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Abstract It is well known that infinite minimal sets for continuous functions on
the interval are Cantor sets; that is, compact zero dimensional metrizable sets without
isolated points. On the other hand, it was proved in Alcaraz and Sanchis (Bifurcat
Chaos 13:1665–1671, 2003) that infinite minimal sets for continuous functions on
connected linearly ordered spaces enjoy the same properties as Cantor sets except
that they can fail to be metrizable. However, no examples of such subsets have been
known. In this note we construct, in Z FC , 2c non-metrizable infinite pairwise non-
homeomorphic minimal sets on compact connected linearly ordered spaces.
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0 Introduction

The underlying object considered here is a (discrete) dynamical system; that is, a pair
(X, ϕ) where ϕ : X −→ X is a continuous function on a Tychonoff space X named
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the phase space. A subset M ⊆ X is said to be minimal in (X, ϕ) (or minimal for ϕ)
provided it is a minimal element in the partially ordereded by inclusion set of all
nonempty closed sets A ⊆ X such that ϕ(A) ⊆ A. If X is minimal in (X, ϕ), then
(X, ϕ) is said to be a minimal system. Minimal subsets do not always exist, but Zorn’s
Lemma implies that every dynamical system with compact phase space has minimal
sets. It is apparent that a minimal set is finite if and only if it is a periodic orbit but, in
general, classifying infinite minimal sets is an arduous work (and in many occurrences,
it is an open question). For instance, the unit circle is minimal for rotations of irrational
index (see [6]) and there exist linearly ordered dynamical systems where every minimal
set is finite (see [2]). For the unit interval, a widely known result characterizes infinite
minimal sets (see for example [4]) as the zero-dimensional metrizable compact subsets
without isolated points, that is, as the Cantor subsets of [0, 1].

The foregoing results raise the question of studying minimal sets in linearly ordered
dynamical systems; i.e., dynamical systems in which the topology of the phase space
is induced by a linear order. From previous research on this kind of dynamical systems,
carried out by Schirmer [7] and Baldwin [3], this problem was investigated in [2] where
it was shown that infinite minimal sets in a linearly ordered dynamical system enjoy the
same properties that characterize Cantor set except that they can fail to be metrizable.
However, no examples of this type of non-metrizable minimal sets were known. The
aim of this note is to exhibit 2c non-homeomorphic, non-metrizable infinite minimal
sets on compact connected linearly ordered dynamical systems. In Sect. 1 we give
some results that will be useful to obtain our main objective. In Sect. 2, by means of
free ultrafilters on ω, we construct 2c dynamical systems containing, each of them,
a minimal set, in such a way that they are pairwise non-homeomorphic. Finally, in
Sect. 3 we construct a linearly ordered compact connected space X of size 2c and a
continuous function ϕ on X such that there are 2c non-homeomorphic minimal sets
for ϕ.

Our terminology and notation are standard. In particular, for topological spaces X
and Y , the symbol X ∼= Y means that X and Y are homeomorphic. For a linearly
ordered set (X,≤), if x < y, we will denote by ]x, y[, [x, y], [x, y[ and ]x, y] the
open, closed and semiclosed intervals in X determined by x and y, respectively. The
symbols ]x,→ [, ] ←, x[, [x,→ [, ] ←, x] will denote the open and closed, final
and initial segments defined by x ∈ X . For a topological space X , its weight,w(X), is
the minimum infinite cardinal number τ such that X has a base for its topology with
cardinality τ . We denote the set {0, 1, 2, . . . , n, . . .} of all natural numbers by using
the symbols ω or N. The set of all the ultrafilters defined on ω is βω, and the set of all
the free ultrafilters on ω is ω∗ = βω\ω.

For notions and concepts not defined here the reader can consult [1] and [5].

1 Basic results

Each linear order on a set X induces a Tychonoff topology (actually, a hereditarily
normal topology) on X in such a way that the open intervals form a base for the open
sets. A topological space X is said to be a linearly ordered space if its topology is
induced by a linear order. The real line is a paradigmatic example of a linearly ordered
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space whereas there is no linear order inducing the usual topology of the complex
plane.

