective of
the terminations, as long as these are not active. When dealing
with passive circuits, this definition includes the reactive ones.
However, when considering active circuits, it is more useful
to restrict the focus to asymptotic stability, which demands
strictly stable poles under all possible choices of passive
terminations [8].

If a linear circuit is us, then at any given frequency f0 it
necessarily maps passive terminations at N − 1 ports into a
passive driving-point impedance at the remaining port. For
reasons of convenience and technical correctness, an N -port
satisfying this less restrictive condition at f0 is here referred
to as geometrically us (g-us) [5], [6]. For future use, it is
convenient to reappraise here a recent result [5] stating that
the scattering parameters Si j of a strictly g-us N -port satisfy
the following condition:

N∑
j=1

∣∣Si j S j i
∣∣ < 1 ∀ i. (1)

(Notice that there is a material error in [5, Sec. III-D], whereby
ρs(d) = ∞ and ρs(d) < ∞ are mistakenly used in place of
d = 0 and d ̸= 0, respectively.)

The relations among the classes of linear networks which
are of interest for the purposes of the present contribution are
represented graphically in Fig. 1, whereas technical definitions
are summarized in Table I. In particular, the class of networks
for which the main result holds true is that of strictly g-us
N -ports (grayed area in the graph). Notice that this class
includes the passive N -ports which are strictly lossy at f0,
but not the reactive (lossless) ones.

Thus, from a theoretical standpoint, passivity is not a neces-
sary requirement for applying the presented result. However,
from a practical perspective, the most interesting examples of
g-us N -ports, when N > 2, are arguably passive, as discussed
at the beginning of Section VII. In this regard it is worth

Fig. 1. Relation among the different classes of linear N -ports mentioned in
Section II.

pointing out that, if the considered N -port is strictly passive
(a condition very easy to check [9]), then it is guaranteed to be
strictly g-us without further verifications. On the other hand,
checking whether an active N -port is g-us or not is rather
difficult when N > 2 [6], [10], [11].

III. BASIC NETWORK OPERATIONS

A. Lossless Matching Network

The iterative algorithms presented in this contribution make
extensive use of two-port matching networks, placed in cas-
cade to the ports of the N -port circuit to be iteratively
matched. Under the assumptions that these matching networks
are reciprocal and lossless and that they transform the zero
reflectance at the external port (left-hand side) into 0 at the
connection port (right-hand side), the most general form of
their scattering matrix is as follows:

F =

[
−0∗eȷ2φa

√
1− |0|2eȷφa√

1− |0|2eȷφa 0

]
(2)

where |0| < 1 and φa is an arbitrary phase. For simplicity,
φa can be considered equal to zero for a basic matching
network (in fact, we will assume φa = 0 outside this Section).
A nonzero φa would correspond to cascading a length of
matched lossless transmission line ahead of the basic config-
uration. As to 0, it is set equal to d0L ,i in Section IV and to
S∗i i elsewhere.

Notice that |0| = 1 would also technically result in a
lossless two-port, but one exhibiting a transmission zero.
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Fig. 2. Construction used in Section IV, exemplified in the case N = 3.
The matrix definitions here shown are used for both AlgG and AlgA and are
consistent with Sections III-A and III-B.

We refer to this kind of network as a “degenerate” lossless
two-port.

B. Network Embedding

Given two scattering matrices, S of size N × N and H of
size 2N × 2N , it is possible to embed S into H to obtain a
new matrix S′ of size N × N . In particular, splitting H into
four N × N sub-blocks yields

H =
[

A B
C D

]
(3)

S′ = A+ B ·
(
S−1
− D

)−1
· C. (4)

In the particular case that H is made up of N quadrupoles
with matrices F(i) (each associated with a port of S, as shown
in Fig. 2), then A, B, C and D are diagonal matrices, whose
i-th diagonal elements correspond with the (1, 1), (1, 2), (2, 1)

and (2, 2) elements, respectively, of F(i), i.e.,

A = diag
([

F(1),11 · · · F(N ),11
])

(5)

B = diag
([

F(1),12 · · · F(N ),12
])

(6)

C = diag
([

F(1),21 · · · F(N ),21
])

(7)

D = diag
([

F(1),22 · · · F(N ),22
])

. (8)

Notice that, if S is strictly g-us and all F(i) are non-degenerate
lossless two-ports, then S′ is strictly g-us too. On the other
hand, if at least one F(i) is a degenerate lossless two-port,
S′ becomes marginally g-us.

