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Abstract. A group G = AB is the weakly mutually permutable product of the
subgroups A and B, if A permutes with every subgroup of B containing A∩B and B
permutes with every subgroup of A containing A ∩ B. Weakly mutually permutable
products were introduced by the first, second and fourth author and they showed
that if G′ is nilpotent, A permutes with every Sylow subgroup of B and B permutes
with every Sylow subgroup of A, then GF = AFBF, where F is a saturated formation
containing U, the class of supersoluble groups. In this article we prove results on weakly
mutually permutable products concerning F-residuals, F-projectors and F-normalisers
which provide new results on mutually permutable products. As an application of
some of our arguments, we unify some results on weakly mutually sn-products.

1. Introduction

All groups considered in this article will be finite.
Let a group G = AB be a product of two subgroups A and B. The structural influence

of the structure of the subgroups A and B with certain permutability properties on the
group G has been of interest to many authors for the past three decades (see [1]). In
this article we continue with the investigation on generalised products of finite groups
than the ones considered in [1].

We start by recalling some definitions and some notation: a group G is the mutually
permutable product of the subgroups A and B if G = AB and A permutes with every
subgroup of B and B permutes with every subgroup of A; a group G is the weakly
mutually permutable product of A and B if A permutes with every subgroup V of B
such that A∩B 6 V , and B permutes with every subgroup U of A such that A∩B 6 U ;
a group G is the weakly mutually sn-permutable product of A and B if A permutes with
every subnormal subgroup V of B such that A ∩ B 6 V , and B permutes with every
subnormal subgroup U of A such that A ∩ B 6 U . The classes of all finite nilpotent
and supersoluble groups, are denoted by N and U, respectively.

In [3] some results on mutually permutable products were extended to weakly mutu-
ally permutable products. In particular, the following was shown, which is a generali-
sation of [4, Theorem A]:

Theorem 1.1. [3, Theorem B] Let F be a saturated formation containing U. Let the
group G = AB be the weakly mutually permutable product of subgroups A and B.
Suppose that A permutes with each Sylow subgroup of B and B permutes with each
Sylow subgroup of A. If G′ is nilpotent, then GF = AFBF.
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Our objective in this article is to generalise more results on mutually permutable
products to weakly mutually permutable ones. In particular, we obtain new results on
mutually permutable products as a consequence. In [5] the following was shown:

Theorem 1.2. [5, Theorem 1] Let G = AB be the mutually permutable product of
subgroups A and B. If B is supersoluble and G′ is nilpotent, or B is nilpotent, then

GU = AU.

Part of this result was extended in [4], were the authors proved that if F is a saturated
formation containing the class U of supersoluble groups, then the F-residual respects
the operation of forming mutually permutable products with nilpotent commutator
subgroup, that is GF = AFBF. However, it turns out that the corresponding result is
not true if B is nilpotent, even in the case that F is a Fitting class, as the following
example shows:

Example 1.3. Let F = N2 be the class of metanilpotent groups. Then F is a satu-
rated Fitting formation containing U, which is closed for subgroups. Consider G = AB
the symmetric group of degree 4, where B is a Sylow 2-subgroup of G and A is the
alternating group of degree 4. Then A and B are mutually permutable. Moreover, A
is metanilpotent and B is nilpotent. But 1 = AN2 6= GN2

= V , where V is the Klein
four-group.

However, we have been able to prove the following extension of the result for weakly
mutually permutable products.

Theorem A. Let F be a subgroup-closed saturated formation containing U such that
every group in F has a Sylow tower of supersoluble type. Let G = AB be the weakly
mutually permutable product of A and B. If B is nilpotent and permutes with each
Sylow subgroup of A, then

GF = AF.

As a corollary, we also obtain a result on weakly mutually sn-permutable products.

A widely supersoluble group, or w-supersoluble group for short, is defined as a group
G such that every Sylow subgroup of G is P-subnormal in G (a subgroup H of a group
G is P-subnormal in G whenever either H = G or there exists a chain of subgroups
H = H0 6 H1 6 · · · 6 Hn−1 6 Hn = G, such that |Hi:Hi−1| is a prime for every
i = 1, . . . , n).

The class of w-supersoluble groups, denoted by wU, is a subgroup-closed saturated
formation containing U. Moreover w-supersoluble groups have a Sylow tower of super-
soluble type (see [8, Corollary]).

We recall some results we proved in [2]:

Theorem 1.4. [2, Theorems A and C, and Corollaries B and D] Let F = U or F = wU.
Let G = AB be the weakly mutually sn-permutable product of the subgroups A and B,
where A,B ∈ F. Suppose that B permutes with each Sylow subgroup of A. Then G ∈ F,
if one of the following holds:

(a) B is nilpotent;
(b) A permutes with each Sylow subgroup of B and G′ is nilpotent.

We unify these results by proving the following:
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Corollary B. Let F be a subgroup-closed saturated formation such that U ⊆ F ⊆ wU.
Let G = AB be the weakly mutually sn-permutable product of the F-subgroups A and
B. Suppose that either B or G′ is nilpotent. If B permutes with each Sylow subgroup
of A, then the group G belongs to F.

The case when G′ is nilpotent follows from the fact A and B are metanilpotent and
so are supersoluble and hence G is supersoluble by Theorem 1.4.

In [4], the authors showed that unfortunately the F-projectors and so the F-normalisers
of a mutually permutable product with nilpotent commutator subgroup cannot be ob-
tained from the corresponding projectors of the factor subgroups as the following ex-
ample shows: Let G = AB be the direct product of a cyclic group 〈a〉 of order 3 with
the alternating group A4 of degree 4. Let V be the Klein group in A4. Then G is the
mutually permutable product of A = A4 and B = 〈a〉 × V . Moreover, B and G′ = V
are abelian. Note that B is the supersoluble projector of B and a Sylow 3-subgroup A1

of A4 is a supersoluble projector of A. But A1B is not supersoluble.
Some conditions on F-projectors and F-normalisers allow us to have the following

result:

Theorem C. Let F be a formation. Assume that either F = U or F is a saturated Fitting
formation containing U. Let G = AB be the weakly mutually permutable product of the
subgroups A and B. Suppose that G′ is nilpotent, A1 is an F-normaliser of A such that
A ∩ B 6 A1 and B1 is an F-normaliser of B such that A ∩ B 6 B1, then A1B1 is an
F-normaliser of G.

In the above result, since G′ is nilpotent, we have that G ∈ NF. Applying [6, V,
4.2], the F-normalisers and the F-projectors coincide, hence the result is also true for
projectors.

2. Preliminary Results

In this section we first recall some properties of weakly mutually permutable products
and then prove some results needed in the proof of our main results.

Lemma 2.1. [3, Lemma 2.1] Let G = AB be the weakly mutually permutable prod-
uct of subgroups A and B and let N be a normal subgroup of G. Then G/N =
(AN/N)(BN/N) is the weakly mutually permutable product of AN/N and BN/N .

Lemma 2.2. Let G = AB be the weakly mutually permutable product of subgroups A
and B.

(a) If H is a subgroup of A such that A ∩ B 6 H and K is a subgroup of B such
that A ∩ B 6 K, then HK is a weakly mutually permutable product of H and
K.

(b) If A ∩ B = 1, then G is the totally permutable product of the subgroups A and
B, that is, every subgroup of A permutes with every subgroup of B.

(c) If B permutes with a Sylow subgroup Q of A, then any subgroup of B containing
A ∩B permutes with Q.

Proof. (a) and (b) are [3, Lemma 2.2]. For (c), if K is such that A∩B 6 K 6 B, then
for a Sylow subgroup Q of A, we have that QK = Q((A ∩ B)K) = (Q(A ∩ B))K =
K((A ∩B)Q) = KQ, as required. �
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Lemma 2.3. [3, Lemma 2.3] Let G = AB be the product of the subgroups A and B. If
A permutes with every Sylow subgroup of B and B permutes with every Sylow subgroup
of A, then A ∩ B also permutes with every Sylow subgroup of A and B. In particular,
A ∩B is a subnormal subgroup of G.

Our next lemma studies the behaviour of minimal normal subgroups of weakly mu-
tually permutable products containing the intersection of the factors.

Lemma 2.4. Let G = AB be the weakly mutually permutable product of subgroups A
and B. If N is a minimal normal subgroup of G such that A ∩ B 6 N , then either
A ∩N = B ∩N = 1 or N = (N ∩ A)(N ∩B).

Proof. Note that A∩N is a normal subgroup of A such that A∩B 6 A∩N and so H =
(A∩N)B is a subgroup of G. Observe that N ∩H = N ∩ (A∩N)B = (A∩N)(B∩N).
Since N∩H is a normal subgroup of H, we have B normalizes N∩H = (A∩N)(B∩N).

Arguing as above, we have that K = A(B∩N) is a subgroup of G such that K∩N =
A(B ∩N) ∩N = (A ∩N)(B ∩N). Moreover A normalizes K ∩N = (A ∩N)(B ∩N).
Therefore (A∩N)(B∩N) is a normal subgroup of G. By the minimality of N , it follows
that A ∩N = B ∩N = 1 or N = (N ∩ A)(N ∩B) as required. �

Lemma 2.5. Let F be a subgroup-closed saturated formation containing U such that
every group in F has a Sylow tower of supersoluble type. Let G be a primitive group
and let N be its unique minimal normal subgroup. Assume that G/N belongs F. If N
is a p-group, where p is the largest prime dividing |G|, then N = F (G) = Op(G) is a
Sylow p-subgroup of G.

Proof. It is sufficient to show that N is a Sylow p-subgroup of G. Note that G = NM
for some maximal subgroup M of G, N ∩M = 1 and CG(N) = N since G is a primitive
soluble group. By [6, A, Theorem 15.6(b)], Op(M) = 1. But M ∼= G/N ∈ F which
means that M ∈ F and so has a Sylow tower of supersoluble type. Hence a Sylow
p-subgroup of M is normal in M and so p does not divide |M |, as required. �

Lemma 2.6. Let F be a subgroup-closed saturated formation containing U such that
every group in F has a Sylow tower of supersoluble type. Let G = AB be the weakly
mutually permutable product of the subgroups A and B, where B is nilpotent and A is
an F-subgroup. If B permutes with each Sylow subgroup of A, then the group G belongs
to F.

Proof. Suppose the result is not true and let G be a counterexample with |G| minimal.
We shall get to a contradiction by the following steps.

(a) G is a primitive soluble group with a unique minimal normal subgroup N and
N = CG(N) = F (G) = Op(G) for some prime p.

By [2, Lemma 2.5], G is soluble since A soluble. Let N be a minimal normal subgroup
of G. Note that G/N = (AN/N)(BN/N) satisfies the hypotheses of the theorem by
Lemma 2.1 and this means that G/N belongs to F by the minimality of G. It follows
that G is a primitive soluble group since F is saturated formation and so G has a unique
minimal normal subgroup N with N = CG(N) = F (G) = Op(G) for some prime p.

(b) We prove that N = (N ∩ A)(N ∩B), BN belongs to F and 1 6= A ∩B 6 N .
If A ∩ B = 1, then by Lemma 2.2(i), G = AB is the totally permutable product

of subgroups A and B . By [1, Theorem 5.2.1], G belongs F, a contradiction. Hence
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A∩B 6= 1. It follows that A∩B is a nilpotent subnormal subgroup of G using Lemma
2.3. Therefore A∩B 6 F (G) = N and so N = (N ∩A)(N ∩B) by Lemma 2.4. Hence
BN = B(N ∩ B)(N ∩ A) = B(N ∩ A) is the weakly mutually permutable product of
B and N ∩ A. Since N ∩ A has only one Sylow subgroup, namely itself, B trivially
permutes with every Sylow subgroup of N ∩A. Notice that BN satisfies the hypotheses
of theorem. If BN < G, then BN belongs to F by the minimality of G. Assume that
G = BN . Let 1 6= M 6 A∩B 6 N . Since N is abelian, M is a normal subgroup of N .
Hence N = MG = MNB = MB 6 B and G = B, a contradiction. Thus BN belongs
to F, as required.

(c) N is the unique Sylow p-subgroup of G and p is the largest prime dividing |G|.
Let q be the largest prime dividing |G| and assume that q 6= p. Suppose first that

q divides |BN |. Note that BN belongs to F and so has a Sylow tower of supersoluble
type. It follows that BN has a unique Sylow q-subgroup, (BN)q say. This means
that (BN)q centralises N . Since CG(N) = N , we have that (BN)q = 1 which is a
contradiction. Therefore we may assume that q divides |A| but does not divide |BN |.
Since A also has a Sylow tower of supersoluble type, it follows that A has a unique
Sylow q-subgroup, Aq say. This means that Aq is a normal subgroup of Aq(N ∩ A).
Then Aq(N ∩ B) = Aq(A ∩ B)(N ∩ B) is the weakly mutually permutable product of
Aq(A∩B) and N ∩B by Lemma 2.2. Also, N ∩B permutes with each Sylow subgroup
of Aq(A ∩ B). Suppose that Aq(N ∩ B) < G. Then Aq(N ∩ B) belongs to F by the
minimality of G. In particular, Aq(N ∩B) has a unique Sylow q-subgroup since it has
a Sylow tower of supersoluble type. Hence Aq is normalised by N ∩ B. Hence Aq is
normalised by (N ∩A)(N ∩B) = N . This means that Aq centralises N , a contradiction.
We may assume that Aq(N ∩ B) = G. Then N ∩ B = B and so B is an elementary
abelian p-group. Moreover, A = Aq(A ∩ B). Then A ∩ B = N ∩ A is a normal Sylow
p-subgroup of A. Hence A∩B is normal in G because B is abelian. By the minimality
of N , we have N = A ∩B, that is, G = Aq(N ∩B) = Aq(A ∩B) = A, a contradiction.
Therefore p is the largest prime dividing |G|. By Lemma 2.5, N is the unique Sylow
p-subgroup of G.

(d) N is a subgroup of A and N is not contained in B.
Suppose that N is contained in B. Then a Hall p′-subgroup Bp′ of B must centralise

N = CG(N). Hence Bp′ = 1 and B is a p-group. Then G = AN . Let 1 6= M 6 A ∩ B.
Then N ≤MG = MAN = MA 6 A and so G = A, a contradiction. Therefore N is not
contained in B. Hence B has a non-trivial Hall p′-subgroup, Bp′ say, which is normal
in B. Consequently, ABp′ = A(A ∩ B)Bp′ is a subgroup of G. Then 1 6= BG

p′ 6 ABp′

and so N 6 ABp′ . Hence N 6 A, as required.

(e) Final Contradiction
Let Ap′ be a Hall p′-subgroup of A. If Ap′ = 1, then G = BN belongs to F by Step (b),

a contradiction. Hence Ap′ 6= 1. Since B permutes with every Sylow subgroup of A,
it follows that Ap′B is a subgroup of G. By Step (d), N is not contained in B. Hence
Ap′B is a proper subgroup of G. Since NAp′B = G, it follows that N ∩Ap′B = N ∩B is
normal in G. The minimality of N implies that N = N ∩B or N ∩B = 1. By Step (d),
N 6= N ∩B. Therefore N ∩B = 1, and then A∩B 6 N ∩B = 1, contradicting Step (b),
our final contradiction. �
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Theorem 2.7. [7, Theorem 2.2] Let F be a subgroup-closed saturated formation such
that U ⊆ F ⊆ wU. Let G = AB be a product of P-subnormal subgroups A and B such
A ∈ F and B is nilpotent. If B permutes with each Sylow subgroup of A, then G belongs
to F.

Corollary 2.8. Let F be a subgroup-closed saturated formation such that U ⊆ F ⊆ wU.
Let G = AB be the mutually sn-permutable product of the F-subgroups A and B, where
B is nilpotent. If B permutes with each Sylow subgroup of A, then the group G belongs
to F.

Proof. By [9, Lemma 4.5], A and B are P-subnormal subgroups of G. Using Theorem
2.7, we have that G ∈ F, as required. �

We are in a position to prove Corollary B which we restate below:

Corollary 2.9. Let F be a subgroup-closed saturated formation such that U ⊆ F ⊆ wU.
Let G = AB be the weakly mutually sn-permutable product of the F-subgroups A and
B, where B is nilpotent. If B permutes with each Sylow subgroup of A, then the group
G belongs to F.

Proof. The argument is the same as in the proof of Lemma 2.6, taking into consideration
Corollary 2.8 and some appropriate preliminary results in [2]. �

3. Main Results

In this section we prove our main results, which we shall restate.

Theorem 3.1. Let F be a subgroup-closed saturated formation containing U such that
every group in F has a Sylow tower of supersoluble type. Let G = AB be the weakly
mutually permutable product of subgroups A and B. If B is nilpotent and permutes with
each Sylow subgroup of A, then

GF = AF.

Proof. Suppose the theorem is not true and let G be a counterexample with |G| as small
as possible. We shall get a contradiction by the following steps.

(a) GF = AFN for each minimal normal subgroup N of G, F (G) = Op(G) for some
prime p and GF is an abelian p-group. Moreover, A ∩B 6= 1 is a p-group.

Since AGF/GF ∼= A/(A∩GF) ∈ F, we have that AF 6 GF. Hence GF 6= 1. Moreover,
by Lemma 2.6, we have that AF 6= 1. Let N be a minimal normal subgroup of G
such that N 6 GF. Then G/N is the weakly mutually permutable product of AN/N
and BN/N . Moreover, BN/N is nilpotent and permutes with each Sylow subgroup of
AN/N . Hence (G/N)F = (AN/N)F by the minimality of G. This implies that GF =
AFN . Let N1 be a minimal normal subgroup of G such that N1 
 GF. Then N1∩GF = 1
and GFN1 = AFN1. Moreover, GF = AF(N1 ∩ GF) = AF, a contradiction. This means
that every minimal normal subgroup of G is contained in GF and so GF = AFN for
each minimal normal subgroup N of G.

We want to show that GF is abelian. If A ∩ B = 1, then G = AB is the totally
permutable product of A and B and so AF = GF by [5, