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Abstract We explore the spatial spread of vector-borne infections with13

conditional vector preferences, meaning that vectors do not visit hosts at random.14

Vectors may be differentially attracted toward infected and uninfected hosts15

depending on whether they carry the pathogen or not. The model is expressed as a16

system of partial differential equations with vector diffusion. We first study the17

non-spatial model. We show that conditional vector preferences alone (in the18

absence of any epidemiological feedback on their population dynamics) may result19

in bistability between the disease-free equilibrium and an endemic equilibrium. A20

backward bifurcation may allow the disease to persist even though its basic21

reproductive number is less than one. Bistability can occur only if both infected and22

uninfected vectors prefer uninfected hosts. Back to the model with diffusion, we23

show that bistability in the local dynamics may generate travelling waves with24

either positive or negative spreading speeds, meaning that the disease either25

invades or retreats into space. In the monostable case, we show that the disease26

spreading speed depends on the preference of uninfected vectors for infected27

hosts, but also on the preference of infected vectors for uninfected hosts under28

some circumstances (when the spreading speed is not linearly determined). We29

discuss the implications of our results for vector-borne plant diseases, which are the30

main source of evidence for conditional vector preferences so far.31

32
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ing speed, front reversal, pushed and pulled waves.34

1 Introduction35

Vector-borne diseases are a major concern for human, animal and plant health. Since36

Ross’ seminal work (1911), most mathematical models of vector-borne infections37

consider that vectors visit hosts randomly, independent of their infection status [54,38

41]. Spatially explicit models are no exception in this regard [37]. However, growing39

evidence shows that many vectors do not visit hosts randomly [22].40

Vectors may be differentially attracted towards infected and uninfected hosts, in-41

dependent of whether or not they carry the pathogen [34, 42, 12]. This is termed42

a “vector bias” in the modelling literature [9]. [33] was probably the first to include43

such a vector bias in a model. He showed that vector preferences can induce bista-44

bility, meaning that the dynamics converge either to a disease-free state or to an45

endemic state depending on the initial conditions. However, bistability only occurred46

in somewhat special cases in which the vector bias was a function of the fraction of47

infected hosts in the population. Later studies generally assumed a constant vec-48

tor bias and did not find bistability [30, 9, 53], except when disease-induced host49

mortality and immigration were included in the model [7].50

Spatially explicit models have also been used to explore the consequences of a51

vector bias in space. Individual-based models were formulated to investigate the52

effect of spatial heterogeneity on the spread of vector-borne diseases with a vector53

bias [43, 50]. [9] were probably the first to incorporate a vector bias into a partial54

differential equation (PDE) model. They numerically showed that travelling waves55

occur, and how their speed can be calculated. Later studies then also considered56

a vector bias in PDE models [56, 2]. In particular, [55] also showed the existence57

of travelling wave solutions. In these studies [9, 55], the models did not exhibit58

bistability, and the travelling waves had positive speeds, meaning that the disease59

invades a disease-free spatial domain.60

Vector preferences, however, may depend on whether or not vectors carry the61

pathogen [31, 5, 22, 16, 49, 8]. These are termed “conditional vector preferences”.62
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[47] were probably the first to include conditional vector preferences in a model,63

but they did not fully analyse the model. In particular, whether or not bistability64

can occur was left implicit. In a more general version of the model (accounting65

for vector handling times), [22] showed that conditional preferences (in particular a66

preference of uninfected vectors for infected hosts) can lead to bistability, provided67

vector fecundity depends on host infection status. Similarly, [14] observed multi-68

stability in a more complex model accounting for vector population dynamics that69

depend on the host infection status. However, whether conditional preferences can70

lead to bistability when the vector population dynamics are independent of the host71

infection status still remains to be clarified.72

Bistability may have important implications regarding the spatial spread of the73

disease in space. In particular, it is well known [21, 38, 35, 44, 17, 29, 27] that74

bistability can give rise to negative wave speeds, meaning in our context that the75

disease retreats. This phenomenon is also termed “front reversal”.76

In this study, we analyse whether and how conditional vector preferences can77

give rise to bistability and front reversal in vector-borne diseases. The organisation78

of the paper is as follows. In Section 2, we present a spatio-temporal (reaction-79

diffusion) model with conditional vector preferences. In Section 3, we provide an80

analysis of the temporal (non-spatial) model with some numerical simulations. Then,81

in Section 4, we go back to the spatio-temporal model (with diffusion), showing82

existence of travelling wave solutions. Numerical simulations illustrate our findings.83

Lastly, Section 5 concludes the paper with a discussion.84

2 Spatio-temporal model85

Let (, t) be the infected host density at time t and location  ∈ R. We adopt a uni-86

dimensional representation of space for simplicity. The total host density is assumed87

to be a constant N independent of . The local density of uninfected hosts at time88

t is therefore N − (, t). Let V(, t) and U(, t) be the infected (“viruliferous”) and89

uninfected vector densities, respectively. Let b be the vector “biting” rate. Let p and90

q be the probabilities of pathogen transmission and acquisition, respectively. Let r be91

the removal rate of infected hosts. Infected vectors lose the pathogen at rate  [10].92
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Let m be the vector mortality rate. For simplicity, we assume that the vector birth93

rate exactly compensates the mortality rate. In addition, we assume that vectors are94

born uninfected. There is no vertical transmission in either the vector or the host.95

Let  be the preference (attraction) of infected vectors for uninfected hosts:  = 196

means no preference,  > 1 preference and 0 <  < 1 repulsion. Similarly, let  be97

the preference of uninfected vectors for infected hosts. As in [9], only the spatial98

movement of vectors is considered. Let D be the vector diffusion rate, independent99

of the vector infection status. The model is:100

t = bpV
(N − )

(N − ) + 
− r ,

Vt = bqU


 + (N − )
− (m + )V + DV , (1)

Ut = (m + )V − bqU


 + (N − )
+ DU ,

in which the subscripts denote differentiation with respect to t or , and in which the101

dependence of the state variables on t and  has been omitted.102

2.1 Model simplification103

Let W = U+ V be the total vector population density. We have Wt = DW. Assuming104

W(, 0) = K (the vector carrying capacity) for all  ∈ (−∞,+∞), Wt(, 0) = 0 for all105

, meaning that W = K for all t ≥ 0 and  ∈ (−∞,+∞). Therefore, we can substitute106

U with K − V in model (1), which thus simplifies to a two-dimensional system:107

t = bpV
(N − )

(N − ) + 
− r ,

Vt = bq(K − V)


 + (N − )
− (m + )V + DV .