IV. ATTAINABILITY OF THE SCM CONDITION
FOR G-us N -PORTS

Consider a g-us N -port with scattering matrix S at f0 and
terminated in matched loads at all ports—i.e., loads with
zero reflectance, given the relevant reference impedances.
The latter are assumed to be lossy but need not be strictly
resistive, as long as Kurokawa’s “power-wave” convention is
adopted [9].

Now choose arbitrary perturbations of the (matched) loads,
d01, d02, . . . , d0N . Each of these can be decomposed as
a variation in magnitude (dρi ) and a rotation (eȷφi ). With
reference to Fig. 2 and in accordance with Sections III-A

and III-B, define

A =

−d0∗1
. . .

−d0∗N

 (9)

B = C =


√

1− |d01|
2

. . . √
1− |d0N |

2

 (10)

D =

 d01
. . .

d0N

 (11)

realizing a reactive embedding of the original network. The
scattering matrix S′ obtained after such an embedding is a
perturbation of S, as follows:

S′ = A+ B ·
(
S−1
− D

)−1
· C (12)

= A− BSM−1C (13)

≈ A− SM−1 (14)

where

M = DS− 1 (15)

and (14) follows from (13) as a first-order approximation in
the 0i terms (thus, B = C ≈ 1). Notice that matrix M is
always invertible if the network is g-us [6], [10], [12], [13],
so that S′ is certainly finite.

Since M can be inverted, its inverse too can be linearized
for small 0i terms, resulting in M−1

≈ −(1+ DS). Plugging
this into (14) and expanding yields

S′ ≈ S+ A+ SDS. (16)

Then, extracting the diagonal scattering parameters and
approximating again to the first order yields S′11

...

S′N N

 ≈
 S11

...

SN N

−
 d0∗1

...

d0∗N

+(
S ◦ ST )

·

 d01
...

d0N


(17)

where

S ◦ ST
=

 S11S11 · · · S1N SN1
...

. . .
...

SN1S1N · · · SN N SN N

. (18)

Here, ◦ denotes the Hadamard (i.e., element-wise) product and
the T superscript denotes transposition.

Embedding the rotation components of the various d0i into
the network results in a modified scattering matrix S̃. For such
a configuration, (17) becomes

eȷ8
·

 dS11
...

dSN N

 = eȷ8
·


 S′11

...

S′N N

−
 S11

...

SN N




≈
(
S̃ ◦ S̃T

− 1
)
·

 dρ1
...

dρN

 (19)
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where

dSi j = S′i j − Si j (20)

8 =

 φ1
. . .

φN

 (21)

S̃ = eȷ8
· S. (22)

Finally, rearranging yields dS11
...

dSN N

 ≈ e−ȷ8
·
(
S̃ ◦ S̃T

− 1
)
·

 dρ1
...

dρN

. (23)

Since S̃ is strictly g-us, it satisfies (1). Therefore, by
Gershgorin’s circle theorem [14], the eigenvalues of S̃◦ S̃T

−1
cannot vanish. Thus, e−ȷ8

· (S̃ ◦ S̃T
− 1) is guaranteed to be

invertible.
Consequently, perturbations [ dρ1 · · · dρN ] will always

correspond to finite variations [ dS11 · · · dSN N ]
T , and vice

versa. Also, since the perturbations are realized through loss-
less matching networks, the overall scattering matrix will
remain g-us (strictly) after any number of such perturbations
as long as the port reflectances do not degenerate into reactive
values. In turn, this degenerated behavior is prevented if the
perturbations are guided toward lower reflectance magnitudes.

As a result of these properties, it is possible to control
[ dS11 · · · dSN N ]

T through the choice of [ d01 · · · d0N ]
T

and devise for it a path suitable for the attainment of the SCM
condition, namely, by progressively reducing the magnitudes
of the diagonal scattering parameters. Thus, the preceding
discussion proves the main claim of this contribution, which
is as follows.

At f0, if S is strictly g-us, then it is SCM-able to
lossy terminations by cascading lossless two-ports
to its ports.

It is worth noting that the above derivation establishes the
sought-for result by ensuring the existence of a path of per-
turbations which gradually transforms the original scattering
matrix to a SCM-ed scattering matrix. The practical aspects
of this, including the actual computation of the matching
networks, are illustrated next in Section V.

