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Abstract: A comprehensive analysis and simulation of two memristor-based neuromorphic archi-
tectures for nuclear radiation detection is presented. Both scalable architectures retrofit a locally
competitive algorithm to solve overcomplete sparse approximation problems by harnessing memris-
tor crossbar execution of vector–matrix multiplications. The proposed systems demonstrate excellent
accuracy and throughput while consuming minimal energy for radionuclide detection. To ensure that
the simulation results of our proposed hardware are realistic, the memristor parameters are chosen
from our own fabricated memristor devices. Based on these results, we conclude that memristor-based
computing is the preeminent technology for a radiation detection platform.

Keywords: neuromorphic computing; memristor arrays; radionuclide detection; radioisotope classifi-
cation; source localization

1. Introduction

Recent advances in neuromorphic computing (NC) facilitate the creation of massive
brain-like parallel neural network (NN) computing systems. NC architectures, inspired
by mammalian neuronal processes, can achieve classification tasks while consuming less
energy than conventional computing systems [1,2]. In the past, NC has already achieved
complex tasks like image and signal processing. Other applications include navigation,
voice processing, and robot control. However, to the best of our knowledge, NC radionu-
clide detection has seldom been explored, despite the remarkable energy optimizations it
would entail. A radiation detection sensor extracts the energy spectrum of the radionuclide
radiation and compares it against a set of well-known radioactive materials. An applica-
tion of a radiation detection sensor could be to measure and detect radiation in research
equipment, such as X-ray diffraction (XRD) tools. Some radiation detection NN algorithms
have emerged [3,4]. However, compelling NC architectures are yet to be designed. Based
on our two proposed radionuclide identification NC architectures, we have determined
that memristor-based computing is the preeminent choice for such a radiation detection
hardware device.

Unconventional NC architectures could harness the memristor’s intrinsic computation
dynamics to produce faster, cheaper, and more energy-efficient detection platforms [5,6].
Memristors have been applied for large random assembly networks [7,8]. Memristor-based
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systems with random or ordered networks have also executed simple pattern-classifying
problems [9]. Moreover, NC system variation tolerance and parallel processing make
memristor implementations suitable for radionuclide detection [10–12].

Our proposed memristor-based architecture aims to improve detection by providing
single-chip bioinspired processing. The developed cross-point architectures allow for
parallelism, thus increasing computing speed and bypassing the von Neuman bottleneck.

In addition to memristors, researchers have been demonstrating neuromorphic archi-
tectures with various types of nonvolatile memory (NVM) devices, such as floating gate
transistors [13], organic field effect transistors [14], and memcapacitors [15]. However, the
memristor’s real-time computing capabilities provide an advantage over other nonvolatile
memories (NVMs) due to their low-power operation, which is the result of lower para-
sitic capacitance and smaller footprint [16]. Exploiting the memristor’s inherent device
dynamics for intrinsic computation, certain tasks can be performed faster and more energy
efficiently than with other NVM-based conventional architectures. Moreover, reservoir
computing has lower learning complexity than traditional neural networks, because only
the output layer must be modified or trained, as opposed to the entire reservoir struc-
ture. This is true independent of the types of devices used in the reservoir. In addition,
memristor reconfigurability offers powerful self-healing properties that can protect against
radiation-induced upsets or transients.

Figure 1 shows a high-level sample diagram for our network, with the memristor
array as the reservoir “computing core”. This network is applied to identify radionuclide
gamma-ray spectra. The system further establishes promising unconventional paradigms
for NC architectures.
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Figure 1. (Left) example device network; (Right) abstract computing setup using the device network
on the left as a reservoir [17].