(2)

2.2 Non-dimensionalisation108

We rescale the state variables and parameters by letting109

τ = (m + )t , ξ = 

√

√

√m + 

D
,  =



N
,  =

V

K
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and110

β =
bpK

(m + )N
, ρ =

r

m + 
, θ =

bq

m + 
.

A dimensionless version of model (2) is the following:111

τ = β
(1 − )

(1 − ) + 
− ρ ,

τ = θ(1 − )


 + (1 − )
−  + ξξ ,

(3)

in which the subscripts denote differentiation with respect to τ or ξ. Note that the112

two state variables are both disease prevalences, i.e. they are fractions of the host113

and the vector being infected, and take values in the unit interval.114

3 Analysis of the non-spatial system115

The non-spatial model is:116

′ = β
(1 − )

(1 − ) + 
− ρ =: ƒ1(,) ,

′ = θ(1 − )


 + (1 − )
−  =: ƒ2(,) .

(4)

We will also use the following notations: y = (,)T and ƒ = (ƒ1, ƒ2)T .117

3.1 Basic reproductive number118

System (4) was previously explored in [47] and [14]. It is known that the disease-free119

equilibrium (,) = (0, 0) is locally asymptotically stable if and only if120

R2
0 :=

b2pq

rm

K

N
 =

βθ

ρ
 < 1 .

We refer to R2
0 as the basic reproductive number. Note that R0 depends on  (the121

preference of uninfected vectors for infected hosts) but does not depend on  (the122

preference of infected vectors for uninfected hosts). The results we present next are123

original. Let c be such that R2
0 = 1, i.e.,124

c =
ρ

βθ
.
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125

3.2 The system is cooperative126

We have127

∂ƒ1

∂
≥ 0 and

∂ƒ2

∂
≥ 0 ,

since128

∂

∂

�



 + (1 − )

�

=


(1 + ( − 1))2
> 0 .

Therefore, system (4) is cooperative, meaning that the dynamics necessarily con-129

verge to an equilibrium (convergence to a limit cycle is impossible) [51].130

3.3 Endemic equilibrium131

Let us solve the system ƒ1(,) = ƒ2(,) = 0. An endemic equilibrium (∗,∗), with132

∗,∗ > 0, satisfies:133

Q (∗) = A∗2 + B∗ + C = 0 ,

in which134

A = ( − 1)((1 + θ) − 1) ,

B =
�

(2 − (1 + θ)) −
βθ

ρ

�

 − 1 = −
�

((1 + θ) − 1) + (R2
0 − 1)

�

 − 1 ,

C = 
�

βθ

ρ
 − 1

�

= 
�

R2
0 − 1

�

.

Let ∗ be such that A = 0:135

∗ =
1

1 + θ
. (5)

Note that A has no reason to be zero in general (A = 0 only for  = 1 or  = ∗). The136

coefficient A can be also expressed as137

A = ( − 1)
� 

∗
− 1

�

.

First, we notice that138

Q(1) = −(1 + θ) < 0 . (6)
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Next, we distinguish two cases: R2
0 > 1 and R2

0 < 1. (The boundary case R2
0 = 1 is139

addressed in Appendix A.1 for the sake of completeness.)140

3.4 Case R2
0 > 1141

If R2
0 > 1, then Q(0) = C > 0. Since Q(1) < 0 (Eq. 6), there is exactly one root ∗ in142

[0, 1], which is the endemic equilibrium. Appendix A.2 shows that143

∗ =











− C
B if  = 1 or  = ∗ (special cases implying A = 0) ,

1
2A (−B −

p
Δ) otherwise,

where Δ = B2 − 4AC is the discriminant.144

3.5 Case R2
0 < 1145

If R2
0 < 1, then C < 0.146

Since Q(0) = C < 0, and Q(1) < 0 (Eq. 6), either there is no root in between147

0 and 1 or there are two roots (unless the discriminant Δ is zero, in which case148

there is a single root, of course). The existence of biologically feasible equilibria149

requires A < 0. Since this implies AC > 0, an additional necessary condition for150

the existence of endemic equilibria is that the discriminant Δ is non-negative. The151

additional conditions are Q′(0) = B > 0 and Q′(1) = 2A + B < 0.152

If these conditions (R2
0 < 1, A < 0, Δ ≥ 0, B > 0, and 2A+B < 0) are simultaneously153

satisfied, there are two positive equilibria with components154

∗1,2 =
1

2A

�

−B ±
p

Δ
�

, (7)

since A < 0 and B > 0. We set E1 = (∗1 ,
∗
1 ) and E2 = (∗2 ,

∗
2 ) and notice that the155

equilibria are ordered, i.e. E1 < E2, since ∗1 < ∗2 and ∗
1 = g(∗1 ) < ∗

2 = g(∗2 ), where156

g() =
ρ

β

�

1 +


(1 − )

�

 is an increasing function corresponding to ƒ1 = 0 in (4).157

3.5.1 Necessary conditions for two equilibria158

Here, we will derive two necessary conditions on the vector preferences, namely159

 > 1 and  < ∗ < 1 (since ∗ = 1/(1 + θ), as defined in Eq. (5)), for two positive160
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equilibria to coexist.161

First, B can be expressed as162

B = −
�

1 + θ +
θβ

ρ

�

 + (2 − 1) .

Therefore, B > 0 is equivalent to163

 <
(2 − 1)

�

1 + θ + θβ
ρ

�


=: + .

Second, B + 2A < 0 can be expressed as164

�

(θ + 1)( − 2) −
θβ

ρ

�

 + 1 < 0 . (8)

A necessary condition for the inequality (8) to hold is165

θβ

ρ(θ + 1)
>
 − 2


=: R1 . (9)

Assuming inequality (9) holds, B + 2A < 0 (inequality 8) is equivalent to166

 >
1

θβ
ρ  − (θ + 1)( − 2)

=: − .

So far, we have shown that conditions B > 0 and B+ 2A < 0 are equivalent to  < +167

and  > − (provided inequality 8 holds), respectively. A necessary condition for168

these conditions to hold is therefore − < + . The latter inequality can be equiva-169

lently expressed as170

1
θβ
ρ  − (θ + 1)( − 2)

<
2 − 1

��

1 + β
ρ

�

θ + 1
�


,

which is equivalent to171

�

1 +
β

ρ

�

θ + 1 <
�

2 −
1



��

θβ

ρ
 − (θ + 1)( − 2)

�

.
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After rearrangement, the above inequality can be equivalently expressed as172

(θ + 1)( − 1)2 < ( − 1)
θβ

ρ
.

