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High-performance finite elements with
MFEM
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Dohyun Kim5

, Tzanio Kolev1, Boyan Lazarov6,
Ketan Mittal1, Will Pazner7, Socratis Petrides1,
Syun’ichi Shiraiwa8, Mark Stowell1 and Vladimir Tomov1

Abstract
The MFEM (Modular Finite Element Methods) library is a high-performance C++ library for finite element discretizations.
MFEM supports numerous types of finite element methods and is the discretization engine powering many computational
physics and engineering applications across a number of domains. This paper describes some of the recent research and
development in MFEM, focusing on performance portability across leadership-class supercomputing facilities, including
exascale supercomputers, as well as new capabilities and functionality, enabling a wider range of applications. Much of this
work was undertaken as part of the Department of Energy’s Exascale Computing Project (ECP) in collaboration with the
Center for Efficient Exascale Discretizations (CEED).
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1. Introduction

The MFEM (Modular Finite Element Methods) library is a
high-performance, scalable, open-source, C++ library for
finite element discretizations.1 MFEM has undergone
continual, rapid development since its initial release in July
2010. Its feature set has grown significantly, supporting a
large number of applications, discretizations, and target
architectures. This paper aims to summarize the recent
developments in the library, as well as the related research
into the underlying mathematical and numerical methods; it
can be seen as a follow-up to the paper of Anderson et al.
(2020a) and we recommend reviewing that paper for rel-
evant background material.

Given the importance of graphics processing units
(GPUs) to high-performance computing (HPC), MFEM’s
GPU capabilities have been considerably expanded and
improved. For example, MFEM now provides compre-
hensive support for GPU-accelerated high-order mesh op-
timization through the target-matrix optimization paradigm.
Additionally, MFEM provides end-to-end GPU-accelerated
solvers for problems posed in all spaces of the finite element
de Rham complex, making use of newly developed

low-order-refined preconditioning techniques. These
solvers have recently been extended to saddle-point prob-
lems, include grad-div problems in H(div) and mixed finite
element problems. Novel kernel fusion techniques im-
plemented in MFEM can be used to substantially improve
the strong scalability of high-order finite element solvers,
resulting in peak performance on problems of sizes 5–10×
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smaller than using traditional approaches. GPU-accelerated
partial assembly kernels have been expanded to cover a very
broad range of operators and discretizations. For example,
NURBS-based discretizations (such as isogeometric anal-
ysis) now also support partial assembly.

In addition to the performance-focused features and
developments described above, MFEM’s feature-set has
been significantly broadened. Support for specialized dis-
cretizations such as the discontinuous Petrov–Galerkin
(DPG) method have been added. Automatic differentiation
now enables the high-performance automated assembly of
Jacobian matrices for applications such as nonlinear elas-
ticity. Multiphysics applications are supported through
submesh capabilities, providing users with straightforward
mechanisms to use different physics in different parts of the
domain. Discretization techniques for stochastic and frac-
tional partial differential equations are enabled by the li-
brary, and illustrated in MFEM’s included examples and
miniapps. In addition to supporting traditional body-fitted
meshes and finite element methods, MFEM now also
supports level-set based methods; specific examples include
distance solvers, shifted boundary methods, and cut inte-
gration rules.

Each of these topics is discussed in greater detail in the
following sections. We begin with a summary of MFEM’s
GPU and HPC capabilities, including scalable matrix-free
solvers. Then, we describe advances in MFEM’s dis-
cretization support, such as DPG support, proximal Ga-
lerkin methods, immersed discretizations, NURBS/IGA,
and automatic differentiation. Subsequently, we give an
overview of advances in MFEM’s meshing capabilities,
with a focus on high-order mesh optimization algorithms.
Finally, we illustrate the utility of these features and de-
velopments by describing a number of applications that
make use of the newly introduced capabilities.

2. GPU acceleration and
high-performance computing

One of MFEM’s distinguishing features is its support for
GPU acceleration throughout the library. GPU support was
introduced in MFEM version 4.0, released in May 2019.
Since then, an increasing number of features and dis-
cretizations support GPU acceleration. For example,
MFEM’s powerful mesh optimization features based on the
target-matrix optimization paradigm now run on GPUs,
enabling over 30× speedup compared to CPU evaluation.
These advanced meshing capabilities are discussed in
greater detail in the meshing section of the paper. Much of
MFEM’s GPU capabilities are focused on high-order dis-
cretizations. TheMFEM team continues to perform research
and development in generating optimized kernels and in
reaching peak performance faster in high-order finite

element simulations. A major area of research and devel-
opment is that of matrix-free solvers, which are tailored for
high-order finite element problems. MFEM’s most recent
release includes support for full end-to-end GPU acceler-
ation of matrix-free solvers for all spaces in the finite el-
ement de Rham complex. These solvers are discussed in the
next section.

2.1. Matrix-free solvers for high-order finite
elements

High-order finite element problems are typically solved
using an iterative method, such as a Krylov subspace
method, together with an effective preconditioner. Applying
the action of high-order finite element operators in partially
assembled form is very well-suited for GPU acceleration;
the arithmetic intensity of the algorithm increases with
increasing polynomial degree (see Abdelfattah et al., 2021;
Kolev et al., 2021). However, the construction and appli-
cation of performant preconditioners is more challenging. It
is typically prohibitively expensive (both in terms of
memory usage and computational complexity) to assemble
and store the system matrix associated with the dis-
cretization, see Figure 8 and Anderson et al. (2020a). As a
result, traditional matrix-based methods such as algebraic
multigrid cannot be directly used in this context. Moreover,
sparse matrix computations have low arithmetic intensity
and are memory bandwidth bound; these operations often
do not fully utilize the computational resources afforded
by GPUs.

To address these issues, MFEM supports a range of
matrix-free preconditioning methods for a variety of finite
element operators and discretizations. Such preconditioners
can be constructed and applied without access to the as-
sembled matrix, and their memory usage is asymptotically
optimal (linear scaling with the problem size). The two main
approaches supported by MFEM are p-multigrid and low-
order-refined preconditioning.