2. Materials and Methods

A wide range of applications implement NNs [18]. The NNs’ power is their ability to
approximate arbitrary functions through a linear combination of weights and nonlinear
activation functions. NC exploits NN characteristics through the use of vector–matrix
multiplication (VMM) operations in the reservoir substrate. Our radiation detection system
uses a single-layer NN inference application with rectified linear unit (ReLU) thresholding
activation functions. Prior research by Li et al. implements multilayer neural networks
with memristors [19]. Also, Bala et al. show simulation results of memristor approximation
of the ReLU function [20]. It has been shown in [21] that a standard multilayer perceptron
(MLP) network produces lower performance than the locally competitive algorithm (LCA).
Therefore, our system’s NN is loosely based on Rozell’s LCA, an optimal solver for the
sparse coding problem, which has been shown to be a promising approach in classifica-
tion [22]. Mimicking the sparse neuronal activity in the mammalian primary visual cortex
(V1), the LCA implements a sparse coding computation principle that has been harnessed
to design our radiation detection system. The LCA implements local inhibition connections
in neurons. These inhibitory interneural connections enhance the learning algorithm in
NC hardware.
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In LCA dynamics, an mth neuron’s receptive field, Φm, contains a weight column vec-
tor that maps a particular dictionary class. In our system, each dictionary class corresponds
to a specific radionuclide spectrum. The row elements in Φm determine the sensitivity
to each interacting presynaptic neuron. The input excitation signal vector proceeding
from the presynaptic neurons is given by s(t), which contains sparse nonzero values. Each
postsynaptic mth neuron’s excitation, bm(t), is given by <Φm, s(t)>. Therefore, the strength
of bm(t) is proportional to the similarity of s(t) to that neuron’s receptive field Φm. Like in
biological neural networks, each artificial neuron in our system charges up before firing.
A time-varying internal state variable um(t) contains the neuron’s accumulated charge.
Then, a thresholding module monitors when the neuron’s um(t) exceeds the threshold level
Tλ to activate that neuron and produce an output signal am(t). The active neurons then
compete among themselves through inhibition signals, which are proportional to both the
activity level a(t) and the receptive field similarity of competing neurons Gm,n = <Φm, Φn>.
In summary, each neuron’s excitation dynamics is calculated by integrating a system of
nonlinear ordinary differential equations [22]:

.
um(t) =

1
τ

[
bm(t)− um(t)− ∑

m ̸=n
Gm,nan

]
(1)

The neuron(s) that best represent(s) the input signal will present fast-charging internal
states u(t), activating sooner and thus inhibiting the other slower-charging neurons. The
inhibitory connections across all output neurons achieve sparse activity.

3. Results

Considering the potential benefits of using sparse coding algorithms to develop
memristor-based reservoir computing systems, we present two architectures. While any
device allowing in situ modifiable resistances would suffice to implement the NC reser-
voir substrate, we use the in-house fabricated memristor devices for the system’s assess-
ment. Our analog and mixed-signal radionuclide identification architectures are described
in Sections 3.1 and 3.2, respectively. Details of the Al2O3/HfO2 memristor fabrication are
given in Section 3.3. The characterization of the fabricated devices is discussed in Section 3.4.
Finally, an expansion to radionuclide localization is presented in Section 3.5.

3.1. Analog Signal Architecture

Our first architecture described in [23] is expanded by implementing a memristor
crossbar as the computing substrate. This system executes the LCA dynamics by harnessing
the memristor’s long-term analog storage qualities. Figure 2 shows a simple block diagram
model of all the necessary circuit components used.

All synaptic connections between sensory inputs and the processing neurons in this
system are through the memristor crossbar dictionary Φ. The VMM operation in the
memristor crossbar supplies each postsynaptic neuronal initial excitation b(t). A correlation
matrix containing weights proportional to the similarity of each receptive field pair Gm,n
represents the inhibitory connections across all output neurons. Once the initial condition
is set, the iteration in Equation (1) converges into a solution that resembles the best match
to a set or combination of sets in the library.

The column header subcircuits accumulate and process the incoming currents to
achieve a leaky integrate-and-fire (LIF) behavior. Each column header subcircuit contains
an inverting amplifier for summation and scaling. Internal state capacitors model the
algorithm’s time-varying internal state u(t). A thresholding circuit Tλ obtains the final
activation function a(t). A second VMM between the correlation matrix Gm,n and the
column header outputs a(t) obtains the inhibition signal. The system offers a low-power
solution to the sparse approximation problem. However, energy efficiency diminishes
in larger systems due to the quadratic scaling of the number of circuit elements with the
number of elements in the database N.
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Figure 2. Block diagram of the LCA analog hardware circuit implementation [11]. The input s(t)
is a vector containing all the detector channel analog voltage signals. The crossbar contains the
neuronal receptive field weights Φ, mapped into each memristor state. The VMM determines the
initial activation b(t). An inverting amplifier operates as a virtual ground, which provides the sum
(∑) of the current contributions from each memristor. The internal state capacitances are given by
u(t). A thresholding module containing a differential amplifier provides the circuit output a(t), which
is then fed back through the interneuron connections G to determine the inhibition signals.

3.2. Mixed-Signal Spiking Architecture

Figure 3 shows a high-level block diagram of this architecture suggested by Woods et al. [20].
To reduce power consumption and achieve the linear scalability of circuit elements with
N, the system must calculate inhibition signals Ga(t) without using additional interneural
correlation Gm,n connection devices. Given that the analog signal architecture’s interneural
inhibition connections G are a function of the dictionary crossbar Φ, we propose a system
retrofit using simple spiking signals and a feedback path through Φ for inhibition signals.
Without extra hardware, this mixed-signal spiking architecture uses a running time fraction
to calculate inhibitory signals Ga(t). Using the same memristor synaptic connections Φ for
the forward system transmission, the scalability of the system becomes linear with N.
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Figure 3. High-level diagram for our mixed-signal spiking architecture. During inference, input
spikes pass through the presynaptic input neurons (Figure 4). Then, a signal is sent through the
nanowire crossbar, where current signals pass through each memristor cross-point to charge and
discharge the postsynaptic output neurons (Figure 5). When the output neurons fire, their spikes
are propagated back through the crossbar into input cells as inhibition signals that are weighted by
the memristor states. The control circuit monitors the output neurons to determine: “Is any neuron
firing?”. When any of the output cells are firing, the input cells accumulate inhibition charge through
feedback currents [17].
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Figure 4. Row circuit input cell. This sensory neuron receives the rate-encoded spike signal and the
control input Firing Any, where the bar means negation. The neuron contains an inhibition capacitor
Cinh, which charges when the cell’s signal is accurately represented in the system’s output. When
any of the output neurons are firing, the control signal permits the charging of the inhibition capacitor
through a feed backward path across the memristor array [17].
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Figure 5. Column circuit output cell. Incoming charge from the crossbar input (Cb) charges the
accumulating internal state capacitor Cst through the transmission gate. When the capacitor’s charge
surpasses a predetermined level, the operational thresholding circuit activates the cell and fires for a
time interval determined by the firing resistor Rf and capacitor Cf. The “Firing Self” outputs of all
the system’s column neurons are sent to a NOR circuit (not shown) that determines the Firing Any
control signal, which determines if the memristors are conducting in feedforward (i.e., row cells
to column cells) or a feedback direction. The NOR circuit responds such that if there is any Firing
Self signal, then it will be considered and feedback direction. Otherwise, it will be considered as
feedforward [17].

When one of the system postsynaptic neuron capacitors u(t) charges above a certain
threshold Tλ, this neuron will activate the inhibition signal Gm,na(t) feedback path through
the same memristor receptive field crossbar-array column, Φfiring, it came from. The
activation spike signals a(t) pass current from the corresponding firing column, Φfiring,
through the crossbar array in a backward path. The inhibition amount of each input
signal depends on the firing neuron’s activation a(t). This current will therefore charge the
inhibition capacitors Cinh in the input row, effectively blocking their signal from affecting the
system. Cinh blocks the presynaptic cell from transmitting the input signal s(t) row elements
that are already accurately represented. The system then converges by suppressing the
overrepresented signal row elements.

Figures 4 and 5 depict the basic cells that construct our mixed-signal spiking neuro-
morphic system. Figure 4 contains the row circuit for each of the system’s input cells. It is
analogous to a sensory neuron in a biological system, where the rate of the spikes represents
the strength (weight) of the triggering signal. Figure 5 shows the column postsynaptic
neuron circuit, which involves the processing of logical neurons. Modeling the biological
cell, the column circuit cell must charge itself before firing. In a biological NN neuron,
the cell charges its body (or soma). In an artificial NN cell, a charging state capacitor u(t)
models this behavior. The neuron fires when its charge surpasses a certain threshold Tλ. In
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a biological cell, the axon hillock executes the thresholding, whereas in our artificial cell,
this operation is conducted by an unbalanced inverter.

The column circuit cell also contains a standard leaky integrate-and-fire (LIF) neuron
setup, with the state capacitor connected through a transmission gate to the crossbar array.
The transmission gate is analogous to the biological neuron’s somatic or dendritic cell
membrane, which regulates the transmitters entering the cell. A Schmitt trigger setup
allows enough firing time, such that the output state capacitor drains when the neuron
fires, resetting all the accumulated potentials in the system neurons. Additionally, a pull-
up transistor that sends the signal back to the crossbar array models the firing neuron’s
axonal inhibition signal transmission. Therefore, during each neuron firing, an inhibition
current flows back through the memristor into the row circuit cells. Since this charging
occurs through a feedback path, the inhibition current flowing back into each row circuit is
proportional to how well that row activated the firing column neuron.

The row circuit cell acts as the sensing neuron. It has a charging capacitor that
models the cell’s body. However, in this case, the cell is actively transmitting a signal
until it charges up with the inhibition signal blocking transmission. These row input cells
discharge whenever an input spike signal arrives and charge when an inhibition output
spike occurs. In other words, the inhibition capacitor charge models how much the output
represents the output. This capacitor increases its inhibition voltage with the actual activity
coming from the column cells through the crossbar junctions. The capacitor discharges
through an inhibition resistor. Basic simulation results for these subblocks are provided
in [24].

3.3. Al2O3/HfO2 ReRAM Crossbar Array Fabrication

The fabrication of bilayer Al2O3/HfO2 memristor crossbar arrays was performed
at the Center for Integrated Nanotechnologies (CINT), a user facility operated by the
Sandia National Laboratories and the Los Alamos National Laboratory. First, we applied
a hexamethyldisilazane (HMDS) coating and AZ 5214E photoresist to SiO2 over a Si
substrate. Then, to define the bottom electrode patterns, we exposed the sample with
405 nm wavelength light for 6 s at 120 nJ using the Heidelberg Instruments 150 Advanced
Maskless Aligner (MLA) optical lithography system. A Temescal FC-2000 metal evaporation
system was used to deposit the Ti/Pt bottom electrodes. Excess metal and photoresist were
removed using a liftoff process. Next, the samples were loaded into a Picosun SUNALE
R150 atomic layer deposition (ALD) reactor. A 2 nm thick film of Al2O3 was formed through
a stoichiometric process, using the chemical precursors trimethylaluminum and water at
250 ◦C. Subsequently, a HfO2 ultrathin film was formed using tetrakis (dimethylamido)
hafnium (IV) and water at 250 ◦C, based on Molina et al. [25]. When the HfO2 film reached
a 5 nm thickness, a blanket Ti/Pt layer was deposited using the metal evaporation system.
The samples were then spin-coated with AZ 5214E photoresist and patterned with the
MLA system a second time. Finally, the samples were mounted onto a carrier wafer, and
the excess Ti/Pt metal was removed using an ion mill for 5 min. The crossbar arrays
were wire-bonded to 44-pin LCC packages, the packages were sealed, and the arrays were
electrically characterized. Figure 6 shows the microscope image of the fabricated memristor
crossbar array, where the pads on the perimeter are used for electrical testing.
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3.4. Characterization of Al2O3/HfO2 ReRAM Devices

Our fabricated memristors are bipolar, where the memristances are changed by chang-
ing the bias polarity. An HP 4145B Semiconductor Parameter Analyzer was used to
characterize the memristor arrays. Figure 7 illustrates the results of iterative testing until
device cycle reliability was found. To avoid possible dielectric breakdown, the compli-
ance current was gradually increased from 10 µA to 50 µA. The steps to characterize the
memristor were:

1. Form Step: The voltage was incremented in 0.25–0.5 V steps until a low-resistance
pathway was formed, hitting a steady-state compliance current. We considered a
device to be open when it failed to hit the compliance current despite the voltage
being increased to 10 V.

2. Reset Step: Reverse bias voltage was applied using 0.5 V step decrements until the
high-resistance state remained stable. The compliance current was disabled, as the
current was throttled in a high-resistance state. However, a small risk of dielectric
breakdown remained if the device state failed to change.

3. Cycle Step: A compliance current was set, and the on/off voltage was adjusted to the
device switch values.
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To avoid sneak path currents during characterization, the unselected crossbar rows
and columns were electrically isolated by disconnecting relays on a custom-made testing
board. Additionally, all cycled devices were left in the OFF state (i.e., the high-resistance
state), such that the measured electric pathway corresponded solely to the tested device.

Figure 7 shows multiple I-V hysteresis curves for eight devices of a single column.
The characterization results in Figure 7a show the full hysteresis curves of the memristor
devices. All devices exhibited narrow hysteresis characteristics. The zoomed-in sections
of the I-V curves in Figure 7b show the voltages at which the memristors can operate in
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the inference mode. For better clarity, only devices 5, 6, and 7 are shown in this figure.
Notice that in the range from 50 mV to 100 mV, the memristors are usable for inference.
The memristor fabrication yield for our samples was approximately 27% because several
columns contained open-circuit line defects, likely due to metal trace discontinuities. In
addition, the ratio of the high resistance (HR) to low resistance (LR) of our devices at room
temperature was about 2×. Further refinement of the fabrication process will improve
the overall yield and quality of the memristor devices. In an industrial setting, where the
process variable is under better control using dedicated tools, the yield and device quality
are expected to be significantly better than our lab setting using the same fabrication process.

The devices were not experimentally characterized under radiation. As with any
electronics, we expect that intense gamma-ray radiation would create electron–hole pairs
and may cause charging [26]. The current design considerations are not for the devices to
be operated in a very intense field, such as in a very high contamination area or reactor
core, in which there is no problem in finding the radioactive material. Rather, this is for
low-energy, long-term remote detection and localization, which assumes lower-activity
sources or material concealed with shielding.

3.5. Programming the Radionuclide Detection Dictionary

Programming the crossbar structure to represent radionuclide spectra tailors the
system for detection tasks. We extracted 27 common radionuclides spectra, listed in Table 1,
from the Nuclear Wallet Cards [27] and created a radioisotope dictionary. Our radionuclide-
detecting system digitized the signals to 2048 energy bins. Therefore, each output neuron’s
receptive field contained 2048 synaptic connections.

Table 1. Well-known radionuclides [11,27].

Nuclide Major γ-rays (keV) Nuclide Major γ-rays (keV)

Na-22 511, 1275 Cr-51 320
Mn-56 847, 1811, 2113 Fe-59 1099, 1292
Co-57 122, 136 Co-60 1332, 1173
Cu-64 511 Ga-66 511, 1039, 2752
Ga-67 93, 185, 300 Ga-68 511, 1077
Se-75 265, 136, 280 Sr-85 514

Ru-103 497, 610 In-111 245, 171
I-123 159 I-131 364, 637, 284

Cs-137 662 Ba-133 356, 81, 303
Ce-144 134 Sm-153 103, 70
Eu-152 122, 344, 1408 Ho-166 81, 56
Yb-169 51, 63, 57 Ir-192 317, 468, 308
Tl-201 71, 69, 80 Bi-207 570, 1064, 75

Am-241 60
Major γ-rays are ordered according to intensity.

To determine the sparse weight matrix required for our application’s dictionary, we
extracted the radioisotope event count number and distributed the hits uniformly across
energy bins. Then, we fitted the counts to a kernel distribution and normalized (as a sum
of squares) for identification speed.

The resulting dictionary contained 2048 × 27 weights mapped to a memristor crossbar.
The memristor devices corresponding to energy bins containing major gamma-ray hits were
programmed to the higher conductivity states. In contrast, memristor devices representing
inactive spectral energy bins were programmed to lower conductivity states. Our detection
system trained the conductance values offline by applying fixed training voltages into the
crossbar through pull-up and pull-down transistors connected to each row and column.
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3.6. Localization Task Algorithm

Localization algorithms use gamma-ray detector intensity and the inverse square law
for operation. The radiation intensity is a function of the distance between the source and
the detector. Our system sampled emission intensity values at a constant rate, while the
detector moved along a linear path. This operation measured a trace of consecutive points
in a specific region of interest.