A necessary condition for the above inequality to hold is  > 1. Assuming  > 1, this173

inequality can be equivalently expressed as174

θβ

ρ(1 + θ)
>
 − 1


=: R2 .

Since R2 > R1, the above inequality guarantees that inequality (9) is satisfied.175

We were not able to get more results from this preliminary analysis, but we have176

shown that  > 1 is a necessary condition for two endemic equilibria to coexist.177

Assuming  > 1, the condition A < 0 is equivalent to178

 <
1

1 + θ
= ∗ .

Hence,  > 1 and  < ∗ < 1 are necessary conditions for two positive equilibria to179

coexist.180

3.5.2 Numerical example of bistability181

Since necessary and sufficient conditions were hardly expressible with pen and pa-182

per, we used symbolic calculation software (Maple 2022) to disentangle the condi-183

tions for two positive equilibria to coexist. To simplify things, we let184

X = (1 + θ) − 1 and Y = R2
0 − 1 . (10)

This way,185

A = ( − 1)X , B = −(X + Y) − 1 and C = Y .

Since R2
0 < 1, Y < 0. Since  > 0, C < 0. The previous section showed that A < 0,186

 > 1, and therefore X < 0 are necessary conditions for two positive equilibria to187

coexist. We thus used the function “solve” in Maple to solve the following system of188
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Figure 1: Phase portraits of the non-spatial model (4) with - and -nullclines (blue and red curves,
respectively). Stable (unstable) equilibria are shown as filled (empty) circles. The basins of attraction to
the endemic (disease-free) equilibrium are shown in light red (light blue). (A) The endemic equilibrium
is the only attractor. Parameter value:  = 0.3, so R2

0 = 1.44 > 1. (B) Bistable case. The black line is
the separatrix of the two basins of attraction. The dashed rectangles indicate analytically obtained sets
of initial conditions that are known to approach the disease-free (blue) or endemic (red) equilibrium.
They are part of the actual basins of attraction, see Sect. 3.6 for more details. Parameter value:
 = 0.15, so R2

0 = 0.72 < 1. All other parameter values:  = 15,β = 2.4,ρ = 1,θ = 2.
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Figure 2: Bifurcation diagram of the non-spatial model (4). Stable (unstable) steady states are shown
in solid (dashed) line. There is a backward bifurcation at = c ≈ 0.2083 and a fold bifurcation at
 ≈ 0.1425. Other parameter values as in Fig. 1.
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Figure 3: Two-parameter bifurcation diagram of the non-spatial model (4). The fold bifurcation
where two endemic equilibria coalesce is shown in blue. The vertical line marks the transcritical
bifurcation curve, which occurs at R2

0 = 1. When the vertical line is solid (dashed), there is a
standard transcritical (backward) bifurcation. The fold and transcritical bifurcation curves meet at
(c ≈ 0.2083,c ≈ 2.6666). The insets are nullcline examples of parameter values leading to different
dynamical regimes. Other parameter values as in Fig. 1.

inequalities,189

A < 0 , B > 0 , (2A + B) < 0 , B2 − 4AC > 0 , Y < 0 ,  > 1 , X < 0

with respect to X ,Y and . Letting190

h(Y,) :=
Y2 − (2Y + 1) − 2

Æ

−Y2( − 1)(Y + 1)

2
,

we obtained the following set of conditions:191

• If 1 <  < 2,192

Y + 1

 − 2
< X < h(Y,) , and Y > −

 − 1


.

• If  = 2,193

X < −
1

2
−
Æ

−Y(Y − 1) = h(Y, 2) , and Y > −
1

2
.
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• If  > 2:














































X < h(Y,) if Y > −
1


,

X < −4
 − 1

2
= h

�

1


,
�

if Y = −
1


,

impossible if Y ∈
�

−
 − 1


,−

1



�

,

X <
Y + 1

 − 2
if Y < −

 − 1


.

This condition set allowed us to find parameter values for which bistability occurs;194

see Figs. 1–3 for phase portraits, one-parameter, and two-parameter bifurcation di-195

agrams, respectively.196

3.6 Local and global asymptotic stability197

The system being monotone cooperative, proving global asymptotic stability (GAS)198

relies on local asymptotic stability (LAS) and the use of some appropriate theorems.199

The Jacobian of system (4) is

J(,) =











−β


((1 − ) + )2
− ρ β

(1 − )

(1 − ) + 

θ(1 − )


( + (1 − ))2
−θ



 + (1 − )
− 1











.

Notice that J(,) is irreducible for all (,) ∈ [0, 1)2. At equilibrium (0, 0), we have

J(0, 0) =







−ρ β

θ −1






,

from which we deduce that 0 = (0, 0)T is LAS when R2
0 = βθ/ρ < 1 and unstable200

when R2
0 > 1.201

When R2
0 > 1, only one positive endemic equilibrium, E, exists in [0, 1]2. Thus,202

when R2
0 > 1, using Theorem 6 in [1] [51], with  = (0, 0) and b = (1, 1) such203

that ƒ (b) ≤ 0 ≤ ƒ (), we deduce that the endemic equilibrium E is GAS on [0, 1]2.204

Similarly, when R2
0 < 1, in the case when no endemic equilibrium exists, we can205

show, using the same approach, that 0 is GAS.206

Assume R2
0 < 1. In the case where 0, E1, and E2 co-exist such that 0 ≪ E1 ≪207

E2, we already know that 0 is LAS. We can check (at least numerically) that E1 is208
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unstable and E2 is LAS. Following [51, Theorem 2.2.2], it is straightforward to show209

that the set {y ∈ R2 : 0 ≤ y < E1} is in the basin of attraction of 0, while the set210

{y ∈ R2 : E1 < y ≤ 1}, where 1 = (1, 1)T , is in the basin of attraction of E2 (Fig. 1B).211

4 Back to the system with diffusion212

In this section, we get back to the system with diffusion, i.e., system (3).213

4.1 Existence and uniqueness of a solution214

System (3), with non-negative initial conditions and appropriate boundary condi-

tions, is a partly dissipative or a partially degenerate system. We consider the fol-

lowing spaces

S =
�

(,)| ∈ L2(R);  ∈ L∞(R)
	

,

and

S1,1 = {(,) ∈ S |0 ≤  ≤ 1; 0 ≤  ≤ 1} .

Following (author?) [48, Theorem 1, page 111], or [45, Theorem 2.1], we can show215

local existence and uniqueness. Then, using a priori L∞ estimates, the fact that the216

right-hand side of (3) is quasi-positive and the maximum principle lead to217

Theorem 1 (Existence and uniqueness). For any initial values (0,0) ∈ S1,1, sys-

tem (3) admits a unique non-negative bounded solution such that

 ∈ C ([0,∞) ; L∞(R)) ∩ C1 ([0,∞) ; L∞(R))

and

 ∈ C ([0,∞) ; L∞(R)) ∩ C
�

[0,∞) ;H2(R)
�

∩ C1
�

[0,∞) ; L2(R)
�

.

Since the study of the non-spatial system showed us that, depending on parame-218

ter values, it can be monostable or bistable, it seems relevant to study the existence219

(or non-existence) of travelling wave solutions.220
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4.2 Monostable case221

In this section, we assume R2
0 > 1. We know from the non-spatial system that the222

disease-free equilibrium 0 is unstable and the endemic equilibrium E is GAS. Does a223

travelling wave solution connecting 0 to E exist?224

4.2.1 Existence of a travelling wave225

In the monostable case, the existence of a travelling wave should derive from the226

fact that the system is cooperative [40]; the problem is that the system is partially227

degenerate [18, 39]. However, for this situation powerful theorems exist [19, 39],228

see also [15].229

Here, we will use Theorem 4.2 in [39] for the following system:

∂y

∂t
= D

∂2y

∂2
+ f(y(t,)),

with y = (y1(t,), ...,yk(t,)), D = dig(d1, ...,dk) ≥ 0 and f = (ƒ1, ..., ƒk). According230

to [39], the following hypotheses have to be checked [Hypotheses 2.1 in 39]:231

1. There is a proper subset 0 of {1, ...,k} such that d = 0 for  ∈ 0 and d > 0232

for  /∈ 0.233

2. f(0) = 0, there is a constant γ ≫ 0 such that f(γ) = 0 which is minimal in the234

sense that there is no constant ν other than γ such that f(ν) = 0 and 0≪ ν≪ γ,235

and the equation f(α) = 0 has a finite number of constant roots.236

3. The system is cooperative.237

4. f(α) is uniformly Lipschitz in α such that there is η > 0 such that for any α,238

 = 1, 2, ∥(α1) − f(α2)∥ ≤ η∥α1 − α2∥.239

5. f has the Jacobian f′(0) at 0 with the property that f′(0) has a positive eigen-240

value whose eigenvector has positive components.241

Assuming R2
0 > 1, and k = 2, it is straightforward to check the first three hypotheses

for system (3), where γ = E. The fourth hypothesis requires long computations for
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Figure 4: Monostable travelling wave solution of model (3) connecting the disease-free and endemic
equilibria 0 and E when R2

0 = 1.44 > 1. Here  = 0.3, other parameter values as in Fig. 1.

 ̸= 1 and  ̸= 1 to be checked. Lastly, we have

f′(0) =







−ρ β

θ −1






.

Since R2
0 > 1, it is straightforward to show that f′(0) has a positive eigenvalue,242

λ =
1

2

�Ç

(1−ρ)2 + 4ρR2
0 − (1 + ρ)

�

, associated with the positive eigenvector
�

1,
λ + ρ

β

�T

.243

Thus, according to Theorem 4.2 in [39], we deduce the existence of a travelling wave244

connecting 0 to γ = E. See, for instance, Fig. 4.245

4.2.2 Derivation of the linear spreading speed246

Still assuming R2
0 > 1, we consider a travelling front connecting the disease-free247

equilibrium, 0 to the endemic equilibrium, E. We posit that, in some circumstances,248

the front speed is linearly determined by the minimum possible wave speed based249

on the linearisation at the leading edge of the wave. We apply the minimum wave250

speed approach [36, 24, 3, 28, 25] to the linearised model to find the linear spreading251

speed as a critical point. However, we stress that the linear spreading speed may252

be only a lower bound of the actual spreading speed in some cases (see Fig. 11 in253

Appendix B.2).254
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At the leading edge of the front invading the disease-free equilibrium,  and 255

have small positive values. We linearise system (3) at the leading edge:256

τ = β − ρ ,

τ = θ −  + ξξ .

We are interested in travelling wave solutions such that257

y =
















= k exp(−s(ξ − cτ)) ,

in which k is an implicit column vector, c is the linear wave speed, and s is the258

exponential decay rate of the wave profile at leading edge.259

Plugging the previous expression in the system, we obtain260

scy =







−ρ β

θ −1 + s2







︸ ︷︷ ︸

Ms

y , (11)

which implies that261

det







−ρ − sc β

θ −1 + s2 − sc







︸ ︷︷ ︸

Ms−scI

= 0 ,

in which I is the identity matrix. This yields262

0 = (−ρ − sc)(−1 + s2 − sc) − θβ ,

= Fc2 + Gc + H ,
(12)

with263

F = s2 , G = s(ρ + 1 − s2) , H = ρ(1 − s2) − θβ .

Next, we follow the approach of using Eq. (12) to calculate the minimum linear wave264

speed as outlined in [24].265
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The discriminant of the quadratic in Eq. (12) is266

Λ = G2 − 4FH ,

= s2
�

�

ρ + 1 − s2
�2 − 4ρ(1 − s2) + 4θβ

�

,

= s2
�

�

ρ − 1 + s2
�2
+ 4θβ

�

> 0 .

Since Λ > 0, there are two real roots:267

z =
−G −

p
Λ

2F
and c =

−G +
p
Λ

2F
.

First, we show that z < 0. If G > 0, then z < 0 since F > 0. Otherwise (if G < 0),268

then −G−
p
Λ > 0 is equivalent to 0 > −4FH, which is impossible since H < 0 (this is269

because G < 0 implies 1 − s2 < 0).270

Second, we show that c > 0 for all s > 0. If G < 0, then c > 0 since F > 0.271

Otherwise (if G > 0), then −G+
p
Λ > 0⇔Λ > G2 is equivalent to R2

0 > 1− s2, which272

is satisfied since we assume R2
0 > 1 in this section.273

The relevant root is therefore c. Since Eq. (12) only depends on three additional274

parameters, s, ρ and βθ, we express c as a function of these parameters:275

c(s,ρ,βθ) =
−(ρ + 1 − s2) +

r

�

ρ − 1 + s2
�2 + 4θβ

2s
.