V. “GUIDED” ALGORITHM (ALGG)

The discussion in Section IV does not only prove
SCM-ability of g-us networks: it also serves as the basis
for a numerical algorithm (AlgG) capable of realizing the
SCM condition for those networks. In particular, expanding
the complex-valued terms of (17) into real-valued terms and
rearranging yields a linear problem of dimension 2N of the
form 

Re[1S11]
Im[1S11]

...

Re[1SN N ]
Im[1SN N ]

 = R ·


Re[101]
Im[101]

...

Re[10N ]
Im[10N ]

 (24)

TABLE II
SCATTERING PARAMETERS OF THE NETWORK ANALYZED IN FIG. 3

Fig. 3. Iterative matching of the scattering matrix in Table II. (a) ϵ = +0.1.
(b) ϵ = −0.1.

where

R =

 R11 · · · R1N
...

. . .
...

RN1 · · · RN N

 (25)

Ri i =

[
Re

[
S2

i i

]
− 1 −Im

[
S2

i i

]
Im

[
S2

i i

]
Re

[
S2

i i

]
+ 1

]
(26)

Ri j =

[
Re

[
Si j S j i

]
−Im

[
Si j S j i

]
Im

[
Si j S j i

]
Re

[
Si j S j i

] ]
, j ̸= i. (27)

Then, (24) is solved by inversion of R (which is invertible
because it just expresses in the real domain a perturbation
which has been shown to be well defined in the complex
domain). Specifically, the variations of the port reflectances,
1Si i = S′i i−Si i , can be chosen such as to result in a magnitude
reduction. For instance

S′i i
!
= (1− ϵ)Si i (28)

1Si i = −ϵSi i (29)

with ϵ some small, positive scalar. As an example, the
scattering parameters given in Table II, which represent a
g-us network, were subjected to the above algorithm, with
ϵ = 0.1. Fig. 3(a) shows the progressive reduction of the port
reflectances, until the circuit is SCM-ed.

Since the matching actually improves at each iteration for
this example, ϵ is left constant. However, should it happen
that an iteration does not results in an improvement (as due
to a step too large for the linearization to be valid), ϵ can
be reduced until it does. Since by hypothesis we are consid-
ering g-us networks, we are guaranteed by the discussion in
Section IV that, for sufficiently small ϵ ̸= 0, the linearization
becomes valid.

Incidentally, Fig. 3(b) shows that the opposite behavior is
obtained by choosing ϵ = −0.1: in this case the diagonal
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terms of the scattering matrix get arbitrarily close in magni-
tude to unity, forcing the off-diagonal elements to zero as a
consequence of (1). In the limit, a diagonal matrix is obtained,
which (consistently with the final remarks in Section III-B) is
marginally g-us.

AlgG can be summarized formally as follows.
0) initialize k = 1.
1) Set ϵ equal to a small positive constant.
2) Compute 1Si i for all port numbers i according to (29).
3) Build matrix R according to (25).
4) Compute 10i for all i by inverting (24).
5) For all i , Compute a lossless matching network able to

transform the origin into 10i (Section III-A).
6) Cascade the matching networks at the relevant ports of

S, obtaining a new network S′ (Section III-B).
7) Increase k by one.
8) If k is over the maximum number of iterations or if

maxi
∣∣S′i i ∣∣ is acceptable, stop.

9) If
∣∣S′i i ∣∣ < |Si i | for all i , replace S ← S′ and restart

from step 1. Otherwise, replace ϵ ← ϵ/2 and restart from
step 2.

It is worth noting that, at each iteration of step 5, a set of N
lossless networks is computed, each of which is described by a
2 × 2 scattering matrix. Therefore, when the algorithm stops,
an ordered sequence of k such matrices has been obtained for
each port i . Cascading these matrices yields then an overall
2 × 2 matrix which represents a lossless matching network,
and this operation can be repeated for all ports. The N lossless
matching networks thus obtained realize the SCM condition
for the original N -port.

VI. ALTERNATIVE APPROACHES

In order to prove the main claim of this contribution, i.e.,
that a g-us N -port network can be SCM-ed, Section IV above
is sufficient. Similarly, Section V complements that theoretical
finding with a practical implementation.

However, during their study of the problem at hand, the
Authors have come across and investigated also different
routes: the algorithms relevant to these alternative approaches
are presented in Sections VI-A–VI-C as a basis for further
research. In addition, it is worth discussing the straightforward
approach of brute optimization. This has not been found
helpful in showing the main claim nor has any inherent
theoretical value; however, once the result is proven, circuit
designers can most conveniently adopt this last approach.