The Intelligent Radiation Sensing System (IRSS) [28,29] dataset contains multiple
experiments for configurations with different radionuclides, source activities, background
profiles, and source/detector movement types. Our focus was on the Outdoor B14 Dataset,
which used a 250 µCi Cs-137 source and 2′′ × 2′′ cylindrical sodium iodide (NaI) detectors.
The B14 dataset consists of ten experiments with positions of eighteen detectors fixed and
one source moving through the detectors at constant linear velocity. The only difference
across the B14 experiments is the direction in which the source travels along the linear path
and the fluctuations in measured gamma and background radiation.

Figure 8 shows the original experimental setup, and Figure 9 shows a sample of the
intensity measurement from detector position number 6 in Figure 8. We switched the role of
the detector and source for our experiment so that the detector moved along the linear path,
and the source was fixed at one of the detector positions per run. This reciprocal approach
is valid because the detectors are isotropic to a first-order approximation, therefore the
signal depends on the detector-source distance and not absolute position or orientation.
These result in 18 unique runs for each of the 10 experiments for a total of 180 runs. For
each run, the number of measurements was reduced to 60 samples, where the detector
passed by the source to fit our proposed network architecture size.
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Figure 8. One of the ten experiments was conducted in the IRSS dataset with 18 detectors (shown as
1 to 18) and a single Cs-137 source moving with constant linear velocity. We switched the roles of the
detector and the source for our analysis so that the detector moved along the linear path, and the
source was fixed at the detector positions. This is a valid equivalence if the detectors are isotropic.

A comparison baseline was established with a Markov Chain Monte Carlo (MCMC)
algorithm known as Adaptive Metropolis sampling [30]. The MCMC model is given the
source activity and background rate, so that it just needs to estimate the source location, ef-
fectively serving as an “oracle” model. This gives a practical lower bound on the achievable
performance of any model and aids in demonstrating the system’s performance.
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Figure 9. Measured intensity per timestep for position number 6 in Figure 8.

4. Discussion
4.1. Radionuclide Classification

As a proof-of-concept demonstration of the NC architecture, we simulated a simple
system using SPICE. To develop our simulation blocks, we implemented the architectures
described in Section 3.1. For circuit-level simulation within a reasonable computation
time, a simple LCA system containing six neurons with five-element receptive fields (RFs)
was constructed, where the implemented dictionary was a mathematical representation of
six classes, including 10000, 01000, 00100, 00010, 00001, and 11111, numbered 1 through
6, respectively. It is expected that, e.g., if 01001 is given as input, the LCA should identify
both classes 2 and 5 as the likely input. We assessed both architectures with this task. In
both architectures, the circuit successfully identified both classes. Figures 10 and 11 show
the time response diagrams of each system.
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Figure 10. SPICE simulation result for the analog architecture. The two representative outputs (2 and
5), shown in red, successfully converged into −1 within 30 ns. The other outputs, shown in green and
blue, converged into 0. The output was negative due to the inverting amplifiers in the column cells.

Sensors 2024, 24, x FOR PEER REVIEW 11 of 15 
 

 

Figures 10 and 11 show the SPICE simulation results for the analog neuromorphic 
architecture. The two representative outputs (2 and 5), shown in red, successfully con-
verged into −1 within 30 ns. The other outputs, shown in green and blue, converged into 
0. 

 
Figure 11. SPICE simulation of the spiking architecture. The two representative outputs (2 and 5) 
were detected. The other outputs (1, 3, 4, and 6) were inhibited. 

4.2. Radionuclide Localization 
Figure 12 shows a fully connected NN with 60 inputs and 2 outputs trained in soft-

ware to perform the localization tasks. The model is trained on the simulated data of a 
detector moving linearly with constant velocity past a radiation source. The hidden layer 
consists of 66 neurons. The signal at this hidden layer is a linear combination of 60 inten-
sity measurements, learned weights, and biases, which is then passed through the ReLU 
activation function (rectifier), which performs the operation f(x) = max(0,x). These signals 
are then multiplied by their corresponding neuronal output layer weights and summed 
to attain Tmin and Rmin. The source location is predicted with Tmin and Rmin because the 
linear path of the detector does not allow disambiguation of which side of the detector the 
source is on. Thus, Rmin is the minimum distance between the source and the detector dur-
ing a measurement sequence, and Tmin is the corresponding time when this occurs (see 
Figure 13). 

 
Figure 12. NN architecture for localization algorithm. The NN input is 60 samples, at a fixed time 
interval of a radionuclide’s intensity along a gamma-ray detector’s trajectory. The intensity levels 
are passed to all 66 neurons in the first hidden layer. All neurons in the hidden layer are fully con-
nected to the two output neurons. The output of the NN is the highest intensity level timestep (Tmin), 
and the radionuclide emission source radius is recorded (Rmin). All neuron signals in the hidden 
layer are passed through a ReLU activation, while the output neurons are linear. 

Figure 11. SPICE simulation of the spiking architecture. The two representative outputs (2 and 5)
were detected. The other outputs (1, 3, 4, and 6) were inhibited.
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Note that although the SPICE simulations presented in this section were performed
on an ideal LCA system, memristors are typically faulty and defective. However, due to
the massive parallelism, the NC architectures are typically resilient to faults and defects. A
more comprehensive simulation and analysis is demonstrated in [11], where the impact
of nonideal memristors and their defects in a neuromorphic radionuclide identification
system is presented.

Figures 10 and 11 show the SPICE simulation results for the analog neuromorphic
architecture. The two representative outputs (2 and 5), shown in red, successfully converged
into −1 within 30 ns. The other outputs, shown in green and blue, converged into 0.

4.2. Radionuclide Localization

Figure 12 shows a fully connected NN with 60 inputs and 2 outputs trained in software
to perform the localization tasks. The model is trained on the simulated data of a detector
moving linearly with constant velocity past a radiation source. The hidden layer consists
of 66 neurons. The signal at this hidden layer is a linear combination of 60 intensity
measurements, learned weights, and biases, which is then passed through the ReLU
activation function (rectifier), which performs the operation f (x) = max(0,x). These signals
are then multiplied by their corresponding neuronal output layer weights and summed
to attain Tmin and Rmin. The source location is predicted with Tmin and Rmin because the
linear path of the detector does not allow disambiguation of which side of the detector
the source is on. Thus, Rmin is the minimum distance between the source and the detector
during a measurement sequence, and Tmin is the corresponding time when this occurs (see
Figure 13).
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Figure 12. NN architecture for localization algorithm. The NN input is 60 samples, at a fixed time
interval of a radionuclide’s intensity along a gamma-ray detector’s trajectory. The intensity levels are
passed to all 66 neurons in the first hidden layer. All neurons in the hidden layer are fully connected
to the two output neurons. The output of the NN is the highest intensity level timestep (Tmin), and
the radionuclide emission source radius is recorded (Rmin). All neuron signals in the hidden layer are
passed through a ReLU activation, while the output neurons are linear.

R and T values are independent in this architecture. The prediction quantities are
converted to a difference distance, called the prediction error, and given by the following
equation [31]:

Dist =

√(
RTrue

min − Rmin
)2

+
[∥∥∥ (T True

min − Tmin

)
× vdetector

∥∥∥
2

]2
(2)

where vdetector is the constant detector velocity, and ||.||2 is the Euclidean norm. The
performance results using the IRSS Outdoor B14 test set are summarized in Table 2. The
“Closest Distance” column denotes the distance of the closest approach between the detector
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and the source for a run. For example, of the 180 total runs across the 10 experiments, 44
had the detector come within 3–5 m of the source position.
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Figure 13. The prediction quantity Rpred
min is the predicted minimum distance between the source and

detector line of motion during a measurement sequence, and Tpred
min is the predicted time at the closest

approach. The quantities are converted to a total difference distance, the prediction error. The time
and minimum distance are treated as independent and orthogonal; hence, the prediction error is
given by Equation (2).

Table 2. Localization simulation results on the IRSS Outdoor B14 Test Dataset [29].

Closest Distance [m] MCMC [m] NN [m]

3–5 (44 runs) 2.41 3.02
5–7 (37 runs) 3.66 4.48
7–9 (44 runs) 5.35 5.75
9–11 (22 runs) 7.80 7.58
>11 (33 runs) 11.05 9.73

Average 5.63 5.78

The left column shows our binning criterion, i.e., the closest distance between the
detector and the source for a run and the number of runs in the bin. The middle and right
columns give the total difference distances for the MCMC and NN simulations.

4.3. CMOS Neuron Energy Consumption per Spike

Several new and novel neuromorphic devices have recently been developed, such as
conventional planar organic field-effect transistors (OFETs) [14] and multisensory neuro-
morphic devices [32] that allow for ultralow energy consumption. However, due to the
compatibility with the mainstream microelectronic production, CMOS neurons are still
more desirable.

We optimized the energy and area efficiency of the mixed-signal CMOS neurons
shown in Figures 4 and 5. Specifically, these CMOS integrate-and-fire neurons have a
minimum number of transistors. The main energy consumption of the neurons occurs
due to the charge/discharge of the capacitors. Hence, we aimed to minimize the capacitor
dimensions to optimize the energy efficiency of the neurons. Our spiking mixed-signal
neurons have accumulation, firing, and idle modes of operation.

Accumulation occurs when the neuron receives and integrates the charge carried by
a spike signal through the memristor synaptic weight. The postsynaptic column neuron
operates primarily in accumulation when a signal is sent by the presynaptic neuron through
the crossbar. Presynaptic row neurons only operate in accumulation when receiving
inhibition signal feedback through the memristor crossbar.
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Firing occurs when the neuron produces a spike. The generation of the postsynaptic
neuron spike determines the energy consumption through the output spike characteristics.
The presynaptic row cell operates primarily in the firing mode, transmitting spike signals
when the row is not inhibited. The postsynaptic column cell fires only when the neuron
has accumulated charge above the threshold level, generating an inhibition spike signal
output that is feedback through the crossbar.

The idle energy is dominated by CMOS leakage. The CMOS neuron does not consume
energy during learning, unlike the memristor synapse. Table 3 shows the per-spike energy
consumption of the input row and output column neurons.

Table 3. Per-spike energy consumption values for CMOS neurons.

Presynaptic Neuron Postsynaptic Neuron

Neuron
Phase

Energy per
Spike (pJ)

Neuron
Phase

Energy per
Spike (pJ)

Accumulation 1.1 Accumulation 21.8
Idle negligible Idle 3.5

Firing 17.2 Firing 140.6

4.4. Overall System Energy Consumption

Mapping a memristor crossbar array is straightforward and efficient. Each linkage
between neuron layers requires two memristors, along with an additional one for the
layer’s bias value. The measured radiation intensity determines the signal s. The memristor
states contain the learned positive (Φ+) and negative (Φ−) weights. b− and b+ are given
by the dot product between the radiation signal s(t) and the memristor weight crossbar
columns, i.e., b − (t) = <Φ−, s(t)> and b + (t) = <Φ+, s(t)>. The ReLU activation function is
obtained using a memristor ratioed logic MIN activation function [33] and a comparator,
as proposed in [16]. This circuit yields f(x) = max(0,x). The comparator has b− and b+ as
the inverting and noninverting inputs, respectively. The MIN circuit uses two memristors
connected to the neuron’s output node. Memristor M1′s input is the comparator output,
while M2’s input is b+. If b+ is greater than b−, then b+ is the output; otherwise, it is zero.

Mapping our NN to hardware requires a memristor crossbar array containing 8186 mem-
ristors, with 61 × 132 at the hidden layer and 67 × 2 at the output layer. This structure
fits on a single 128 × 64 array, similar to the one used by Li et al. [19]. According to
Chakma et al. [34], the typical per-spike energy usage for an active Al2O3/HfO2 memristor
synapse during inference is approximately 0.48 pJ. Assuming all synapses are active dur-
ing an inference operation, we estimated a network energy cost of approximately 3.9 nJ
per operation.

5. Conclusions

Using Al2O3/HfO2 memristor arrays, we designed and simulated a neuromorphic
system for radionuclide detection. The analysis demonstrates that the classification and
localization tasks are achievable with minimal energy consumption using the developed
neuromorphic architectures. Moreover, considering that the device will be fabricated on a
standard CMOS process with a CMOS-compatible memristor fabrication, we anticipate
that the sensor cost will be minimal. Through the testing of our two proposed radionuclide
identification NC architectures, we have determined that memristor-based computing is an
energy saving choice for radiation detection hardware.
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