Since c is a convex function of s (Appendix B.1), lims→0 c(s,ρ,βθ) = +∞, and276

lims→+∞ c(s,ρ,βθ) = +∞, there exists a minimum to c with respect to s > 0.277

Equation (12) can also be written to include the dependency of c on s, ρ, and βθ278

as279

P(c(s,ρ,βθ), s) := (−ρ − sc)(−1 + s2 − sc) − θβ .

Differentiating with respect to s, we have, for all s,280

dP

ds
=
∂P

∂c

∂c

∂s
+
∂P

∂s
= 0 . (13)

We are interested in the minimum possible linear wave speed. Let281

s⋆(ρ,βθ) = rgmin
s

c(s,ρ,βθ) ,

17



and282

c⋆(ρ,βθ) = c(s⋆(ρ,βθ),ρ,βθ) .

Since c⋆ is such that ∂c/∂s = 0, Eq. (13) yields283

∂P

∂s
(c⋆(ρ,βθ), s⋆(ρ,βθ)) = 0 . (14)

Since P is cubic in s, ∂P/∂s is quadratic in s. We are interested in the conditions284

on the coefficients that allow both polynomials to have a common root, s⋆. They are285

given by cancelling the resultant of the two polynomials. Letting P = es3+ ƒ s2+gs+h286

yields ∂P/∂s = 3es2 + 2ƒ s + g. The coefficients are identified as287

e = −c , ƒ = c2 − ρ , g = (ρ + 1)c , h = −θβ + ρ .

The resultant is r(e, ƒ ,g,h) = −e(ƒ2g2−4eg3−4ƒ3h+18eƒgh−27e2h2), as described288

in [32, Eq. (4.3)]. The equality r(e, ƒ ,g,h) = 0 can be equivalently expressed as a289

cubic with respect to c2:290

c3(c2)3 + c2(c2)2 + c1(c2)1 + c0 = 0 , (15)

with291

c3 = 4βθ + (ρ − 1)2 ,

c2 = 2ρ3 + 2ρ2 + (6βθ − 8)ρ + 18θβ + 4 ,

c1 = ρ4 + 8ρ3 − (6βθ + 8)ρ2 + 36ρβθ − 272β2θ2 ,

c0 = −4ρ3(βθ − ρ) = −4ρ4(R2
0 − 1) .

Since we assume R2
0 > 1, we have that c0 is negative and c3 is positive, which292

means that we are in the same configuration as [24]. This implies that c⋆(ρ,βθ) is293

uniquely defined as the square root of the largest root of the above cubic.294

Although it is possible to write down the formula for the largest root of a cu-295

bic polynomial, we have no simple expression of c⋆(ρ,βθ). Figure 5 shows the296

minimum linear speed of the monostable travelling wave solution as a function of ,297

as obtained by solving the cubic equation (15).298
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Figure 5: Linear speed of the monostable travelling wave as a function of  (the preference of unin-
fected vectors for infected hosts). The inset zooms on small values of  and compares the linear and
actual (numerically computed) spreading speeds in model (3). The spreading speed is not linearly de-
termined in the bistable case ( < c) and in the monostable case ( > c) for  close to c. However,
the actual speed quickly converges to the linear speed as  increases. Other parameter values as in
Fig. 1.
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4.3 Bistable case299

In this section, we assume R2
0 < 1.300

4.3.1 Existence of a travelling wave301

To show the existence of a bistable travelling wave solution, we will consider Theo-302

rem 4.2 in [18]. We have to verify that assumption (L): ƒ ∈ C1(R2,R2) satisfies the303

following conditions:304

1. ƒ (0) = ƒ (E2) = ƒ (E1) = 0, with 0≪ E1 ≪ E2. There is no η other than 0, E1 and E2305

such that ƒ (η) = 0, with 0 ≤ η ≤ E2.306

2. System (3) is cooperative.307

3. y ≡ 0 and y ≡ E2 are stable while y ≡ E1 is unstable, that is

λ0 := s(ƒ ′(0)) < 0, λE2 := s(ƒ
′(E2)) < 0, λE1 = s(ƒ

′(E1)) > 0.

4. ƒ ′(0), ƒ ′(E1), and ƒ ′(E2) are irreducible.308

Assuming that assumption (L) holds, then according to Theorem 4.2 in [18], sys-309

tem (3) admits a monotone wavefront (U, c) with U(−∞) = 0 and U(+∞) = E2.310

Since R2
0 < 1, two positive endemic equilibria, E1 and E2, exist. Equilibrium E1 is311

unstable while E2 is LAS. Thanks to the results obtained in Section 3, it is straight-312

forward to check that assumption (L) holds and to conclude that a travelling wave313

solution connecting 0 and E2 exists. See, for instance, Fig. 6.314

In Fig. 7, we show that for  sufficiently small, the sign of the spreading speed315

can change. Thus, in the bistable case, for a given  ≫ 1, there exist † and ∗,†316

such that for † <  < ∗ the disease travelling wave moves forward, while for317

∗,† <  < † the disease travelling wave moves backward. When  < ∗,† then the318

system converges to 0.319

4.3.2 Quasi-steady-state approximation320

For the case of a quasi-steady-state approximation (QSSA) (see Appendix B.2 for321

details), we can gain more information on the parameter domain for which the trav-322
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Figure 6: Bistable travelling wave solution of model (3) connecting the disease-free and endemic equi-
libria 0 and E2 when R2

0 = 0.96 < 1. Here  = 0.2, other parameter values as in Fig. 1. The disease is
invading, c∗ > 0.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Figure 7: Bistable travelling wave solution of model (3) connecting the disease-free and endemic equi-
libria 0 and E2 when R2

0 = 0.72 < 1. Here  = 0.15, other parameter values as in Fig. 1. Starting at
t = 200 with the solution from Fig. 6 as initial condition, the spread is reversing, c∗ < 0. This shows
that a small variation of the parameter  (switching from  = 0.2 in Fig. 6 to  = 0.15 in this figure) can
make the spreading speed switch from positive to negative. This is why the equilibrium prevalences
decrease compared to initial conditions (at t = 200).
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Figure 8: Within the bistable parameter domain (light grey), travelling waves connecting the disease-
free and endemic equilibria can reverse or advance. The parameter domains of reversal and advance
are separated by a curve corresponding to stalled waves with zero wave speed. Here, the zero-wave
speed curve is obtained, on the one hand, by numerical integration of the PDE system (3) with ρ =
1,β = 2.4,θ = 2 and identifying parameter values to result in zero wave speed, accurate to at least the
third decimal place (grey squares). On the other hand, the zero wave speed curve was indicated by
Eq. (25) in Appendix B.2 using a quasi-steady-state assumption (red points). Other curves as in Fig. 3.

22



elling wave moves forward or backward. The direction is given by the expression (25)323

in Appendix B.2.324

Figure 8 marks the boundary between wave advancement and reversal by red325

dots. This boundary corresponds to stalled traveling waves with speed zero. The326

QSSA results match very well with the zero wave speeds in the original system with-327

out a quasi-steady-state approximation (dark grey squares). This match may be328

particularly surprising because we have chosen a time scale parameter of ρ = 1 for329

the simulations, while the QSSA is based on the assumption ρ≫ 1. However, Fig. 9330

in Appendix B.2 suggests that the wave speed approximations do not deviate much331

from the exact solutions for small spreading speeds and ρ ≥ 1. This behaviour might332

explain why the QSSA correctly locates the c = 0 curve in Fig. 8.333

In the monostable case, the QSSA allows us to derive an explicit expression for334

the linear wave speed (see Eq. (23) in Appendix B.2), which is simply c∗ = 2
q

R2
0 − 1.335

However, the linear spreading speed is only a lower bound of the actual spreading336

speed in somes cases (Fig. 11).337

5 Discussion338

We have shown that conditional vector preferences may result in bistability between339

the disease-free equilibrium and an endemic equilibrium. The novelty compared to340

[22] and [14] is that bistability here occurs in the absence of any epidemiological341

feedback on vector population dynamics.342

More specifically, we have shown that conditional vector preferences can cause a343

“backward bifurcation” (Fig. 2), meaning that R2
0 < 1 is not a sufficient condition for344

the disease to go extinct [23].345

5.1 Bistability conditions346

We have shown that for bistability to occur, the following necessary conditions must347

be satisfied: R2
0 < 1,  > 1 and  < ∗ < 1. The first condition (R2

0 < 1) means that348

the basic reproductive number of the pathogen is not large enough for the pathogen349

to invade a disease-free population. Hence, the disease-free equilibrium is locally350

stable. However, if the prevalence of the infection is initially high, and if infected351
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vectors have a sufficiently strong preference for uninfected hosts ( > 1), we have352

shown that the pathogen may persist in the population (an endemic equilibrium353

is locally stable as well) even though R2
0 < 1. These two conditions ( > 1 and354

R2
0 < 1) are not too surprising. The third condition (implying  < 1) is less intuitive.355

To interpret it, we recall that R2
0 is proportional to . If R2

0 < 1 in spite of  > 1356

(uninfected vectors prefer infected hosts, which is advantageous for the pathogen),357

this means that the pathogen has poor reproductive abilities. Therefore, even if358

the prevalence of the infection is initially high, the pathogen still goes extinct. By359

contrast, if R2
0 < 1 while  < 1 (uninfected vectors prefer uninfected hosts), it may360

be that the pathogen has strong enough reproductive abilities not to go extinct when361

its prevalence is initially high, and infected vectors prefer uninfected hosts ( > 1).362

5.2 Travelling waves363

5.2.1 Monostable case364

In the monostable case (R2
0 > 1), the disease invades the spatial domain. We have365

shown that the linear spreading speed depends only on ρ and βθ, meaning that it366

does not depend on , the preference of infected vectors for uninfected hosts. The367

interpretation is the same as for the basic reproductive number, R2
0 = βθ/ρ, which368

does not depend on  either [47, 22, 14]. In a situation close to the disease-free369

equilibrium, like at the leading edge of the front, there are so few infected hosts370

that the preference of infected vectors for uninfected hosts has a negligible effect371

on the dynamics. However, even in the monostable case, the spreading speed may372

not be linearly determined (Fig. 5), implying that it may depend on  (Fig. 12).373

This is due to the fact that disease spread is not driven by the leading edge of374

the invasion front (“pulled wave”). Instead, the disease invasion is driven by the375

whole of the front (“pushed wave”) [52, 38]. In particular, the disease spread may376

be maximum for intermediate prevalences because of the conditional preferences377

(similar to weak and strong Allee effects where population growth is strongest at378

intermediate densities). By contrast, dynamics of pulled waves are independent379

from the nonlinearities behind the leading edge of the front.380
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5.2.2 Bistable case381

In the bistable case (requiring R2
0 < 1), the disease either invades or retreats, de-382

pending on parameter values. More specifically, travelling waves may have negative383

speeds, meaning that the disease retreats.384

In an epidemiological context, such a “front reversal” has been shown to occur385

when host population dynamics in the absence of disease are bistable, due, for386

instance, to a strong Allee effect in the host [29, 27]. However, to our knowledge,387

such a phenomenon has seldom [6] been shown to occur when bistability is due388

solely to the epidemiological dynamics.389

5.3 Biological implications390

Although conditional vector preferences might occur in human and animal diseases,391

they have so far been shown mainly in plant diseases [22]. Therefore, we now392

discuss plant diseases more specifically.393

Plant diseases are a main threat to global food security [46]. Many plant dis-394

eases are caused by pathogens (viruses, bacteria and others) that are transmitted395

by insect vectors such as aphids, whiteflies, and others [16]. Infected vectors can396

be attracted to uninfected plants. This is for instance the case for aphids, Rhopalosi-397

phum padi, infected by the Barley yellow dwarf virus (BYDV) [31]. In his review of398

evidence for conditional vector preferences, [22] identified the volatile compounds399

emitted by infected plants as an attraction mechanism for (uninfected) vectors. For400

instance, plants infected by the Cucumber mosaic virus (CMV) or the Tomato chloro-401

sis virus (ToCV) produce volatiles that attract aphids or whiteflies [20]. Note also402

that vectors can be attracted to infected plants by visual cues, such as, for instance,403

yellow leaves.404

Since the basic reproductive number of the pathogen (R2
0) is proportional to 405

(the preference of uninfected vectors for infected hosts), a plant variety that emits406

fewer volatiles could be considered resistant to disease. When visual cues are re-407

sponsible for vector preferences, a plant variety that expresses fewer symptoms,408

and is therefore less attractive to uninfected vectors, could also be considered resis-409

tant. Deployment of such resistant hosts might make it possible to obtain R2
0 < 1.410

We have shown that  ≥ 1 (a preference of uninfected vectors for infected hosts)411
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ensures disease extinction in this case (R2
0 < 1), since bistability requires  < 1.412