A. “Single-Port” Algorithm (AlgS)

Consider the following iterative scheme (AlgS), which coin-
cides with the algorithm proposed in [7] for matching antenna
arrays.

0) Initialize k = 1.
1) Set ι = k mod N ; if ι ̸= 0, set i = ι, otherwise set

i = N .
2) Compute a lossless matching network able to conju-

gately match the Si i parameter (Section III-A).
3) Cascade the matching network at the relevant port of S,

obtaining a new network S′ (Section III-B).

Fig. 4. Principle of the single-port iterative approach to SCM (AlgS),
exemplified in the case N = 2.

4) Replace S← S′.
5) Increase k by one.
6) If k is over the maximum number of iterations or if

maxi
∣∣S′i i ∣∣ is acceptable, stop.

7) Restart from step 1.
Above, ι simply denotes a dummy index running cyclically
over all port numbers. Fig. 4 offers a visualization of the
proposed scheme in the two-port case.

It is easy to show that AlgS converges to the SCM condition
in the case N = 2.

B. “All-Ports” Algorithm (AlgA)

Algorithm AlgA is described formally as follows.
0) Initialize k = 1.
1) For all i , compute a lossless matching network able to

conjugately match the Si i parameter (Section III-A).
2) For all i , cascade the matching networks at the relevant

ports of S, obtaining a new network S′ (Section III-B).
3) Replace S← S′.
4) Increase k by one.
5) If k is over the maximum number of iterations or if

maxi
∣∣S′i i ∣∣ is acceptable, stop.

6) restart from step 1.
Thus, it is apparent that AlgA resembles closely AlgS.
However, instead of matching each port sequentially
(1, 2, . . . , N , 1, 2, . . .) as in algorithm AlgS, the AlgA
scheme stipulates that all ports be cascaded, at each iteration,
to their relevant matching networks. This corresponds to
constructing a lossless (2N )-port with scattering matrix H as
per Sections III-A and III-B with blocks given by

A =

−S11
. . .

−SN N

 (30)

B = C =


√

1− |S11|
2

. . . √
1− |SN N |

2

 (31)

D =

 S∗11
. . .

S∗N N

 (32)

and terminating its last N ports in the circuit at hand. If the lat-
ter is represented at a given iteration by a scattering matrix S,
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the updated matrix S′ is given by

S′ = A+ B
(
S−1
− D

)−1C (33)
= A+ BSC+ E (34)

E = B

[
∞∑

k=1

(SD)kS

]
C ≈ SDS (35)

S′i i = −Si i |Si i |
2
+ Ei i (36)

where the approximation in (35) holds for small Si i terms.
The AlgA iterative approach exhibits a construction similar
to AlgG and is exemplified in Fig. 2 in the N = 3 case.

By exploiting (1), it is rather easy to prove the local conver-
gence of this algorithm (i.e., convergence for a circuit whose
Si i parameters are sufficiently close to zero) for arbitrary N .

Notice that, as compared to AlgG and AlgS, AlgA can
be applied in a user-independent, deterministic manner.
Specifically, the evolution of the network parameters from
each iteration to the next does not depend in any way on
parameters set by the user (such as ϵ in AlgG) nor on the
ordering of the ports (which is the case for AlgS). Thus,
in case of convergence, it seems to express in a neater way the
inherent characteristics of the network to which it is applied.
For this reason, searching for a proof of global convergence
of this algorithm is certainly worth further investigation.

C. Brute Optimization

As mentioned above, the merit of AlgG mainly lies in its
validation of the claim in Section IV, i.e., the attainability of
the SCM condition in g-us N -ports. However, once this prop-
erty of g-us N -ports is proven, there is no actual need for using
that algorithm rather than another, provided that the chosen
alternative converges to the SCM condition. In particular, from
the standpoint of a circuit designer, the most convenient way to
achieve the SCM condition for a g-us N -port would be through
brute optimization in an electronic software automation (EDA)
environment. Notice that successful convergence is arguably
very likely but not guaranteed mathematically. At any rate,
multiple optimization runs with different starting values could
be tried in the remote possibility that convergence is not
achieved right away.