Both of these approaches aim to reduce the high-order
problem to a related lower-order problem, which can then be
assembled, and treated with, for example, algebraic mul-
tigrid. In p-multigrid, a hierarchy of finite element spaces
with different polynomial degrees is constructed on the
same mesh. These spaces are nested: there exists a natural
injection from the lower-degree spaces into the higher-
degree spaces. This gives rise to restriction and prolonga-
tion operators that transfer solutions and residuals between
the spaces; the action of these operators can be computed
efficiently on the GPU using sum-factorization techniques.
At each level, a smoother is required; since the assembled
matrix is not available, it is not feasible to use matrix-based
relaxation methods such as Gauss–Seidel. Instead,
smoothers based only on the diagonal of the matrix are used;
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sum-factorization techniques provide algorithms to effi-
ciently compute the diagonal of finite element matrices
without assembling the matrix. Chebyshev acceleration can
be used to improve the smoother.

Low-order-refined (LOR) preconditioning, also known
in the literature as SEM–FEM preconditioning (see e.g.
Fischer, 1997), is based on the idea of constructing a
spectrally equivalent lowest-order discretization on a re-
fined version of the mesh. The high-order discretization on
the original mesh and the low-order discretization on the
refined mesh have the same number of degrees of freedom.
Under some conditions on the construction of the mesh,
these two discretization are spectrally equivalent, inde-
pendent of mesh size and polynomial degree (Canuto,
1994). Consequently, a preconditioner constructed using
the low-order matrix can be used to effectively precondition
the high-order operator. While this technique is by now
considered classical (having originally been proposed in
Orszag 1980), recent developments have extended the
applicability of LOR approaches to additional discretiza-
tions, including all spaces in the finite element de Rham
complex (Pazner et al., 2023b), as well as discontinuous
Galerkin discretizations with hp-refinement (Pazner, 2020;
Pazner and Kolev, 2021).

MFEM provides extensive, easy-to-use support for
GPU-accelerated low-order-refined discretizations and
solvers. Spectrally equivalent low-order discretizations can
be created in a single line of code. Any of MFEM’s wide
array of supported preconditioners can be used for the LOR
preconditioner; for example, hypre’s high-performance
AMG, AMS, and ADS preconditioners, which are read-
ily available in MFEM, provide effective solvers for dif-
fusion problems posed in H1, H(curl), and H(div).

The entire preconditioning pipeline is GPU-accelerated.
The lowest-order matrix is assembled using a batched
macro-element algorithm that takes advantage of the semi-
structured nature of the refined mesh. High-performance,
scalable algebraic multigrid methods can then be created
directly on-device and combined with MFEM’s highly
performant partial assembly kernels for operator evaluation
(Pazner et al., 2023a). These solvers are highly performant
and scalable up to thousands of GPUs.

Spectrally equivalent LOR discretizations in H(curl) and
H(div) use a particular choice of basis constructed using
interpolation and histopolation operators; in this basis, the
discrete curl and divergence differential operators defined
on the high-order and low-order-refined spaces are exactly
equal. This remarkable property is the key fact behind the
spectral equivalence of the high-order and low-order op-
erators. It can also be used in other contexts to create ef-
ficient preconditioners. High-performant preconditioners
for saddle-point problems resulting from mixed finite ele-
ment discretizations (e.g. Darcy problems) can be con-
structed using this technique (Pazner et al., 2024).

The low-order-refined approach can also be used to
couple high-order and low-order discretizations in a mul-
tiphysics or mixed discretization framework. MFEM pro-
vides conservative and accurate transfer operators that can
be used to communicate solutions and residuals between
spaces of different orders and refinements (Kolev and
Pazner, 2022).

2.2. State-of-the-art performance on exascale
platforms and AMD GPUs

In order to achieve high-performance on a range of GPU-
based platforms, MFEM supports a spectrum of operator
assembly levels, ranging from full assembly of the system
matrix, to completely matrix-free (zero storage) operators.
The supported assembly levels are summarized below. Each
assembly level brings its own computational efficiency and
memory usage properties (see also Figure 8 and Anderson
et al., 2020a).

2.2.1. Fully matrix-free. All necessary data needed for op-
erator evaluation is computed on the fly, minimizing storage
and memory requirements, at the cost of potentially
recomputing data.

2.2.2. Partial assembly. Only the essential data at quadrature
points is precomputed and stored, decreasing computation
costs compared with fully matrix-free, while reducing
memory footprint compared with matrix assembly. Partial
assembly is especially effective for high-order finite elements.

2.2.3. Element assembly. Local contributions from each el-
ement are computed and stored in an element-local dense
matrix. While this approach is more computationally and
memory-intensive than partial assembly, it also gives access
to an algebraic representation of the operator.

2.2.4. Sparse matrix assembly. The traditional assembly
method computes and stores the global sparse matrix rep-
resenting the operator. While this can be memory-intensive
for large-scale problems (especially with higher order finite
elements), it is compatible with a wide range of existing
solvers and preconditioners.

All of the above-described assembly levels in MFEM are
designed to be compatible with GPU-based execution,
leveraging the computational power of modern GPUs to
accelerate simulations. This compatibility with device ex-
ecution on GPUs allows MFEM to handle complex, large-
scale problems more efficiently, making it a versatile tool for
scientific computing and engineering simulations.

MFEM has expanded its capabilities to fully support
exascale computing platforms, including optimized support
for multiple GPU architectures. The integration with AMD
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GPUs is particularly noteworthy, as it aligns with the in-
creasing adoption of AMD hardware in exascale and su-
percomputing platforms. Several bake-off problems (BPs)
have been released by the CEED project and are used as
important benchmarks: there are the mass and diffusion
benchmarks: BP1 and BP3 (Fischer et al., 2020) as well as the
more recent preconditioned Poisson solvers BPS3 (Kolev
et al., 2021). The MFEM matrix-free kernels have shown
good performance portability between NVIDIA and AMD
architectures, as illustrated in Figure 1. These results compare
the performance of MFEM’s default (built-in) backend, and
the libCEED backend, which makes use of high-performance
kernels from the libCEED library (Brown et al., 2021).