Let I be the (closed) unit interval. Let J denote the product I × I endowed with the
topology induced by the lexicographic order<l defined by letting (x1, y1) <l (x2, y2)

whenever x1 < x2 or x1 = x2 and y1 < y2. It is well-known that J is a compact
connected space. The following theorem is fundamental for our general purposes.

Theorem 1.1 Let (an)n∈N be a strictly increasing sequence of real numbers with
a0 = 0 and such that limn→∞ an = 1. Let f : I −→ I be a continuous function
strictly increasing in the intervals [a2k, a2k+1], strictly decreasing in the intervals
[a2k+1, a2k+2], k = 0, 1, . . . If in addition f (1) = 0 and | f −1[{0}]| < ℵ0, then the
function Fl : J −→ J defined as

Fl(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

( f (x), y) if x ∈ ]a2k, a2k+1[
( f (x), 1− y) if x ∈ ]a2k+1, a2k+2[
( f (x), 0) if x = a2k+1

( f (x), 1) if x = a2k

(0, 1) if x = 1.

is continuous.

Proof We are going to prove the continuity of Fl at each point of J . So, we have to
consider several possible cases.
1. First case: x = a2k (k ∈ ω).
A canonical neighborhood of Fl(x, y) = ( f (x), 1) has the form

V = ]( f (x), 1− ε), ( f (x)+ ε, 0)[
= {( f (x), b) : 1− ε < b ≤ 1} ∪ {(a, b) : f (x) < a < f (x)+ ε, b ∈ [0, 1]}

where ε is a small positive real number, say ε < (1− f (x))/2.
1.1. First subcase: For y ∈ ]0, 1[, we take δ < min{y, 1 − y}/2. The set W = ](x,
y − δ), (x, y + δ)[ = {(x, b) : y − δ < b < y + δ} is an open interval containing the
point (x, y) and such that Fl((a, b)) = ( f (x), 1) ∈ V for all (a, b) ∈ W .
1.2. Second subcase: Assume now that y = 1. Since f is continuous and strictly
increasing in the interval [a2k, a2k+1], there is a δ ∈ ]0, (a2k+1 − a2k)/2[ such that
f [[x, x+δ[ ] ⊂ [ f (x), f (x)+ε[. So, Fl(a, b) ∈ V if (a, b) ∈ ](x, 1−ε), (x+δ, 0)[.
1.3. Third subcase: y = 0 = x . Under these circumstances, W = ](0, 0), (0, 1/2)[ is
a neighborhood of (0, 0) and Fl [W ] = {( f (x), 1)} ⊂ V .
1.4. Fourth subcase: Finally, suppose that x = a2k > 0 and y = 0. Since f is
continuous and decreasing in [a2k−1, a2k], there is a δ ∈ ]0, (a2k−a2k−1)/2[ such that
f [ ]x−δ, x]] ⊂ [ f (x), f (x)+ε[. Now, W =](a2k−δ, 1), (a2k, ε)[ is a neighborhood
of (x, y) and Fl [W ] ⊂ V . In fact, if a ∈ ]a2k − δ, a2k[, Fl((a, b)) = ( f (a), 1 − b);
but, in this case, f (a) ∈ ] f (a2k), f (a2k)+ε[; so, Fl(a, b) ∈ V . If a = a2k and b < ε,
then Fl((a2k, b)) = ( f (a2k), 1) ∈ V .
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2. Second case: x ∈ ]a2k, a2k+1[ ( k ∈ ω).
2.1. First subcase: y ∈ (0, 1). A canonical neighborhood of Fl((x, y)) = ( f (x), y)
has the form