A very straightforward way to attain the SCM condition
for a given g-us N -port through optimization is based on the
usage of matching networks such as those shown in Fig. 5.
These are designed to be lossless by construction and, at the
same time, are sufficiently general that they can be equivalent
to any possible lossless two-port at the considered frequency.
As to the optimization algorithm itself, to be used to determine
the values of the components in the matching networks, there
are plenty of these. However, gradient-based algorithms are
an efficient choice. For these, it is possible to show local
convergence (as for AlgA in Section VI-B), whereas a proof
of global convergence is not available.

VII. APPLICATION EXAMPLES

In Sections VII-A–VII-D, several examples of application of
the presented theory are proposed. The first one, represented
by a spiral Marchand balun, is worked out in full so as to

Fig. 5. Three-element lossless matching networks in (a) T and
(b) 5 topology.

TABLE III
SCATTERING PARAMETERS OF THE SPIRAL MARCHAND

BALUN ANALYZED IN SECTION VII-A

TABLE IV
SCATTERING PARAMETERS OF THE SPIRAL MARCHAND BALUN

ANALYZED IN SECTION VII-A AFTER EMBEDDING
THE MATCHING NETWORKS

TABLE V
SCATTERING PARAMETERS OF THE MATCHING NETWORKS COMPUTED

FOR THE SPIRAL MARCHAND BALUN IN SECTION VII-A

allow the interested Readers to replicate it. For this example,
in particular, we report the scattering matrices of the original
network (Table III), of the SCM-ed network as computed by
AlgG (Table IV) and of the three matching networks resulting
as a by-product of AlgG (Table V), as well as a list of all
possible T- and 5-topology realizations with ideal elements.
In addition, we design the matching networks with realistic
models of these elements and provide the scattering matrix
of the final design ready for realization (Table VI). This is
to show that, whereas AlgG yields a perfectly SCM-ed scat-
tering matrix, imperfect matching is unavoidable in practice
due to the nonideal behavior of the available components.
A remarkably good agreement between simulations and mea-
surements is found for both the original and matched networks.
To ease the reading, the simulations and measurements are
split between Sections VII-A and VII-B, respectively.
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TABLE VI
SCATTERING PARAMETERS OF THE SPIRAL MARCHAND BALUN

ANALYZED IN SECTION VII-A AT LAYOUT STAGE

The remaining examples are presented with a lower level of
detail, with the primary goal of demonstrating specific claims.
Section VII-C starts with illustrating through simulations the
case of a ten-element array. As expected, no difficulty is
incurred as a consequence of the comparatively large value
of N . The remainder of the section deals with a simpler design
where N is decreased to 3, in order to lead to measurable
test vehicles. Also in this case measurements confirm the
correctness of the design.

The final example, in Section VII-D, involves a paraphase
amplifier and is chosen to show that, as per theory, active
networks do not entail any particular problems: as long as
these are g-us at the frequency at which the SCM condition
has to be realized, the execution of AlgG is not affected.

A. Spiral Marchand Balun: Simulations

In the following, the proposed theory is applied to a realistic
circuit, i.e., a spiral Marchand balun designed in process
PIH1–10 by WIN Semiconductors for operation at 15 GHz,
shown in Fig. 6. At the lower frequency f0 = 5 GHz, the
scattering parameters of the balun, given in Table III, are mis-
matched and exhibit an amplitude imbalance of approximately
3 dB. These data represent the starting point for application
of the AlgG at f0, as per Section V.

Applying AlgG produces, first of all, the scattering matrix
of a matched balun, as per Table IV. As a by-product, it is
possible to compute at each port the parameters of an overall
lossless matching network by cascading the partial matching
networks relevant to all iterations: see final comments of
Section V. The obtained parameters are reported in Table V.

Each of these matching networks is by construction a
lossless two-port and, therefore, can be realized in T or 5

topology by exploiting the formulas in [15]. Specifically, the
first matching network can be implemented in any of the
following forms.

1) L1,s = 0.267511 nH, L2,p = 2.587290 nH, L3,s =

0.549777 nH.
2) L1,s = 5.442080 nH, C2,p = 0.391612 pF, L3,s =

5.724350 nH.
3) L1,p = 4.11372 nH, L2,s = 0.874132 nH, L3,p =

8.454330 nH.
4) L1,p = 0.395090 nH, C2,s = 1.159110 pF, L3,p =

0.415582 nH.
Here the p and s subscripts denote, respectively, a shunt or a
series element. Similarly for the second matching network.

1) C1,s = 0.273435 pF, L2,p = 1.334850 nH, C3,s =

0.302989 pF.