2.3. Kernel fusion

GPU kernel fusion is an important technique for maximizing
performance and scalability of GPU-accelerated finite element
options. One of the challenges with it is providing a user-
friendly programming interface to generate fused computational

kernels. In this section we present some of our research in this
area performed in MFEM as part of the CEED project.

Coding for kernel fusion often requires a paradigm
shift, moving away from explicit GPU kernel launches.
One general way to address this challenge is to gain in
abstraction, using, for example, a more descriptive
mathematical language. For finite element methods, the
FEniCS project has formalized the Unified Form Lan-
guage (UFL, see Logg et al., 2012). UFL is a domain
specific language used to declare finite element variational
forms, thus providing a high-level abstraction for speci-
fying the mesh, the finite element spaces, the boundary
conditions, as well as the linear and bilinear forms.
Working at the compiler frontend level allows one to build
a modular toolchain that transforms UFL to C++ and raw
CUDA. This enables the construction of a source-to-
source transformation which uses the graph of all the
kernels that are needed at runtime, together with the
memory locations that are to be read, written or copied,
allowing static analysis and optimizations.

Figure 1. Comparison of the performance on the mass and diffusion benchmark problems (CEED BP1 and BP3) on NVIDIA V100 and
AMD MI250X using the libCEED and default MFEM backends.
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The implementation of the CEED benchmark problems
using kernel fusion requires several building blocks. It is
necessary to launch kernels with different topologies (e.g. 1D
kernels for vector operations, and 2D and 3D thread blocks
kernels for the main partially assembled operators). Specific
warp levels instructions are also needed for the dot products.
A mechanism to synchronize these different algorithmic parts
is also necessary. One natural way to achieve these goals on
NVIDIA GPUs is to use the Cooperative Groups pro-
gramming model. We use group partitioning for organization
and used the group collectives for synchronizations.

The results presented in the left panel of Figure 2 dem-
onstrate single-GPU performance on the CEED mass matrix
benchmark BP1. One main question is whether or not such
gain in performance still holds for larger problems or solvers.
Moving from a serial operator to the parallel version requires
a triple product of the form PTAP: the finite element operator
A is prefixed and postfixed by multi-GPU communication
operators P and PT. The prefix communication operator
prepares the buffers, sends the required data asynchronously
to the neighbors, performs works on local vectors, and finally
unpacks the received data to finalize the operation. The
transposed operator performs the same operations but in
reverse order. These methods have been implemented on
NVIDIA GPUs with the NVSHMEM library, which proposes
a parallel API based on OpenSHMEM, providing a global
address space for multiple GPUs, allowing fine-grained
kernel-initiated communication operations. This approach
allows us to move from standard GPU-to-CPU data transfers
with the MPI interconnect model to a direct GPU-to-GPU
model. The right panel of Figure 2 shows the latest results
obtained with a fully fused kernel with MPI communications
for the CEED mass matrix benchmark. Note that the number

of degrees of freedom needed to reach 80% of peak per-
formance has been reduced by a factor of five for the higher
orders, thereby greatly increasing the strong scalability of
these operators. To the best of our knowledge, this is the first
time such an improvement has been observed with MPI
communications overhead.

2.4. Mixed meshes, nonconforming meshes, and
p-adaptivity

2.4.1. Matrix-free discontinuous galerkin methods on non-
conforming meshes. MFEM’s GPU support has been en-
hanced with the implementation of matrix-free discontinuous
Galerkin method on adaptively refined non-conforming
meshes. The non-conforming support builds on the previ-
ous implementation of conforming matrix-free discontinuous
Galerkin method. A key aspect of this implementation is the
effective handling of non-conforming faces, achieved
through a transformation of degrees of freedom, which allows
the use of standard conforming face kernels on non-
conforming meshes. This non-conforming transformation
happens at the level of element-wise vectors (E-vectors) only
on non-conforming faces, minimizing its computational cost.
For non-conforming faces, degrees of freedom are interpo-
lated from the coarse face to the fine face such that the face
appears as a conforming face from a computational per-
spective. Performance results are shown in Figure 3.

2.4.2. Mixed meshes and p-adaptivity

The integration of the libCEED library [see Brown et al.,
2021] in MFEM adds unique features to matrix-free op-
erators, including support for simplices, SYCL-based

Figure 2. Throughput comparison of fused kernels (larger plot markers) and unfused kernels (smaller plot markers) on the mass matrix
benchmark.
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hardware, and fully matrix-free operators (zero storage
operators). The most notable recent addition is the support
for mixed meshes with element of different geometric type
(including simplices, pyramids, and wedges), and
p-adaptivity. MFEM users can run simulations using
matrix-free operators on mixed meshes and p-adaptivity by
simply using the libCEED backend. The performance on
such meshes is illustrated on Figure 4. We observe similar
performance on mixed meshes and on tetrahedral meshes,
however pure hexahedral meshes result in significantly
higher performance due to the use of sum-factorization
algorithms.

3. Discretizations

The MFEM library supports a wide range of finite element
methods and discretizations. In addition to traditional
conforming finite element methods, MFEM provides ever-
increasing support for alternative or non-standard finite

element methods some of which are described below. These
methods differ in important ways from standard methods,
and can provide advantages such as discrete stability,
pointwise bounds preservation, or ability to handle im-
plicitly defined geometries.

3.1. Discontinuous petrov-galerkin (DPG) methods

MFEM now supports a wide range of DPG formulations
spanning thewhole deRham complex (Carstensen et al., 2016).
DPG is a non-standard minimum residual method that provides
high accuracy, unconditional discrete stability and positive
definite linear systems (Demkowicz and Gopalakrishnan,
2010). It is well-suited for challenging problems that are
prone to loss of discrete stability (e.g. high-frequency time-
harmonic acoustics and electromagnetic equations) and for
problems that require adaptive mesh refinement (AMR) (e.g.
problems with singular solutions; see Demkowicz et al., 2012;
Petrides and Demkowicz 2017, 2021).

Figure 3. Performance comparison of matrix-free discontinuous Galerkin mass operators (top row) and advection operators (bottom
row) (NVIDIA V100).
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This new feature introduces user-friendly classes that
allow users to define multiple trial and test spaces as well
as the desired bilinear and linear integrators in a similar
fashion to the standard Galerkin formulation. The DPG
linear system assembly, which also involves the on-the-
fly computation of optimal test functions (see
Demkowicz and Gopalakrishnan, 2011; Zitelli et al.,
2011), is then performed automatically under the
hood. The system is returned to the user in blocked form.
Complex-valued systems, static condensation and AMR
driven by the DPG built-in error indicator are also
supported (Demkowicz et al., 2012). This new devel-
opment is demonstrated with several examples for dif-
fusion, convection-diffusion, time-harmonic acoustic
and electromagnetic wave equations; these features are
illustrated in Figure 5.

3.2. Proximal galerkin

The latent variable proximal Galerkin (PG) finite element
method (Keith and Surowiec, 2023) is a high-order, non-
linear finite element method that preserves the intrinsic
geometric structure of pointwise bound constraints in
function spaces. MFEM now provides implementations of

PG through two new examples: Example 36, which uses PG
to solve the classical obstacle problem, is a template for
other unilateral-constrained variational inequalities and free
boundary problems in Sobolev spaces; and Example 37,
which uses a novel information-geometric approach to
topology optimization, and provides a template for using
PG to solve bilateral-constrained variational inequalities
and pointwise bound-constrained optimization problems in
Lebesgue spaces.

3.3. Immersed discretizations

Capabilities for finite element calculations over immersed
meshes have recently been added to the library. These
methods assume the feature of interest (domain boundary or
internal interface) is given implicitly by the zero level set of
a discrete function. The new features share a common
objective: adhering to finite element operations while
avoiding purely geometric computations. This principle
enables better generality across dimensions, element orders,
and types of finite element discretization.

3.3.1. Integration over cut elements. MFEM provides two
alternative approaches for constructing integration rules

Figure 5. Ultraweak DPG formulations for time-harmonic Maxwell equations for Tokamak simulations(left), 2D scattering of an
acoustics beam (center), and for the time-harmonic Maxwell equations with AMR for the simulation of the microwave oven problem
(right).

Figure 4. Performance of a matrix-free mass operator (BP1 benchmark problem) for different type of meshes using an AMD MI250X
GPU. Comparison of libCEED backend performance.
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over discretely prescribed cut surfaces and volumes. Both
methods enable the computation of

S ¼
Z
f¼0

uðxÞ ds, V ¼
Z
f> 0

uðxÞ dx

where the level set function f specifies the cut, and u is the
integrand. The first approach relies on the external Algoim
package (Saye, 2015), which works for quadrilateral and
hexahedral elements by performing dimension reduction to
construct a combination of 1D quadrature rules. The second
approach uses the moment-fitting algorithm introduced in
Müller et al. (2013). This method constructs a set of basis
functions for each element to define and solve a local under-
determined system for the vector of quadrature weights. All
surface and volume integrals required to form the system are
reduced to 1D integration over intersected segments. The
newly developed integration techniques allow for fast and
efficient implementation of high-order CutFEM (Burman
et al., 2015) discretizations as demonstrated in Figure 6.

3.3.2. Shifted boundary method. MFEM also provides an
implementation of the Shifted Boundary Method (SBM)
(Atallah et al., 2020), which is a technique that avoids inte-
gration in cut elements by using a surrogate computational
domain. The method uses a distance function to the true
boundary to enforce the required boundary conditions on the
(non-aligned) surrogate mesh faces, thereby shifting the location
where the boundary conditions are imposed, see Figure 7. The
enforcement is performed weakly, through face integrals on the
surrogate faces. The desired accuracy is obtained by combining
the distance function with a Taylor expansion of certain order.
These techniques are illustrated in MFEM’s Shifted miniapp.

3.3.3. Distance and extrapolation solvers. Discrete distance
solvers are often needed for computations that involve level

set functions. MFEM’s Distance miniapp demonstrates the
capability to compute the shortest path through the com-
putational mesh to a given point source or to the zero level
set of a given function (see Figure 7). The implemented
methods include the heat method described in Crane et al.
(2017), and the p-Laplacian method from Belyaev and
Fayolle (2015).

Extrapolation is another useful capability in immersed
frameworks. The Extrapolation miniapp extrapolates a fi-
nite element grid function from known values on a set of
elements to the rest of the domain. The miniapp supports the
PDE-based approaches from Aslam (2004) and Bochkov
and Gibou (2020), both of which rely on solving a sequence
of advection problems in the direction of the unknown parts
of the domain. The extrapolation can be up to third-order in
a limited band around the zero level set.

3.4. Partial assembly on NURBS patches

In addition to the existing support for partial assembly on
elements, MFEM now supports partial assembly on
NURBS patches in the settings of isogeometric analysis.
Significant computational savings are possible when as-
sembling patch-wise rather than element-wise, as the tensor-
product structure exists on the entire patch of elements,
allowing for more benefit in sum factorization. In this sense,
a NURBS patch, containing many elements, can be con-
sidered as a very high-order single element. This new
feature is demonstrated in the NURBS miniapp.

Optimization of patch-wise assembly has been done in
works such as Hiemstra et al. (2019). At the patch level, 1D
basis functions in the sum factorization may span multiple
elements, but computations for a pair of test and trial basis
functions are limited to the intersection of their spans. We
further optimize by computing a reduced quadrature rule for
each basis function. Given the smoothness of patch basis

Figure 6. The left figure shows an elastically deformed Gyroid structure with a displacement field obtained through CutFEM solution on
a regular grid with a predefined force function, and the right figure shows theH1 convergence plot of a regularized CutFEM solution for
linear, quadratic, and cubic Lagrangian elements.
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functions, quadrature rules chosen for a particular order on
one element may have more points than necessary to
achieve accuracy, so a reduced rule is possible. We compute
reduced rules automatically by the algebraic non-negative
least squares (NNLS) method (Lawson and Hanson, 1995),
rather than deriving and implementing reduced rules for
every possible case. These reduced rules are computed on
the fly, for the choice of NURBS space, patch, and bilinear
form, and stored for use throughout a system solve or
simulation.