V = ]( f (x), y − ε), ( f (x), y + ε)[
where ε ∈ [0,min{y, 1−y}/2[. Let W be equal to ](x, y−ε), (x, y+ε)[. If (a, b) ∈ W ,
then a = x and y − ε < b < y + ε. So, Fl((a, b)) = ( f (x), b) ∈ V .
2.2. Second subcase: y = 0. A standard neighborhood of Fl((x, y)) = ( f (x), y) =
( f (x), 0) has the form V = ]( f (x)− ε, 1), ( f (x), ε)[ with ε < | f (a2k)− f (x)|/2.
Since f is an increasing and continuous function in ]a2k, a2k+1[, there is δ in the
interval ]0, |x − a2k |/2[ such that f [ ]x − δ, x]] ⊂ ] f (x) − ε, f (x)]. So, for W =
](x − δ, 1), (x, ε)[ we have that Fl [W ] ⊂ V .
2.3. Third subcase: y = 1. In this subcase, we have that a canonical neighborhood
of ( f (x), 1) has the form V = ]( f (x), 1 − ε), ( f (x) + ε, 0)[. Again, since f is an
increasing and continuous function in ]a2k, a2k+1[, there is δ ∈ ]0, |x − a2k |/2[ such
that f [[x, x + δ[ ] ⊂ [ f (x), f (x) + ε[. For W = ](x, 1 − ε), (x + δ, 0)[, we have
Fl [W ] ⊂ V .
3. Third case: x = 1. The set V = ](0, 1−ε), (ε, 0)[ is a neighborhood of Fl((x, y)) =
(0, 1).

In this case too, we have several subcases:
3.1. First subcase: If y ∈ ]0, 1[, we take δ ∈ ]0,min{y, 1 − y}/2[ and we take W =
](1, y − δ), (1, y + δ)[. It happens that Fl [W ] = {(0, 1)} ⊂ V .
3.2. Second subcase: If y = 1, we take W = ](1, 1/2), (1, 1)]; then we have that
Fl [W ] = {(0, 1)} ⊂ V .
3.3. Third subcase: Finally, assume that y = 0. Since f is continuous at 1, f (1) = 0
and | f −1[{0}]| < ℵ0, there is δ > 0 such that f [ ]1− δ, 1]] ⊂ [0, ε[ and 0 does not
belong to f [ ]1 − δ, 1[ ]. Let W be the set ](1 − δ, 1), (1, δ)[ and take (a, b) ∈ W .
If a = 1, then Fl((a, b)) = (0, 1) ∈ V . If a < 1, then Fl((a, b)) = ( f (a), z) with
f (a) ∈ ]0, ε[; so, ( f (a), z) ∈ V as well.

The proof of the continuity of Fl at the point (x, y) when x = a2k+1 and when
x ∈ ]a2k+1, a2k+2[ is similar to that given when x = a2k and when x ∈ ]a2k, a2k+1[,
respectively.

So, we have proved that Fl is a continuous function at each point of J . �
We are frequently going to use the following well known result.

Proposition 1.2 For a dynamical system (X, ϕ), the subset M ⊂ X is minimal if and
only if for each x ∈ M, the set {ϕn(x) : n < ω} is dense in M.

2 Non-Cantor minimal sets

2.1 In [4, Example 30, p. 147] it is shown that the classical middle third Cantor set C
is a minimal set for the function on the interval defined as

f (0) = 2

3
, f (1) = 0, f

(

1− 2

3k

)

= 1

3k−1 , f

(

1− 1

3k

)

= 2

3k+1 (k≥1) ,

and defined as linear at intermediate points.
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Function f satisfies the requirements of Theorem 1.1; thus, we have the following
result.

Theorem 2.2 The set C2 = C × {0, 1} is a non-metrizable minimal set in (J, Fl).

Proof The space C2 is separable of uncountable weight, so it is not metrizable. Let f
be the function defined in 2.1. Let Fl be the function generated by f as was indicated in
Theorem 1.1. In order to prove that C2 is a minimal set of J with respect to Fl : J → J ,
we have to verify that for each point (x, y) ∈ C2 the set D = {Fn

l (x, y) : n ∈ N} is
dense in C2. However, π1[D] = { f n(x) : n ∈ N} where π1 is the projection to the
first coordinate. Since { f n(x) : n ∈ N} is dense in C , D is dense in C2 = C × {0, 1}.

�
The previous theorem provides the first example of a minimal set in a compact,

connected linearly ordered space which is not metrizable. By means of a similar
technique to the one used to prove Theorem 2.2, it is possible to construct 2c non-
homeomorphic, non-metrizable infinite minimal sets. In order to carry out this
construction, we will first give some preliminary definitions, facts and comments.

2.3 The middle-third Cantor set C is precisely the set of points in I = [0, 1] having
a ternary expansion without 1s. That is,

C =
{ ∞∑

i=0

xi

3i+1 : xi ∈ {0, 2}
}

.