Fig. 6. Spiral Marchand balun analyzed in Section VII. Ports are numbered
progressively from the top one in a clockwise fashion. Approximate chip size:
1200 × 700 µm2.

Fig. 7. Spiral Marchand balun of Section VII-A with the addition of the
matching networks. Ports are numbered progressively from the top one in a
clockwise fashion. Approximate chip size: 1950 × 1050 µm2.

2) C1,s = 0.978207 pF, C2,p = 0.759044 pF, C3,s =

1.502510 pF.
3) C1,p = 1.136510 pF, L2,s = 2.233390 nH, C3,p =

1.259350 pF.
4) C1,p = 0.229184 pF, C2,s = 0.453665 pF, C3,p =

0.352023 pF.
The third.

1) C1,s = 0.329393 pF, L2,p = 1.075960 nH, C3,s =

0.330646 pF.
2) C1,s = 1.096460 pF, C2,p = 0.941681 pF, C3,s =

1.110460 pF.
3) C1,p = 1.101340 pF, L2,s = 2.620120 nH, C3,p =

1.105520 pF.
4) C1,p = 0.327928 pF, C2,s = 0.386704 pF, C3,p =

0.332116 pF.
In the present case, the matching networks at each port have
been implemented in the fourth form presented.

Up to this point, the presented data are either an input (the
original balun) or the result of assuming ideal components (in
the matching networks): therefore, these data can be used by
the interested Reader to replicate the proposed approach.

For completeness, however, the performance of the final
circuit at layout stage is also reported. Of course, the perfect
behavior obtained in Table IV deteriorates when the ideal
elements are replaced by real ones, which are affected by
parasitic effects. The EM-simulated scattering parameters of
the final circuit, depicted in Fig. 7, are shown in Table VI at f0.
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Fig. 8. Simulated port matching of the spiral Marchand balun analyzed in
Section VII-A.

Fig. 9. Simulated port matching of the spiral Marchand balun analyzed in
Section VII-A with the addition of the matching networks.

Fig. 10. Spiral Marchand balun analyzed in Section VII. Ports are numbered
progressively from the top one in a clockwise fashion. Approximate chip size:
1200 × 700 µm2.

The reflectances over frequency of the original and matched
circuits are shown in Figs. 8 and 9, respectively.

B. Spiral Marchand Balun: Measurements

The Marchand balun discussed in Section VII-A has been
fabricated in both its original and matched versions. Pictures of
the two circuits are presented in Figs. 10 and 11, respectively.

Since the circuits are three-port networks, measuring them
as such is not straightforward. In this case, the test vehicles
have been measured after two different calibrations: one with
VNA ports aligned, the other with ports at 90◦. The full set
of scattering parameters is thus retrieved. Actually, a residual
error arises from the fact that, for each configuration, the DUT
port not connected to the VNA is terminated in an imperfect
load, but this effect is negligible here.

Fig. 11. Spiral Marchand balun analyzed in Section VII-A with the addition
of the matching networks. Ports are numbered progressively from the top one
in a clockwise fashion. Approximate chip size: 1950 × 1050 µm2.

Fig. 12. Measured port matching of the spiral Marchand balun analyzed in
Section VII-A.

Fig. 13. Measured port matching of the spiral Marchand balun analyzed in
Section VII-A with the addition of the matching networks.

The measured reflectances of the original and matched
baluns are shown in Figs. 12 and 13, respectively. Except for
a slight frequency detuning in the matched version, measure-
ments are in good agreement with the simulations.

C. Antenna Array

As mentioned above, antenna arrays represent a case of
N -port networks for which N can be arbitrarily large.
However, thanks to passivity, they are inherently us: therefore,
they can always be SCM-ed at any given frequency, irrespec-
tive of N . As an example, a ten-element array of patches is
designed for operation at 100 GHz on WIN Semiconductors’
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Fig. 14. Layout of a ten-element antenna array analyzed in Section VII-C.
Ports are numbered progressively from the leftmost one toward the right.
Approximate chip size: 6000 × 500 µm2.

Fig. 15. Iterative matching of the ten-element antenna array analyzed in
Section VII-C. Ports from 6 to 10 behave identically to ports from 5 to 1 due
to symmetry.

Fig. 16. Microphoto of the three-element antenna array analyzed in
Section VII-C. Ports are numbered progressively from the left-hand one in a
clockwise fashion. Approximate chip size: 2900 × 1100 µm2.