The newly introduced NNLS solver is also a generally
useful addition, which in particular could be used for
computing reduced quadrature rules in other contexts.

3.5. Automatic differentiation (∂FEM)

In recent years, there has been an increased demand for
automatic differentiation (AD) of numerical simulations,
due in part to the rise of machine learning (ML) frameworks
(see e.g. Abadi et al., 2016; Paszke et al., 2017). AD in-
cludes a set of well-established techniques for evaluating
derivatives of functions written as computer programs with
traditional implementation approaches based on operator
overloading (Griewank et al., 1996) or source transfor-
mation (Hascoët and Pascual, 2013). Some of these con-
ventional approaches require the use of a domain-specific
language (Paszke et al., 2017), limiting the portability and
the number of possible hardware and software execution
platforms. On the other hand, MFEM is used in an HPC
context for complex applications composed of libraries in
different languages; traditional AD approaches would ne-
cessitate significant changes to the data types and code
organization, making their application to MFEM more
challenging.

To address this, a collaborative effort, the ∂FEM project
targeting the integration of the Enzyme tool (Moses et al.,
2021) and developing further a native MFEM AD im-
plementation based on operator overloading and templating,
emerged from the need to automatically compute residuals,

Jacobians, and Hessians in FEM discretizations and optimal
design applications. In contrast to traditional tools, Enzyme
performs forward and reverse-mode differentiation on the
LLVM compiler intermediate representation (Lattner and
Adve, 2004), enabling it to synthesize fast derivatives of
programs in any language whose compiler targets LLVM, as
well as a wide variety of parallel frameworks and hardware
architectures, all in a single tool.

MFEM’s infrastructure is built around the finite element
operator decomposition, shown in Figure 8, which encap-
sulates a generic description of an assembly procedure in a
finite element library. Instead of following traditional ap-
proaches that apply automatic differentiation at a global
level and treat the implementation as a black box, the
operator decomposition allows MFEM to treat derivatives
on the innermost level at the quadrature points (D). The
operators transferring data from a global level to sub-
domain, element, and quadrature levels, i.e., P,G, and B, are
linear and topological: they do not depend on the solution,
physical coordinates or design parameters. Therefore, they
can be excluded from the differentiation loop, saving a
significant amount of memory and computations. The de-
composition confines the code modifications to the inte-
gration point level, allowing full automation of the
discretization process for complex non-linear problems.

While the ∂FEM effort is still a work-in-progress, a proof
of concept can be found in the Hooke miniapp, which
implements a finite-strain elasticity discretization with ar-
bitrarily user-defined material models and automatically
generated Jacobians (derivatives of the residual equation
with respect to the displacement). The derivatives in this
example can either be generated by leveraging Enzyme or
MFEM’s internal dual number type implementation.

4. Meshing

MFEM includes advanced meshing support such as general
element types, conforming and non-conforming adaptive
mesh refinement, high-order meshing and more, (see

Figure 7. Example shifted boundary calculation. Left: true boundary with background mesh and surrogate domain. Middle: discrete
distance field. Right: SBM solution.
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Anderson et al., 2020a). In this section we review recent
progress in MFEM’s mesh optimization algorithms and
describe the addition of submesh capabilities for multi-
domain problems.

4.1. High-order mesh optimization

The high-order mesh optimization framework in MFEM is
based on the Target-Matrix Optimization Paradigm
(TMOP). This framework enables precise control over local
mesh quality, inferred through the local Jacobian Ad×d of the
transformation from the reference to physical space coor-
dinates, while still optimizing the mesh globally.

The first step with TMOP is to define a target trans-
formation matrixWd×d analogous to A. Construction ofW is
typically driven by the fact that any Jacobian matrix can be
composed as a function of four fundamental geometric
properties:

Wd×d ¼ ζ|{z}
½size�

Rd × d|ffl{zffl}
½rotation�

Qd × d|fflffl{zfflffl}
½skewness�

Dd × d|fflffl{zfflffl}
½aspectratio�

(1)

namely size/volume, rotation, skewness, and aspect-ratio. In
general, each of the components of W in (1) can vary
spatially based on the desired properties at each point in the
mesh. A detailed description of target construction proce-
dure is provided in Knupp (2019).

With the target transformationW defined, a mesh quality
metric, μ(T), T = AW�1, is used to measure the difference
between the transformations A andW. Mesh quality metrics
are categorized based on the geometric parameters they
depend on. For example, shape metrics μSh depend on the
element skewness and aspect-ratio, size metrics μSz depend
on the element size. There are also composite metrics that
depend on some combination of the four parameters (e.g.,
μShSz and μShSzOr). In practice, the user defines W and
chooses a mesh quality metric based on the geometric
properties they wish to optimize.

The quality metric μ(T) is used to define the TMOP
objective function

FðxÞ ¼
X
E2M

Z
Et

μðTðxÞÞ dxt (2)

where Et is the target element determined by W, and dxt
denotes integration over the target element. Optimal node
locations are determined using Newton’s method by solving
∂F(x)/∂x = 0. Note that since (2) can be represented solely in
terms of finite element operations, it extends to all element
types (quadrilaterals, hexahedra, simplices, pyramids) in 2D
and 3D, supports h/p -refined meshes, and can leverage
advances in finite element assembly technique targeting
GPU acceleration.

The effectiveness of TMOP for mesh quality improve-
ment largely depends on the prescribed target and the mesh
quality metric, and we have advanced the state-of-the-art in
each of these areas. We have developed approaches for
automated target construction for different mesh adaptivity
goals (Knupp, 2019; Dobrev et al., 2020, 2021). For general
mesh quality improvement, the target geometric properties
are set based on the ideal element type (e.g., cube or regular
tetrahedron). For simulation-driven optimization, the dis-
crete solution or a derived quantity (e.g., error estimate) is
used to set the target geometric properties. Figure 9 shows
an example of simulation-driven adaptivity where a uniform
mesh is morphed to adapt its shape and size with respect to a
scalar solution and its size and orientation for a vector
solution.