Let 2ω be the product of a countable collection of copies of the two-point discrete
space {0, 1}. The function h : C → 2ω defined by

h

( ∞∑

i=0

xi

3i+1

)

=
( xi

2

)

i<ω

is a homeomorphism.
For a ∈ {0, 1, 2, 3}, let r(a) = 0 if a < 2, and r(a) = 1 if a ≥ 2. We will denote

by ⊕ : 2ω × 2ω → 2ω the symbolic addition with carrying which is defined by

(xi )i<ω ⊕ (yi )i<ω = (zi )i<ω

if and only if z0 = x0∗y0, z1 = x1∗y1∗r(x0+y0), z2 = x2∗y2∗r(x1+y1+r(x0+y0)),
z3 = x3 ∗ y3 ∗ r(x2 + y2 + r(x1 + y1 + r(x0 + y0))), and so on, where ∗ is the sum
in the group of 2-adic integers and + is the usual sum in Z.

Now we define σ : 2ω → 2ω as σ(ξ) = ξ ⊕ 1 where 1 = (1, 0, 0, 0, . . .). It is easy
to verify that the following statement holds.

Claim 2.4 Let (xi )i<ω ∈ 2ω. Let n0 be the first natural number n > 0 such that
xn = 0. If σ((xi )i<ω) = (zi )i<ω, then zi = xi for every i > n0.
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Again consider the function f defined in 2.1. In [4, Example 30, p. 147] it was

pointed out that if x ∈ C has the ternary expansion
∑∞

i=0
2bi

3i+1 , then f (x) has the

ternary expansion
∑∞

i=0
2ci

3i+1 determined by the relation (ci )i<ω = σ((bi )i<ω). In

other words, we have the following:

Claim 2.5 Let f : I → I be the function defined in 2.1, and consider h : C → 2ω

and σ : 2ω → 2ω as defined in 2.3. Then, h ◦ f ◦ h−1 = σ .

2.6 Now take a free ultrafilterU onω, and let AU be the subset of 2ω of all characteristic
functions of either a finite subset of ω or of an element U of U ; that is:

AU = {χU ∈ 2ω : U ∈ Fin or U ∈ U}.

By 2.4, we obtain:

Claim 2.7 For the function σ : 2ω → 2ω defined in 2.3, we have that σ [AU ] ⊂ AU
and σ [2ω\AU ] ⊂ 2ω\AU .

2.8 For U ∈ ω∗, we define relation ∼U on the lexicographic square J by:

(x, r) ∼U (y, s)⇔ either x = y and r = s, or

x = y ∈ C and h(x) ∈ AU .

The relation ∼U is an equivalence relation. Let JU be the set of all the
∼U -equivalence classes, and let πU : J → JU be the canonical projection. If we
consider JU with the quotient topology defined by πU , then πU : J → JU is a
continuous function and JU is a compact connected topological space.

That JU is a linearly orderable space (in particular, JU is Hausdorff) is given by
the following lemma which can be proved by standard arguments.

Lemma 2.9 Let (X, T ,≤) be a linearly ordered topological space. Let q : X → Y
be an onto function. If for every y ∈ Y , q−1[{y}] is a ≤-interval, then the relation in
Y defined by q(a) � q(b) if q(a) �= q(b) and a < b is a well defined linear order
relation in Y . Moreover, if for every y ∈ Y , q−1[{y}] is a closed ≤-interval and if q
is an identification, then the quotient topology in Y defined by q coincides with the
order topology in Y defined by �.

Furthermore, the projection πU : J → JU is a closed mapping because it is
continuous, J is compact and JU is Hausdorff.

Let FU : JU → JU be the relation which makes the following diagram commutative

J
πU−−−−→ JU

Fl

⏐
⏐
� FU

⏐
⏐
�

J
πU−−−−→ JU

That is, FU (πU (x, r)) = πU (Fl((x, r))) for each (x, r) ∈ J .
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Claim 2.10 The relation FU : JU → JU , defined above, is a continuous function.

Proof First we will prove that FU is a function; that is, we must prove that for each
two different elements (x, r), (y, s) ∈ J , if (x, r) ∼U (y, s), then Fl((x, r)) ∼U
Fl((y, s)).