PP10–20 100-nm GaAs pHEMT process. The array layout is
shown in Fig. 14. AlgG is applied without difficulty to the
resulting 10 × 10 scattering matrix, resulting in the progres-
sive improvement of the Si i parameter for all i until the SCM
condition is reached, as shown in Fig. 15.

On the one hand, the above shows that large N values do not
entail any issue in running AlgG. On the other hand, obvious
difficulties would arise when trying to realize and measure
a ten-port circuit. Thus, a simpler test vehicle is finalized
for the purposes of the present illustration, namely, a three-
element array, as shown in Fig. 16. The EM simulation at
100 GHz predicts a coupling between each pair of patches of
approximately −7.7 dB, and a maximum array gain of 3.5 dB
in the broadside direction with in-phase excitations.

Applying AlgG yields the scattering parameters of the
matching networks, which in this case are realized through
distributed elements due to the high frequency of operation.
The end result is depicted in Fig. 17. Measured driving-point
scattering parameters before and after adding the matching
networks are reported in Figs. 18 and 19, respectively. It is
evident that, whereas the bare array exhibits a bad return
loss at port-3 at 100 GHz, the version including the matching
networks is SCM-ed.

D. Paraphase Amplifier

As a last example, a paraphase amplifier is selected,
realized on WIN Semiconductors’ PP10–20 100-nm GaAs

Fig. 17. Microphoto of the three-element antenna array analyzed in
Section VII-C with the addition of the matching networks. Ports are numbered
progressively from the left-hand one in a clockwise fashion. Approximate chip
size: 2900 × 1500 µm2.

Fig. 18. Measured port matching of the three-element antenna array analyzed
in Section VII-C.

Fig. 19. Measured port matching of the three-element antenna array analyzed
in Section VII-C with the addition of the matching networks.

Fig. 20. Circuit schematic of the paraphase amplifier analyzed in
Section VII-D.

pHEMT process. The circuit schematic and a microphoto of
the amplifier, which has already been discussed in [16], are
reproduced in Figs. 20 and 21, respectively. As opposed to the
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Fig. 21. Microphoto of the paraphase amplifier analyzed in Section VII-D.
The upper pads are for gate bias and drain supply. The left pads are for
the input signal, whereas the right and bottom pads are for the two outputs.
The three RF ports are numbered progressively from the left-hand one in a
clockwise fashion. Approximate chip size: 1.2 × 0.9 mm2.

Fig. 22. Iterative matching of the paraphase amplifier analyzed in
Section VII-D.

Fig. 23. Measured port matching of the spiral paraphase amplifier analyzed
in Section VII-D.

previous circuits, this one is active and, as such, requires that
its unconditional stability be checked in order to guarantee
a priori that AlgG will converge. However, this check has
already been carried out in [16], which also reports measured
scattering parameters of the paraphase amplifier. The next step
is then applying AlgG, which as expected converges to the
SCM without difficulty: the relevant iterations are shown in
Fig. 22. The measured port reflectances of the amplifier alone
and those simulated after applying the matching networks, are
shown in Fig. 23 and Fig. 24, respectively.

The nominal gain at 1 GHz of both paths is −2.3 dB,
as predicted from simulations and confirmed by measurements.
The simulated gain after adding the matching networks is
−0.5 dB.

Fig. 24. Simulated port matching of the spiral paraphase amplifier analyzed
in Section VII-D with the addition of the matching networks.

VIII. CONCLUSION

In this contribution, it has been shown that SCM can always
be obtained for g-us N -ports. The proof is readily translated
into an explicit algorithm (AlgG) which, by way of guided
iterations, is mathematically guaranteed to converge to the
SCM condition. The external reference impedance is assumed
passive and the matching networks lossless.

As minor results, two more algorithms (AlgS and AlgA)
have been presented which are believed by the Authors to
always reach the SCM condition. For the time being, however,
global convergence of AlgS could only be proven in the 2-port
case, whereas AlgA has been proven to converge with arbitrary
N but only locally.

The presented theory has been successfully applied to a
numerous set of realistic circuits, namely, a spiral Marchand
balun, a couple of antenna arrays and a paraphase amplifier.
While the first example has been worked out in full to allow the
interested Readers to replicate the presented results, the others
are presented with lower detail to show that no difficulties
arise when considering large values of N or active networks
(as long as the latter are g-us).