We have also analyzed the theoretical properties of
different mesh quality metrics in recent work (Knupp, 2020,
2023) to identify well posed metrics of different types.
Compound metrics of the form μShSz = μSh + γμSz, γ2R

þ are
effective for simulation-driven optimization, but require
tuning γ on a case-by-case basis as its subcomponents may
scale differently with mesh distortion. We have studied the
asymptotic properties of different compound metrics to

Figure 8. Finite element operators, Ap, have a natural decomposition, Ap = PTGTBTDBGP, which exposes multi-level parallelism and
allows for AD-friendly, matrix-free, memory-efficient implementations that assemble and store only the innermost, pointwise
operator component (partial assembly, c.f. Anderson et al. 2020a).
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address this issue. We have also developed new asymp-
totically balanced compound metrics of the form

μShSz ¼ μαSh þ λμβSz, fα, βg2R
þ, that are balanced for a

prescribed range of λ (Dobrev et al., 2024). These com-
pound metrics have been impactful for shape and size
adaptivity in arbitrary Lagrangian-Eulerian (ALE) simula-
tions (cf. Anderson et al., 2018; 2020b), without requiring
user intervention; see Figure 10 for an example. Finally, we
have also developed new mesh quality metrics that can
simultaneously untangle the mesh and improve worst ele-
ment quality. These metrics are crucial for problems with
severe or localized mesh distortion.

In recent work, we have augmented the TMOP-based
formulation with a penalization term to weakly enforce
alignment of a selected set of mesh nodes with an implicit
surface, while simultaneously optimizing the mesh quality
(Barrera et al., 2023). This formulation requires that the
target surface be prescribed as the zero isocontour of a
smooth discrete level-set function, which is often the case
for representing interfaces in multimaterial configurations
and evolving geometries in shape and topology optimiza-
tion. The modified objective function is

FðxÞ ¼
X
E 2M

Z
Et

μðTðxÞÞdxt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Fμ

þwσ

X
s2 S

σ2ðxsÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Fσ

(3)

Here, Fμ is the mesh quality term, and Fσ is a penalty term
that depends on the penalization weight wσ, the set of mesh
nodes S to be aligned to the level set, and the level set
function σ(x) evaluated at the positions xs of all nodes s2S.
This formulation has proven to be robust at obtaining body-
fitted meshes for complex curvilinear domains, and is
helping circumvent the bottleneck of high-order mesh
generation; see Figures 11 and 12. We have further aug-
mented this formulation with MFEM’s p-adaptivity
framework to obtain mixed-order meshes, such that
high-order elements are only used adjacent to regions of

high-curvature in the target surface. This rp-adaptivity
approach has proven to be robust at obtaining mixed-
order meshes with same geometric accuracy at a lower
computational cost in comparison to a constant-order mesh
(Mittal et al., 2024).

Finally, to support MFEM-based applications that lever-
age GPUs, we have implemented TMOP-related operators
with sum-factorization and partial assembly (Camier et al.,
2023). This includes new GPU kernels for evaluating the
TMOP objective function (2) along with its first and second-
derivatives, and a Jacobi preconditioner for accelerating the
Newton solve. Use of sum-factorization and partial assembly
on GPUs has significantly reduced the time for Newton solve
in comparison to the traditional fully assembled matrix-based
techniques on CPUs. Table 1 and Figure 13 show results for
the total mesh optimization time on GPU and CPU from a
benchmark problem in Camier et al. (2023).

The use of TMOP algorithms is demonstrated in the
Mesh Optimizer and Mesh Fitting miniapps, which use the
core TMOP functions for CPUs GPUs.

4.2. Submesh interface

A recent addition to MFEM is its submesh interface, which
allows applications to define a mesh that represents a subset

Figure 9. Simulation-driven adaptivity to morph a uniform mesh (left) for shape and size adaptivity using a scalar solution (center) and
size and orientation adaptivity using a vector solution (right).

Figure 10. Shape and size optimization for a 2D shaped charge
simulation using an asymptotically balanced compound metric,
μShSz = μSh + 3/2μSz (Dobrev et al., 2024).
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of a parent mesh. Subsets can be formed from volume
elements or boundary elements, creating domain or surface
meshes, respectively. A submesh is a fully functional
MFEMmesh, and so all of MFEM’s existing machinery can
be used on one or multiple submeshes. Furthermore, MFEM
provides the ability to transfer grid functions between a
parent mesh and its submeshes or between submeshes that
share the same parent Mesh. Let SAP denote the operator that
extracts a submesh grid function uA from the parent grid
function up, such that uA ¼ SAPup. We can use this operator
to also extend submesh grid functions to the full mesh and to
exchange data between submeshes. See Figure 14 for an
illustration. This concept can be used to express multi-
physics problems in a straightforward way in MFEM.
Another use case for submesh capability is the restriction of

operations that compute quantities of interest to specific
parts of the domain.

The Multidomain miniapp in MFEM is a simple dem-
onstration of how to solve two PDEs, each representing
different physics, on the same domain. MFEM’s submesh
interface is used to compute on and transfer between the
spaces of predefined parts of the domain. In this miniapp,
the spaces on each domain are using the same orderH1 finite
elements; this is not a requirement, and submesh easily
handles different finite element spaces on different domains.
A 3D domain comprised of an outer box with a cylinder
shaped inside is used. A heat equation is described on the
outer box domain

∂T
∂t

¼ κ=2T in outer box,

T ¼ Twall on outside wall,

=T � n!¼ 0 on inside ðcylinderÞ wall
with temperature T, outward unit normal n! and coef-

ficient κ. A convection-diffusion equation is described in-
side the cylinder domain

∂T
∂t

¼ κ=2T � α= �
�
b
!
T
�

in inner cylinder,

T ¼ Twall on cylinder wall,

=T � n!¼ 0 else

with temperature T, outward unit normal n!, coefficients

κ, α and prescribed velocity profile b
!
. To couple the so-

lutions of both equations, a segregated solve with a one way
coupling approach is used. The heat equation of the outer
box is solved from the time step Tbox(t) to Tbox(t + dt). Then,
for the convection-diffusion equation, Twall is set to Tbox(t +
dt) and the equation is solved for T(t + dt), resulting in a first-
order one-way coupling. A visualized result can be seen in
Figure 15.