This means that breeding for varieties that emit, when infected, a concentration413

of volatiles that is lower than that of standard varieties is a possible strategy for414

the control of vector-borne diseases (in combination with other strategies such as415

roguing - i.e., removing - infected plants, for instance).416

5.4 Mathematical prospects417

An alternative for modelling vector preference could be density-dependent advec-418

tion (in analogy to preytaxis, this could perhaps be called “hosttaxis”). It has been419

shown that preytaxis in the presence of disease, where predators are attracted to420

or repelled by infected prey, can speed up or even lead to irregularly fluctuating421

travelling waves [4]. While [9] considered a “hosttaxis” term in their model, it was422

only a vector bias towards infected hosts, regardless of whether the vector carries423

the pathogen or not. Modelling conditional vector preferences with a hosttaxis term424

is beyond the scope of this paper and is left for future research.425
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A Side results on the non-spatial model438
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A.1 Case R2
0 = 1 (boundary case)439

If R2
0 = 1, or equivalently440

 =
ρ

βθ
,

then C = 0 and ∗ = −B/A. Using the above expression of  yields

∗ = 1 −
1

( − 1)
�

βθ
(1+θ)ρ − 1

� .

If  = 1, the endemic equilibrium does not exist. In what follows, we assume  ̸= 1.441

Let the fraction of susceptible hosts at equilibrium be442

s∗ =
1

( − 1)
�

βθ
(1+θ)ρ − 1

� .

We have:443

s∗ > 0⇔











βθ
(1+θ)ρ > 1 if  > 1 ,

βθ
(1+θ)ρ < 1 if  < 1 .

Assuming s∗ > 0, s∗ < 1 is equivalent to444

( − 1)
�

βθ

(1 + θ)ρ
− 1

�

> 1 .

Two cases can then be distinguished:445

• If  > 1, s∗ < 1 is equivalent to446

βθ

(1 + θ)ρ
− 1 >

1

 − 1
⇔

βθ

(1 + θ)ρ
>



 − 1
.

• If  < 1, s∗ < 1 is equivalent to447

�

1 −
βθ

(1 + θ)ρ

�

(1 − ) > 1⇔ 1 −
βθ

(1 + θ)ρ
>

1

1 − 
⇔−

βθ

(1 + θ)ρ
>



1 − 
,

which is impossible.448

Therefore, 0 < s∗ < 1 if and only if449

 > 1 and
βθ

(1 + θ)ρ
>



 − 1
> 1 . (16)
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A.2 Case R2
0 > 1450

To derive the expression of the endemic equilibrium, we consider three cases:  = 1,451

0 <  < 1 and  > 1.452

Case  = 1. If  = 1, then A = 0 and453

∗ = −
C

B
.

Since R2
0 > 1,454

B = −
�

(1 + θ) + R2
0 − 1

�

< 0 .

Therefore,455

∗ =
R2
0 − 1

(1 + θ) + R2
0 − 1

.

We have 0 < ∗ < 1.456

Case 0 ≤  < 1. Since457

B = −
��

(1 + θ) + R2
0 − 1

�

 + (1 − )
�

,

we deduce that B < 0. Then, we have three sub-cases to consider:458

• If  > ∗, then A < 0. The relevant root is therefore the largest:459

1

2A

�

−B −
p

Δ
�

,

since the other root is negative.460

• If  = ∗, A = 0. We obtain461

∗ =
R2
0 − 1

R2
0 − 1 +

1



. (17)

We have 0 < ∗ < 1.462

• If  < ∗, then A > 0. The relevant root is therefore the smallest:463

1

2A

�

−B −
p

Δ
�

,
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Table 1: The component ∗ of the endemic equilibrium in the specific case R2
0 > 1, expressed as a

function of A, B, C and Δ = B2 − 4AC.

0 <  < 1  = 1  > 1

 < ∗ 1
2A

�

−B −
p
Δ
�

− C
B

1
2A

�

−B −
p
Δ
�

 = ∗ − C
B − C

B − C
B

 > ∗ 1
2A

�

−B −
p
Δ
�

− C
B

1
2A

�

−B −
p
Δ
�

since both roots are positive.464

Case  > 1. We again distinguish three sub-cases:465

• If  > ∗, then A > 0 and B < 0. The relevant root is therefore the smallest:466

1

2A

�

−B −
p

Δ
�

,

since both roots are positive.467

• If  = ∗, A = 0. We again find expression (17).468

• If  < ∗, then A < 0. The relevant root is therefore the largest:469

1

2A

�

−B −
p

Δ
�

,

since the other root is negative.470

These results are summarized in Tab. 1.471

472

A.3 Case R2
0 < 1473

We here focus on the necessary condition Δ = B2 − AC > 0 for the existence of474

two endemic equilibria in the case R2
0 < 1. Using the notations X = (1 + θ) − 1 and475

Y = R2
0 − 1 (Eq. (10)) yields the following expression of Δ as a quadratic function of476

:477

Δ = (X − Y)22 + 2(X(1 + Y) + Y(1 + X)) + 1 .

Since (X − Y)2 > 0, this parabola has a U-shape. We also have Δ(0) = 1 > 0. There-478

fore, either there are two positive roots, −c and +c , or there are none. In the latter479
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case, Δ > 0 regardless of the value of . In case there are two roots, the largest one,480

+c =
−((X(1 + Y) + Y(1 + X)) + 2

p

XY(1 + X)(1 + Y)

(X − Y)2
,

can also be expressed as481

+c =

�
p

−X(1 + Y) +
p

−Y(1 + X)

X − Y

�2

.

Similarly, −c can be expressed as482

−c =

�
p

−X(1 + Y) −
p

−Y(1 + X)

X − Y

�2

.

Since 1 + X = (1 + θ) > 0, 1 + Y = R2
0 > 0, and Y = R2

0 − 1 < 0, the existence of two483

conjugate roots requires X = (1 + θ) − 1 < 0, or equivalently  < ∗.484

We now focus on the condition  > +c (implying Δ > 0) since it happens to co-485

incide with the separatrix we numerically obtained in the parameter space (Fig. 3).486

Let us express +c as a function of the original parameters:487

+c =

 
q

−((1 + θ) − 1)R2
0 +

q

−(R2
0 − 1)(1 + θ)

(1 + θ) − R2
0

!2

, (18)

or equivalently:488

+c () :=





Ç

�

1 − 
∗
�

R2
0 +

Ç

(1 − R2
0)


∗

R2
0

∗ (c − 
∗)





2

.

Assuming +c () is defined for all  ∈ [0,c] implies c < ∗.489

In particular, since c is such that R2
0 = 1, we have490

+c (c) =
1

1 − c
∗
=: c . (19)

The condition  > c (implying  > 1) is equivalent to the condition we obtained for491

the existence of an endemic equilibrium in the boundary case R2
0 = 1, see Eq. (16).492

This means that in Fig. 3, the line R2
0 = 1 and the separatrix between the “disease-493

free” and “bistability” regions meet at the point (c,c).494

495
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B Side results on the spatial model496

497

B.1 Existence of a minimum linear spreading speed498

The function of the form ξ 7→ exp(−ξs)y is a solution of system (3) linearised499

around the disease-free equilibrium if and only if scy = Msy, in which500

Ms =







−ρ β

θ −1 + s2






,

see Eq. (11). Since Ms is irreducible and, for all s > 0, essentially non-negative, the501

Perron-Frobenius theorem provides the existence of a unique eigenvalue κs of Ms502

associated to a positive eigenvector [13][Theorem 1.4]. Therefore, sc = κs. Since503

c = κs/s is the dominant eigenvalue of 1
sMs, c is a convex function of s [11].504

B.2 Quasi-steady-state approximation505

In this section, we make a quasi-steady-state approximation to reduce our model to506

a single dimension [similarly to 26].507

Model (3) can be equivalently expressed as:508

1

ρ
τ =

β

ρ


(1 − )

(1 − ) + 
−  ,

τ = θ(1 − )


 + 1 − 
−  + ξξ .

(20)

We consider the case where the infected vector removal rate (m + ) is much lower509

than the removal rate of infected hosts r, so ρ = r/(m+ )≫ 1. This might happen in510

plant viruses if roguing occurs frequently relative to the vector lifespan (r ≫m), and511

the virus is persistent in the vector ( = 0).512

We apply the quasi-steady-state approximation to the first equation of (20) to513

yield the fraction of infected hosts  directly in terms of the fraction of infected vec-514

tors  as515

0 < ♯() :=

�

β
ρ + 1

�

 −
√

√

�

�

β
ρ − 1

�2
 + 4β

ρ
�



2( − 1)
< 1 .

(It can be easily shown that the other root is greater than unity.)516
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A B C

Figure 9: Exact linear spreading speed (c⋆, in red), as given by numerically solving Eq. (15), and
approximated linear spreading speed (c∗, in blue), as given by Eq. (23) in the monostable case. Our
quasi-steady-state-approximation (QSSA) assumes ρ ≫ 1. It is therefore unsurprising that the QSSA
performs badly when ρ ≤ 10. However, the approximation does not seem to deviate much from the
exact solution for small spreading speeds and ρ ≥ 1. This might explain why the QSSA correctly locates
the c = 0 curve in Fig. 8. Here, β = 2.4ρ, other parameter values as in Fig. 1.

This yields517

t ≈ θ(1 − )
♯()

♯() + 1 − ♯()
−  + ξξ =:W() + ξξ . (21)

518

B.2.1 Monostable case (R2
0 > 1)519

It is useful to notice that in the monostable case (R2
0 > 1), W(0) = 0, W(∗) = 0,520

and W() > 0 for all  ∈ (0,∗). It is well known that if521

W()


< W′(0) for all  ∈ (0,∗) , (22)

the spreading speed of the wave is linearly determined [52, 38]:522

c∗ = 2
Æ

W′(0) = 2

√

√

√

β

ρ
θ − 1 = 2

Ç

R2
0 − 1 . (23)

523

Fig. 9 compares the linear speed under the QSSA (Eq. (23)) with the exact linear524

spreading speed given by Eq. (15). The QSSA performs well for large values of ρ, but525

performs increasingly badly for smaller values of ρ that do not meet the assumption526

ρ≫ 1 behind the QSSA.527

Note, however, that if condition (22) is not satisfied, the spreading speed may528
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not be linearly determined. A sufficient condition for condition (22) not to hold is529

W′′(0) > 0. We have530

W′′(0) = −
2β
ρθ

�

(1 + ( − 1))βρ + 
�


,

and so W′′(0) > 0 is equivalent to531

 <

β
ρ ( − 1) − 

β
ρ

.

Or equivalently,532

( − 1)
β

ρ
+ 1 < 0 and  >

β
ρ

−(( − 1)βρ + 1)
=: ̃() . (24)

We also have533

̃(c) =
β
ρ

β
ρ −

1
θ − 1

=
1

1 − c
∗
= c ,

see Eq. (19). This means that the curve separating pulled waves (linear speed)534

with pushed waves (nonlinear speed) in the parameter plane “originates” at (c,c)535

(Fig. 10).536

537

B.2.2 Bistable case (R2
0 < 1)538

In the bistable case (R2
0 < 1), the wave speed is not linearly determined. How-539

ever, it is well known [21] that540

sign(c∗) = sign

�

∫ ∗2

0
W()d

�

, (25)

where ∗
2 is the stable nontrivial equilibrium of (21). Hence, the travelling wave has541

positive (negative) speed when the net area between the growth dynamics W()542

of the approximated system (21) and the horizontal axis in the range between the543

disease-free state and the stable endemic state is positive (negative, respectively).544

Figure 11 compares the linear spreading speed with the actual (numerically com-545

puted) spreading speed under the QSSA. It shows that in the bistable case ( < c),546

the spreading speed can be either negative or positive. In the monostable case547
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Figure 10: Two-parameter bifurcation analysis under the quasi-steady-state approximation (QSSA), i.e.,
model (21). The black line connecting (c, 0) to (c,c) is the boundary between the monostable case
with linear speed and the disease-free region. The blue line separates the disease-free region from the
bistability region, as given by Eq. (18). The red line separates the monostable/pushed wave from the
monostable/pulled wave (linear speed) region, as given by Eq. (24). Note that Eq. (24) only depends
on β/ρ, while Eq. (18) only depends on θ and β/ρ through R2

0 = βθ/ρ. Parameter values: θ = 2 and
β/ρ = 2.4. Note, however, that ρ must be much greater than 1 for the QSSA to hold.

( > c), the actual spreading speed significantly deviates from the linear speed for548

 close to c, but the actual speed converges to the linear speed as  increases.549

Figure 12 shows that the actual spreading does not depend on  when it is well550

approximated by the linear speed (for  > 0.3), while it increasingly depends on  as551

 decreases from  = 0.3. The dependency is greater in the bistable case ( = 0.15)552

than in the monostable pushed case ( = 0.2). As expected, the spreading speed is553

non-decreasing with .554
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