APPENDIX
SCM IN TWO-PORT NETWORKS

Given a two-port network with scattering matrix S, the
source and load reflection coefficients satisfying the SCM
condition can be computed in closed form [4], [17], [18]

0L ,i,conj =
Bi ±

√
B2

i − 4|Ci |
2

2Ci
(37)

Bi = 1+ |Si i |
2
−

∣∣S j j
∣∣2
− |1|2 (38)

Ci = Si i −1 · S∗j j (39)

1 = det(S) (40)

0L , j,conj = m j i
(
0L ,i,conj

)∗ (41)

m j i
(
0L ,i

)
= S j j +

Si j S j i0L ,i

1− Si i0L ,i
(42)

where (i = 1, j = 2) or (i = 2, j = 1), with∣∣0L ,i,conj,− · 0L ,i,conj,+
∣∣ = 1 by construction. Notice, in par-

ticular, that once 0L ,i,conj has been determined as one
of the solutions of (37), 0L , j,conj follows unambiguously
through (41).
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Alternatively, 0L , j,conj can be computed directly
through (37) by exchanging i and j . In fact, this is the
usual procedure. In this respect, it is regarded as a matter of
fact [4], [17], [18] that the sign determinations should be the
same for 0L ,i,conj and 0L , j,conj in order to get corresponding
terminations. However, to the best of the Authors’ knowledge,
such a result is not obvious and has not been demonstrated
in the literature except for the trivial case of g-US [18].

In the following, it will be shown through geometrical
arguments that the usual sign determination is actually correct
when |K | > 1, K being Rollett’s stability factor [1], [2],
and that the SCM condition can be realized with passive
terminations if and only if the two-port satisfies K > 1.
The findings and terminology from [19] and [20] will be
exploited. Also, recall from [2] that K > 1 H⇒ Bi B j > 0 and
notice that, by the same argument, it is easily shown that
K < −1 H⇒ Bi B j < 0.

A. |K | ≤ 1

This condition is equivalent to |Bi | ≤ 2|Ci |, as per [4],
[17], [18], [21], [22]. Thus, both 0L ,i,conj,+ and 0L ,i,conj,−
are purely reactive rather than strictly passive. Therefore,
the SCM condition cannot be achieved on strictly passive
terminations.

In all other cases (i.e., |K | > 1) either 0L ,i,conj,+ or
0L ,i,conj,− will be strictly passive and the other strictly active,
depending on the sign of Bi .

B. K > 1, Bi > 0, B j > 0

These conditions describe a g-us two-port. Thus, the pas-
sive determination, 0L ,i,conj,−, will be mapped to a passive
reflectance at port j by m j i(·). Since 0L ,i,conj,− satisfies the
SCM conditions by construction, m j i

(
0L ,i,conj,−

)∗ has to be
equal to either 0L , j,conj,+ or 0L , j,conj,−: it follows that the latter
is the correct one, since it is passive too. By exclusion, the
other pair of mutually associated terminations is composed of
0L ,i,conj,+ and 0L , j,conj,+.

C. K > 1, Bi < 0, B j < 0

These conditions describe a specific type of conditionally
g-us two-port, i.e., one which satisfies the IRUS* and ORUS*

configurations [19], [20]. Since at either section one determi-
nation expresses a passive and an active termination which,
within a conjugation, map to an analogous pair at the other
section, we must have (unsurprisingly) that one termination
lies within the relevant stability region, and the other outside
of it. As per the IRUS* and ORUS* configurations, the stability
circles will be inside the unit disk and the stable region will be
the internal one. Thus, the passive determination, 0L ,i,conj,+,
will also have to lie in the stable region, i.e., inside the stability
circle. Therefore 0L ,i,conj,+ is associated with 0L , j,conj,+, which
is also passive. By exclusion, 0L ,i,conj,− and 0L , j,conj,− are
associated with each other.

D. K < −1, Bi > 0, B j < 0

If (i = 1, j = 2), these conditions describe a two-port
satisfying IRUS and OUS* whereas, if (i = 2, j = 1), IUS*

and ORUS will hold [19], [20]. In general, the unstable region
at port j will encompass the whole unit disk. Therefore the
passive determination 0L , j,conj,+ will be associated with the
active determination 0L ,i,conj,+. By exclusion, the other pair
is composed of 0L , j,conj,− and 0L ,i,conj,−, so that also in this
case the signs match with each other. However, unlike the
other cases where |K | > 1, here we are getting solution pairs
where only one of the terminations is passive, while the other
is active. Therefore, in this case the SCM condition cannot be
achieved on passive terminations.
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