We have that x = y ∈ C and h(x) ∈ AU . There is a ∈ AU such that x = h−1(a).
Hence, h( f (x)) = h( f (h−1(a)) = σ(a) (2.5). But a ∈ AU , and thus σ(a) ∈ AU
(2.7). This means that Fl((x, r)) ∼U Fl((y, s)). That is, FU is a function.

Moreover, FU is continuous because FU ◦πU = πU ◦ Fl , πU is a quotient mapping
and Fl is continuous. �

Recall that we denote by C2 the subspace C × {0, 1} of J . Let CU be the subspace
πU (C2) of JU . Since C2 is a compact separable space, CU possesses these properties
too. Furthermore, CU is not metrizable. In order to verify this last assertion, we are
going to make some general considerations:

Let X ⊂ [0, 1]. Define on J the equivalence relation (x, r) ∼X (y, s) iff either
(x, r) = (y, s) or x = y ∈ X . Let JX be the quotient space generated by J and πX ,
the natural projection defined by ∼X .

Lemma 2.11 (1) The relation π1 : JX → [0, 1] defined by π1(πX ((x, r))) = x is
an open continuous function.

(2) Let Y be a subset of X and define Y = {πX ((y, s)) : y ∈ Y, s ∈ [0, 1]}. Then,
the function ϕ = π1 � Y is a homeomorphism from the subspace Y of JX to the
subspace Y of the unit interval [0, 1].

Proof Of course π1 is a well defined function and it is one-to-one if restricted to Y .
Now, for (x, r) ∈ ]0, 1[× [0, 1] (resp., x = 0 and r ∈ [0, 1]; x = 1 and r ∈

[0, 1]) and ε > 0, the set V = ](x − ε, 1), (x + ε, 0)[ (resp., V = [(0, 0), (ε, 0)[;
V = ](1 − ε, 0), (1, 1)]) is open in J and π−1

X πX [V ] = V . So, πX [V ] is an open
neighborhood ofπX ((x, r)). Moreover,π1[πX [V ]] =]x−ε, x+ε[ (resp.,π1[πX [V ]]=
[0, ε, [; π1[πX [V ]] = ]1− ε, 1]). Therefore, π1 is a continuous function.

On the other hand, for y, s ∈ I ,

π1[ ]πX ((y, s)),→ [ ] = ]y, 1],
π1[ ] ←, πX ((y, s))[ ] = [0, y[,

ϕ[ ]πX ((y, s)),→ [∩Y] = ]y, 1] ∩ Y and

ϕ[ ] ←, πX ((y, s))[ ∩Y] = [0, y[ ∩ Y ;

so, π1 is open and ϕ is a homeomorphism. �
Observe that the space {πX ((y, 1)): y ∈ [0, 1]\X} is homeomorphic to the subspace

[0, 1]\X of the Sorgenfrey line considered with the base constituted by left-closed in-
tervals, and that {πX ((y, 0)): y ∈ [0, 1]\X} is homeomorphic to the subspace [0, 1]\X
of the Sorgenfrey line considered with the base of right-closed intervals.

Lemma 2.12 For every Z ⊂ [0, 1], the weight of the subspace Z0 = {πX ((y, 0)) :
y ∈ Z} (resp., Z1 = {πX ((y, 1)) : y ∈ Z}) of JX is equal to |Z\X |.
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Proof Let Y be equal to Z ∩ X . The subspace Y0 = {πX ((y, 0)) : y ∈ Y } (resp.,
Y1 = {πX ((y, 1)) : y ∈ Y }) is second countable (Lemma 2.11). Thus, w(Z0) =
w(Z0\Y0) (resp., w(Z1) = w(Z1\Y1)). But, as we have already mentioned, Z0\Y0
(resp., Z1\Y1) is homeomorphic to the subspace Z\Y of the Sorgenfrey line. So, the
conclusion of this lemma follows. �

Since I ×{0, 1} ⊂ J is hereditarily separable, so πX [I ×{0, 1}] is also hereditarily
separable. Then, by Lemmas 2.11 and 2.12, we obtain:

Lemma 2.13 Let Y0,Y1 ⊂ [0, 1]. The subspace

Z = {πX ((y, 0)) : y ∈ Y0} ∪ {πX ((y, 1)) : y ∈ Y1}

of JX is metrizable if and only if |(Y0 ∪ Y1)\X | ≤ ℵ0.