Figure 11. Discrete function along with its zero isosurface representing a 3D curvilinear surface (left). Initial uniform hex mesh (center)
morphed to align with the target surface (right).

Figure 12. Left panel: topology optimized cantilever beam where
the surface fitting formulation is used to obtain a body-fitted
mesh at each TO iteration. Right panel: rp-refined body-fitted
mesh for a 2D version of the Apollo capsule. Different colors
represent different polynomial orders.

Table 1. Comparison of total time for mesh optimization for
meshes of different orders (p).

Time to mesh optimization (sec.)

p = 1 p = 2 p = 3 p = 4

CPU 18.8 43.0 129.6 224.3
GPU 0.4 1.0 3.9 7.5
Speedup 47× 43× 33× 30×
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5. Applications

The modular structure of MFEM allows it to powers a wide
variety of applications in areas such as compressible and
incompressible flow, electromagnetics, magnetic and

inertial confinement fusion, additive manufacturing, to-
pology optimization, structural mechanics, subsurface flow,
hearth and MRI modeling and more, (see Anderson et al.,
2020a). To aid with the development of new applications, a
large number of examples and miniapps are included with
the library. In this section we review some recent MFEM
examples, miniapps and application and describe the
PyMFEM interface which allows Python users to take full
advantage of MFEM’s capabilities.

5.1. Random fields and fractional stochastic PDEs

MFEM’s modular and performant implementation enables
the design of fast and scalable solvers for fractional and
stochastic PDEs. Such equations arise naturally in the
context of random fields, which are frequently used to
model spatially correlated uncertainties in computational
science and engineering applications.

Whittle (1954, 1963) first realized that the solution of the
stochastic, fractional PDE

ð�Δþ κÞα=2u ¼ W in V (6)

is a Gaussian random field of Matérn covariance. Here, W
denotes spatial Gaussian white noise, while the fractional
exponent α > dim(V)/2 and the parameter κ ≥ 0 define the
regularity and correlation length, respectively. Lindgren
et al. (2011, 2022) later popularized using finite elements
to solve (6), calling the approach the SPDE method.

The SPDE miniapp provides a scalable solver for (6). It
uses a new implementation of the white noise sampling
proposed in Croci et al. (2018) to handle the stochastic load.
It further employs the triple-A algorithm (Nakatsukasa
et al., 2018) to construct a rational approximation of the
fractional PDE by a set of integer-order PDEs (Harizanov
and Margenov, 2018; Bolin and Kirchner, 2019). The solver

Figure 13. Throughput for action of the TMOP Hessian ∂2F (left panel) and strong-scaling of the total time for mesh optimization on
GPUs (right panel).

Figure 14. Tree structure showing two submeshes which are
derived from the same parent and share a boundary. Operations
that transfer grid functions between the different submeshes are
also illustrated.

Figure 15. Simulation result of first-order coupling between a
heat equation and a convection-diffusion equation on
submeshes sharing boundary conditions.
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avoids repeated matrix assemblies and solves the associated
linear systems with a preconditioned conjugate-gradient
algorithm. The full numerical scheme is described in
Duswald et al. (2024).

The SPDE-solver is easy to integrate into MFEM-
derived projects and may be used to model spatial uncer-
tainties with Matérn-type random fields by adding only two
lines of code. The fields subsequently enter into PDE co-
efficients, the load, or even distort the domain to describe
different types of uncertainties (e.g., material, geometric, or
environmental uncertainties). Typically, the mathematical
model, together with their uncertain SPDE components, is
embedded in workflows such as forward uncertainty
quantification problems or stochastic inverse problems.
Examples ranging from biomechanics to topology opti-
mization under uncertainties are presented in Duswald et al.
(2024); Bollapragada et al. (2023). Figure 16 shows a few
example applications.

5.2. Hyperbolic conservation laws

A new nonlinear integrator for a general system of first-
order hyperbolic conservation laws has been introduced.
This integrator implements the element-wise weak diver-
gence and the interface flux,

X
E2M

Z
E

FðuÞ :=v dx,
X
e2E

Z
e

bFðne; u
±Þ � ½ ½v� � dx

where F is the flux function, and bF is the numerical flux
function defined on element interfaces. To implement a
specific system, users can create a derived class that pro-
vides the action of the flux function. The user also specifies
the choice of numerical flux function bF. The Rusanov (local
Lax–Friedrichs) flux is provided by MFEM, but other
choices of (approximate) Riemann solvers are straightfor-
ward to implement by the user. These new capabilities are
illustrated for the Euler equations of gas dynamics in an
updated example included with MFEM (example 18).

Figure 17 depicts a snapshot of a solution to the shallow
water equations computed using the new integrator.

5.3. High-order ALE

Multi-physics Arbitrary Lagrangian-Eulerian (ALE) ap-
plications, such as LLNL’s MARBL code (Anderson et al.,
2020b), are particularly well-suited for using MFEM. One
miniapp developed as part of the MARBL/MFEM col-
laboration is the Remhos2 miniapps. Remhos solves the
advection equations that are used to perform monotonic and
conservative discontinuous field interpolation (remap) as
part of the Eulerian phase in ALE simulations (Anderson
et al., 2015, 2017; Hajduk et al., 2020a,b), see left plot of
Figure 18. The team also continued its research in La-
grangian compressible hydrodynamics through the Laghos
miniapp [Laghos] (Laghos, 2024). Namely, a novel Nitsche-
type approach to weakly enforce free-slip wall boundary
conditions on curved boundaries was developed (see
Atallah et al., 2023b and Figure 18). Furthermore, a
weighted Shifted Interface Method (WSIM) was developed,
a new immersed method for maintaining exact represen-
tation of curved interfaces on high-order Lagrangian grids
(Atallah et al., 2023a).

LLNL’s MARBL code (Anderson et al., 2020b), a
performance-portable multiphysics application built on
high-order finite elements, has consistently been on the
forefront of leveraging the latest numerical and algorithmic
advancements in MFEM. Recognizing the performance
advantages offered by matrix-free methods, MARBL has
integrated the latest matrix-free algorithms from Laghos,
Remhos, and TMOP to enhance its Lagrange, remap, and
mesh optimization phases, respectively. Moreover,
MARBL has leveraged the work of Pazner et al. (2024) to
implement a matrix-free, GPU-accelerated linear solver
employing the saddle-point formulation for solving radia-
tion diffusion equations (Stitt et al., 2024). These are some
of the essential building blocks that have enabled MARBL

Figure 16. Applications of random fields and the SPDE miniapp. (left) Octet-truss: modeling uncertainties in additive manufacturing.
(right) 3D-bridge structure: optimal topology to support an uncertain load (Duswald et al., 2024).
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to perform fully matrix-free GPU-enabled practical ALE
simulations of multi-material shock and radiation hydro-
dynamics, like the ones shown in Figure 19.

5.4. Electromagnetics applications

A range of computational electromagnetics applications
have been built using MFEM, benefiting from the library’s

support for adaptive mesh refinement, advanced dis-
cretizations, and scalable solvers.

One such application is Petra-M (Physics Equation
Translator for MFEM). Petra-M is an open source GUI
platform for the finite element method (Shiraiwa et al.,
2017) developed under the Scientific Discovery through
Advanced Computing Partnership (SciDAC) program for
radio-frequency (RF) wave simulation in fusion plasma
(see Figure 20). Petra-M uses MFEM (through the
PyMFEM Python interface described in the following
section) for its discretization framework and interface to
linear solvers. Its weak form interface allows for the
construction of complicated linear system for multiphysics
and multidomain problems by selecting MFEM’s linear
and bilinear form integrators. Petra-M’s GUI interface
allows users to build RF simulation using MFEM, and
extending Maxwell’s system of equations to develop new
implementations of physics models, such as radio-
frequency sheath (Shiraiwa et al., 2023), without signifi-
cant coding efforts. MFEM’s efficient high order dis-
cretization allows for the inclusion of the complete 3D
magnetic fusion plasmas in RF wave simulations (Bertelli
et al., 2022).

Figure 17. The height of a shallow water wave on a periodic
square domain. Initial conditions given by a Gaussian bump.

Figure 18. Left: remap computation in Remhos. Right: simulation of explosion inside a cube with a spherical hole in Laghos.

Figure 19. Examples of multi-material ALE simulations in MARBL: BRL81a shaped charge simulation (left) and radiation-driven Kelvin-
Helmholtz instability (right).
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A closely related SciDAC effort is in the process of
developing an MFEM-based fluid transport application,
called MAPS (MFEM Anisotropic Plasma Solver), to
simulate the neutrals, ions, and electrons which make up a
fusion plasma. MAPS is designed to be coupled with an RF
simulator similar to that explored with Petra-M. This
coupling will introduce RF heating and pondermotive
forces into the fluid equations as well as providing the RF
simulator with realistic temperature and density profiles
needed to accurately determine the dielectric tensor in
Maxwell’s equations. Building upon MFEM as a common
code base in these two simulation modules will be crucial
for efficiently exchanging accurate field information be-
tween these coupled physics models.

MFEM is also the discretization framework for the
Palace (Palace, 2023)3 finite element code developed by the
Design and Simulation group of the AWS Center for
Quantum Computing. Palace is used for performing large-
scale, full-wave electromagnetic simulations in both fre-
quency and time domain and makes extensive use of
MFEM’s solvers, discretizations, and adaptive mesh re-
finement capabilities. Palace also uses the libCEED library
for performance-portable linear algebra (Brown et al.,
2021); libCEED is one of several runtime-configurable
backends that MFEM can target for its partial assembly
functionality.

5.5. Python interface (PyMFEM)

MFEM applications can be written using the PyMFEM
Python interface, in addition to the traditional C++ library
API. Python is a high-level, easy-to-use programming
language, widely adopted in educational contexts, and
among data scientists and domain scientists. The devel-
opment of PyMFEM was initiated to make the MFEM
technology more approachable for this broad range of
potential users. In the educational context, PyMFEM allows

for the integration of MFEM and its in situ visualization tool
GLVis into interactive Jupyter notebooks.

PyMFEM facilitates the construction and direct access of
MFEM data structure and objects from within Python. In the
current PyMFEM release, all of the included MFEM ex-
ample programs are translated into Python. The PyMFEM
uses Simple Wrapper Interface Generator (SWIG) for code
generation. The SWIG wrapper recipe files are heavily
customized so that a user can interact with MFEM in Python
native ways.

PyMFEM also supports using Numba just-in-time
compiled Python functions for variable coefficients used
in MFEM integrators (Lam et al., 2015). This is achieved by
decorating a Python function with @mfem.jit. Numba-
based coefficients can have dependencies on other coeffi-
cients, including MFEM’s native coefficients such as
GridFunction coefficients, providing a flexible framework
for define complex variable coefficients. The following
short snippet illustrates how such coefficients can be
defined.

6. Conclusions

In this paper we provided a brief summary of some of the
recent research, development, and advancements in the
open-source MFEM finite element library. These include
state-of-the-art performance on GPU-based super-
computing architectures, high-performance mesh adapta-
tion and optimization, automatic differentiation, support for

Figure 20. Example of RF wave simulations in plasmas. High harmonic fast wave propagation in the NSTX-U spherical tokamak (left),
and ion cyclotron radio-frequency waves excited in the Alcator C-Mod tokamak (right).

16 The International Journal of High Performance Computing Applications 0(0)



non-standard discretizations, among many others. Such
features allow MFEM to power a large number of com-
putational physics and engineering applications in areas
such as computational electromagnetics, fractional sto-
chastic PDEs, topology optimization, compressible flow,
and more. Further development and improvements to
MFEM, including performance optimizations, new dis-
cretizations and numerical methods, solvers and pre-
conditioners, miniapps and examples, are continuously
underway.
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