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An Introduction to Nanomaterials for Nanopackaging 
 

James E. Morris, Fellow, IEEE 
 

Abstract— The multiple purposes of an electronics “package” 

include the provision of mechanical support to the silicon chip, 

for example, and protection from the environment, the delivery 

of power in and the facilitation of heat out, and the reliable input 

and output of information signals, whether electrical or optical. 

In the age of heterogeneous integration, this includes the internal 

conversion of signal modes between multiple technologies within 

the package, while maintaining the traditional requirement of 

reliable information transmission between packages, e.g., on a 

traditional circuit board. This article presents some selected 

examples of nanopackaging, i.e., the application of 

nanotechnologies, (nanoparticles, carbon nanotubes and 

graphene here,) to electronics packaging. 

 
Index Terms—Carbon nanotubes, CNTs, graphene, 

nanopackaging, nanoparticles.  

 

I. INTRODUCTION 

MAPS defines electronics packaging as “Everything in 

electronics between the chip and the system,” but the term 

is usually applied to all technologies involved in the 

encapsulation of chips (1st level) and their subsequent 

assembly into board level systems (2nd level.) Over the years, 

the field has morphed from the materials reliability issues of 

glass/metal seals in vacuum tubes, to ceramic and plastic dual 

in-line encapsulation, to 2.5D chiplet redistribution, and from 

wire-bond interconnect to flip-chips. Currently, the industry is 

facing the challenges of the heterogeneous integration of 

multiple technologies and functions into a single package and 

the evolution of the “2.5D” redistribution technology into true 

3D interconnections which require through silicon vias 

(TSVs), but with ever increasing on-chip device densities and 

clock frequencies, thermal dissipation remains packaging’s 

biggest problem, as it was for vacuum tubes. It has been said 

that “All electronics problems are materials problems” [1] and 

so the industry’s integration of nanotechnologies is primarily 

in advanced materials. 

II. NANOPARTICLES 

Most applications of nanoparticles are based on their high 

surface-to-volume ratios (S/V) and the greater chemical 

reactivity of the dangling surface bonds, which translates for 

example into increased metal-to-polymer or metal-to-ceramic 

bonding strengths in nanocomposites in comparison to micro-

composites. In addition, nanoparticles are more likely to be 

single-crystal and therefore inherently stronger than 
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polycrystalline microparticles. The weaker bonding of the 

surface atoms to the internal lattice facilitates their surface 

diffusion and nanoparticle sintering [2,3]. It also accounts for 

the melting point (MP) depression observed in metallic 

nanoparticles [4], but note that the normalized curves of 

nanoparticle melting points versus size show that the effect is 

less than often assumed in the literature, with an approximate 

rule-of-thumb that 5nm radius particles are required for a 5% 

reduction from the absolute bulk value, e.g., from 490K to 

465.5K (192.5°C) for no-Pb solder [5]. Of course, the 

coalescence of multiple solder nanoparticles into a continuous 

bulk MP film following lower temperature melting is 

necessary to take advantage of MP depression, and the 

dynamics of this process presents challenges. However, MP 

depression follows the same pattern for nanowires based on 

the nanowire radius as for nanoparticle radii, and two 

nanowires can be successfully soldered in this way [6]. In fact, 

most of the “nano-solder” papers in the literature are based on 

nanoparticle sintering rather than MP depression, and more 

likely for Cu interconnections than solder [7]. The difference 

in melting and sintering is that the internal lattice structure 

must be destroyed and reconstituted in the former whereas 

sintering is primarily due to surface diffusion even at ambient 

temperatures, with a sintering time, t, relationship with the 

particle radius, R, and neck radius, X, of   [8] or 

approximately  if  So in the move from the micro 

to nano scales, particle sintering can apparently be 

accomplished 1012 times faster.  

Metallic nanoparticle lines can be deposited on circuit board 

substrates by ultrasonic or pressure driven print heads for 

subsequent oven or laser sintering into electrical interconnect 

[9] but it has been shown that polymer coated Ag 

nanoparticles can be completely sintered within one hour of 

being dipped in methanol [10]. In developing an 

undergraduate lab experiment, the author found that the 

resistivity of a Ag nanoparticle suspension abruptly drops 

within a few minutes of the addition of water, methanol, or 

ethanol as appropriate for the removal of the polymer coating 

which is necessary to prevent premature coalescence. 

Notwithstanding that sintering of such nanoparticle films can 

be accomplished at room temperature, sintering is faster and 

the resistivity lower at higher temperatures due to faster 

diffusion and lower porosities [9-11]. The grain size, film 

density and conductivity can all be raised by subsequent 

annealing. 

Ag nanoparticles can also be added to isotropic conductive 

adhesives (ICAs) which are typically comprised of bimodal 

distributions of Ag flakes and powder (spheres) in an epoxy 

composite. The primary benefit was originally seen to be a 

reduction of the conductivity percolation threshold since the 

I 
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functional ICA resistivity increased [12]. In fact, past the 

percolation threshold, it can be shown that the Ag added as 

nanoparticles, e.g., by precipitation from AgNO3, would have 

been more effective in resistivity reduction if it was added as 

additional flakes [13]. This effect was attributed to increased 

numbers of contacts along the percolation paths and reduced 

electron mean free paths within the nanoparticles, but in 

addition the reason Ag is used in ICAs is that it forms a 

conducting oxide layer on the surface which resists further 

oxidation and sintering. With the addition of suitable 

surfactants, the nanoparticles provide a sintering role between 

the flake and powder components and significantly reduce the 

ICA resistivity [14]. A further dramatic resistivity has been 

demonstrated by the use of sintered nanoscale dendritic Ag 

particles instead of flakes [15]. 

A recent packaging trend has been to get discrete passive 

components off the circuit board surface by embedding them 

inside to provide more surface space for the active silicon 

components. Thin film cermet (ceramic/metal) resistors have 

been utilized for decades, balancing the positive temperature 

coefficient of resistance (TCR) of the continuous metallic 

paths with the negative TCR of electrostatically activated 

tunneling mechanism of the nanoscale metal islands. For 

power-supply, very high dielectric constant (~2000) capacitors 

have been fabricated as Ag/epoxy composites, (with the Ag 

precipitated in situ from AgNO3,) with the Ag nanoparticles 

acting as Coulomb blocks to limit DC conduction at low fields 

[16]. But this is actually a low-density cermet structure and 

suffers from very high dielectric loss (≤1.0). Nanodielectrics 

can also achieve stable RF capacitors. One such  approach is 

to stack two nanoscale thin films of positive and negative 

temperature coefficients of capacitance (TCCs), with 

thicknesses and areas di and Ai (i=1,2) with series capacitance 

                                                                                         

and zero TCC if 

, 

where εi are the dielectric constants [17]. For embedded 

inductances and transformers, we need high permeability and 

low coercivity, which are normally mutually exclusive, but 

can be obtained simultaneously with grains or nanoparticles 

less than 10nm in size [18] that need to exchange-coupled to 

each other to retain high permeability, while also being in 

thinfilm format to suppress eddy currents.  

The study of reliability pervades the electronics packaging 

literature, from basic theory to modeling to testing to design 

strategies. Piezoresistive Si strain sensors, for example, have 

been integrated into test packages to monitor 

thermomechanical stress fields [19], but nanosensors offer 

much greater sensitivity through the exponential dependence 

of quantum-mechanical tunneling currents on gap widths [20].  

Such sensors could take the form of ultrathin films of discrete 

metal nanoparticles [21] or single electron transistors. The 

modulation of the tunneling gap width can also be employed 

for the detection of H2 as a byproduct of galvanic corrosion in 

such films of Pd nanoparticles, which expand as they absorb 

H2, increasing the inter-particle tunneling current [21-26].  

It is worth noting in passing that the addition of TiO2 

nanoparticles reduces the formation of brittle Cu6Sn5 

intermetallic compounds in Sn0.7Cu solder, and reduces the 

contact angle, and hence increases adhesion to the Cu 

substrate for Sn3.5Ag0.5Cu [27]. 

III. CARBON NANOTUBES (CNTS) 

Following on from the last item, single-wall CNTs 

(SWNTs) in the grain boundaries have been shown to improve 

multiple properties of both eutectic Sn-Pb and Pb-free solders, 

by varying amounts depending on the specific property, 

typically 10-30% but significantly more (6x) for the no-Pb 

creep rupture times, and ~20% for the no-Pb contact angle 

[28]. Multi-wall CNTs (MWNTs) have been similarly found 

to decrease the contact angles for no-Pb solders by ~15%. 

CNTs have the reputation of better electrical conductivity than 

more conventional materials by virtue of their high electron 

mobility, (around 70x that of Si,) and electron mean free path 

(mfp ~1-3µm), but in many interconnect applications care 

must be taken that the CNTs have open ends for effective 

electrical contact, roughly halving via resistances after steam 

or plasma processing [29]. For the CNT to have a conductance 

advantage over Cu or Ag, for example, the length in question 

must be greater than the electron mfp in the metal before the 

larger CNT mfp becomes significant. So CNTs are generally 

only seen to be advantageous over longer lengths ≥1µm, i.e., 

typically for power delivery rather than for signals or in 

through-Si vias (TSVs.) However, this judgment is usually 

based on dc comparisons and for high frequency signals, 

≥1GHz say, skin effect comes into play and although the metal 

inductance goes down, the dominant effect is the resistance 

increase with frequency [30]. In many cases, the advantage of 

CNTs over Cu is the greater maximum current limit (~1000x) 

which means no electromigration issues, a growing problem 

for microelectronics interconnect, and suggests the use of 

CNT bundles for contact bumps, (with the added advantage of 

flexibility) [31]. CNT TSVs have been demonstrated [32-33] 

and modeled [34]. Another under-appreciated property of 

CNTs is the negative coefficient of thermal expansion (CTE) 

at around 300K [35]. With almost all packaging materials, 

polymers, ceramics, and metals, having significantly higher 

CTEs, the mechanical reliability issues at high temperatures 

are almost all driven by CTE mismatch which CNT 

composites can reduce, in Cu/CNT composite TSVs in 

particular [36]. A particular Cu-TSV CTE mismatch problem 

is the extrusion of Cu from the TSV due to its higher CTE 

than Si’s, and it has been shown that a 29% aligned CNT 

content can completely match the Cu-CNT axial CTE to Si to 

zero out this Cu pumping [37]. CNTs added to Cu 

interconnect lines can also reduce electromigration 

significantly [38] and CNT antennas are being studied for 

interchip communication within the package at up to tens of 

THz [39].  

Another well-known CNT property, in addition to high 

mechanical strength and electrical conductivity, is high 

thermal conductivity, which suggests that aligned SWNTs 

offer the best option for an order of magnitude improvement 

in thermal dissipation over the best conventional alternatives 
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[40]. CNT bundles have been organized into columns 

separated by cooling fluid channels in a microstructure 

reminiscent of a traditional Cu-fin heat sink [41]. The problem 

is that while heat transfer from the CNTs adjacent to the 

channels is effective, the thermal transfer between internal 

CNTs in the fins is not. This problem can be solved by the 

lateral growth of secondary CNTs on the primary vertical 

CNTs, providing effective 3D heat transfer [42]. 

IV. GRAPHENE 

CNTs are rolled up tubes of graphene, which was 

discovered much later. Graphene is also the fundamental 

component of graphite, the electronic properties of all three 

being governed by their sp2 electron configuration. The single 

atomic layer graphene displays similar thermal conductivity as 

CNTs, but in 2D rather than 1D, and it is interesting to 

compare the thermal properties of graphite, graphene and 

CNTs with the sp3 allotrope diamond [43]. Of particular note 

is that the 3000-5000 W/m.K figures often cited for 

graphene’s thermal conductivity are only valid for a single one 

atom thick layer, and that every additional layer decreases the 

conductivity until it equals the thermal conductivity of high-

quality graphite at 4 layers thick, and further degrades to the 

thermal conductivity of “regular” graphite at around ten layers 

[43]. The 2D form lends itself to heat spreader applications for 

hot spot mitigation on IC surfaces. Of the different heat 

spreader configurations compared, compression nearly 

doubles the thermal conductivity of laminated graphene flakes 

[44], while “few-layer” graphene beats CNT/polymer 

composites [45].  

Of course, graphene is also highly conductive and the van 

der Waals forces between adjacent graphene layers in a stack 

that degrade the single layer properties can be defeated by 

intervening layers of FeCl3 or other materials, permitting 

multi-layer graphene interconnects to act as single layers in 

parallel. The vision is to combine graphene nanoribbon 

interconnects with CNT TSVs in all-carbon electrical and 

thermal networks with the ultimate goal of integrating such a 

system with CNT FET logic. 

IV. SUMMARY 

Advances in packaging are predominantly driven by new 

materials with superior properties. Nanomaterials have 

enabled several such advances in high-performance 

interconnections, reliable encapsulants, improvements in 

processability, advanced dielectrics, new modalities of sensing 

functions, and new classes of thermal materials. This paper 

highlights the key classes of nanomaterials, viz., nanoparticles, 

nanowires and graphene, as the exemplary 2D material, and 

their roles in nanopackaging. While electrical interconnect 

performance has been described in this paper, these 

advantages extend to other functions such as magnetic 

properties, charge storage in capacitors, electromagnetic 

properties as metasurfaces and other domains, as described in 

the other papers of this special issue.  
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