For each U ∈ ω�, |2ω\AU | = 2ω; so, by Lemma 2.13, the following proposition
holds.

Corollary 2.14 For each free ultrafilter U on ω, CU is not metrizable.

Theorem 2.15 CU is a non-metrizable minimal set of the dynamical system (JU , FU ).

Proof We have noted already that CU is not metrizable Corollary (2.14); so, we only
have to show that CU is minimal.

Because of Proposition 1.2, we must prove that for an arbitrary c ∈ CU , the set
{Fn+1

U (c) : n < ω} is dense in CU . Let a ∈ C2 be such that πU (a) = c. So,

{Fn+1
U (c) : n < ω} = {(Fn+1

U ◦ πU )(a) : n < ω}. Observe that, for each n < ω,

(Fn+1
U ◦ πU )(a) = (πU ◦ Fn+1

l )(a). Thus, {Fn+1
U (c) : n < ω} = πU [{Fn+1

l (a) : n <
ω}]. By Theorem 2.2, {Fn+1

l (a) : n < ω} is dense in C2; therefore, {Fn+1
U (c) : n < ω}

is dense in CU . �
2.16 For each U ∈ ω∗, let us denote by [U] the set {V ∈ ω∗ : CV ∼= CU }.

Let hV be a homeomorphism from CU onto CV , and consider the functions
ψU : AU → CU and ϕV : CV → [0, 1] defined by ψU (x) = πU ((x, 0)) and
ϕV (πV ((x, s)) = x , respectively. By Lemma 2.11, the function ψU is an embed-
ding and ϕV is a continuous function; so, lV = ϕV ◦ hV ◦ ψU : AU → [0, 1] is also
continuous. Since the spaceπU [AU×{0, 1}] is second countable, hV [πU [AU×{0, 1}]]
has this property too. Because of Lemmas 2.11 and 2.12

|(hV ◦ ψU )[AU ]\πV [AV × {0, 1}] ∪ (πV [AV × {0, 1}]\(hV ◦ ψU )[AU ])| ≤ ℵ0.

Therefore,

|(lV [AU ]\AV ) ∪ (AV\lV [AU ])| ≤ ℵ0.

On the other hand, ifU andV are two different free ultrafilters onω, then |(AU\AV )∪
(AV\AU )| > ℵ0.
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Moreover, since AU is separable, the cardinality of the set of continuous functions
from AU into [0, 1] is less or equal to 2ω.

All these remarks lead us to conclude that |[U]| ≤ 2ω. But |ω∗| = 2c, hence, there
is a collection U ⊂ ω∗ of cardinality 2c such that if U ,V ∈ U and U �= V , then CU is
not homeomorphic to CV . So, we have:

Theorem 2.17 The set {CU : U ∈ U} is a collection of 2c pairwise non-homeomor-
phic, non-metrizable minimal sets.

3 Final example, remarks and problems

Now we are going to define a compact connected linearly ordered topological space
X , and construct a continuous function F : X → X such that, for each U ∈ U, X
contains a copy of CU which will be minimal in (X, F).

As usual, we say that an ordinal λ is limit if it does not have an immediate pre-
decessor. In particular, we will consider 0 as a limit ordinal. An ordinal λ is even if
λ = γ + 2n where γ is a limit ordinal and n < ω; and λ is odd if λ = γ + 2n + 1
where γ is a limit ordinal and n < ω.

We enumerate the elements in U as {Uλ : λ < 2c}. For each even ordinal λ ≤ 2c we
will denote by Jλ the set {((a, b), λ) : (a, b) ∈ J }, and for each odd ordinal λ < 2c,
λ = γ +2n+1, Jλ will be the set {(πUγ+n (a, b), λ) : (a, b) ∈ J }. For each (a, b) ∈ J
and for each λ ≤ 2c, we define πλ((a, b)) ∈ Jλ as follows:

πλ((a, b)) =
{
((a, b), λ) if λ is even

(πUγ+n (a, b), λ) if λ = γ + 2n + 1

Let Z =⋃
λ≤2c Jλ. We consider in Z the following relation∼L :πλ(a, b) ∼L πξ (c, d)

iff one of the following cases happens: (1) λ = ξ and (a, b) = (c, d), (2) λ = ξ , λ
is an even ordinal and a = c = 0 or a = c = 1, (3) λ = ξ + 1, a = 0 and
c = 1, or (4) λ = ξ = 2c. Let X be the set of ∼L -equivalence classes and let
q : Z → X be the natural projection. We define the following order relation≤L in X :
For qπλ((a, b)) �= qπξ ((c, d)),

q(πλ(a, b)) <L q(πξ (c, d)) iff either λ < ξ or λ = ξ < 2c and (a, b) <l (c, d),

where <l is the lexicographic order on J .
We provide X with the order topology defined by ≤L . Observe that for each even

ordinal λ < 2c, q[Jλ] is homeomorphic to the quotient space obtained from J by
identifying to one point the set of points in J with first coordinate equal to 0 and
to identify to one point the set of points with first coordinate equal to 1. On the
other hand, since 0, 1 ∈ AUλ , for each odd ordinal λ = γ + 2n + 1 < 2c, q[Jλ] is
homeomorphic to the space JUγ+n . Finally, if λ = 2c, q[Jλ] is a one point set, it is the
last element in X and it belongs to the closure of its complement in X . Also, observe
that the subspace {q(πλ(0, 0)) : λ ≤ 2c} of X is homeomorphic to the space [0, 2c]
of all ordinal numbers less or equal to 2c with their usual order topology. Since each
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Jλ is a connected space, the equivalence relation ∼L makes X a connected space.
Furthermore, the compactness of each Jλ and the compactness of [0, 2c] makes X
compact. So, X is a compact connected linearly ordered topological space.

Now, we construct a convenient continuous function F : X → X . We define:

F(q(πλ(x, y))) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(πλ(3x, y)) if λ is a limit ordinal < 2c

and x ∈ [0, 1/3];
q(πλ+1(x − 1

3 , y)) if λ is a limit ordinal < 2c

and x ∈ [1/3, 1];
q(FUλ(πλ(x, y))) if λ is odd;

q(πλ−1(3x, y)) if λ is a non-limit even

ordinal and x ∈ [0, 1/3];
q(πλ(3(x − 1

3 ), y)) if λ is a non-limit even

ordinal and x ∈ [1/3, 2/3];
q(πλ+1(2(x − 2

3 ), y)) if λ is a non-limit even

ordinal and x ∈ [2/3, 1]
q(πλ(x, y)) if λ = 2c.

It is not difficult to see that F is a well defined function and that F � q[Jλ] is
continuous for every λ ≤ 2c. The proof that F is a continuous function on all of X ,
can be made following similar arguments to those used in the proof of Theorem 1.1.

As we have already mentioned, for every odd ordinal λ = γ + 2n + 1 < 2c, the
relation

πUγ+n (a, b)→ q(πλ(a, b))

from JUγ+n to q[Jλ] is a homeomorphism. The image of CUγ+n under this rela-
tion is equal to q[CUγ+n × {λ}]. So, since CUγ+n is a compact subspace of JUγ+n ,
CUγ+n is homeomorphic to q[CUγ+n × {λ}]. Moreover, in this case, F(qπλ(a, b)) =
q FUλ(πλ(a, b)); that is, “F has the same behavior as FUγ+n ” in q[Jγ+2n+1] for each
γ < 2c. Therefore, q[CUγ+n × {λ}] becomes a minimal set for (X, F) for all γ < 2c.
Denote by Cλ the subspace q[CUγ+n × {λ}]. So, we have:

Theorem 3.1 The set {Cλ : λ is an odd ordinal < 2c} is a collection of 2c pairwise
non-homeomorphic, non-metrizable minimal sets in the connected compact linearly
ordered topological space X, with respect to the dynamical system (X, F).

Since our space X has cardinality 2c and two different minimal sets must be disjoint,
2c is the biggest quantity of pairwise non-homeomorphic minimal sets one can have
on X .

To conclude we will mention an open question. It is easy to see that if U and V are
equivalent ultrafilters, then CU and CV are homeomorphic. Also, for each U ∈ ω∗,
the set [U] = {V ∈ ω∗ : CV ∼= CU } (see 2.16) has size 2ω. So it is natural to ask:

Problem 3.2 Is U equivalent to V whenever CV ∼= CU ?
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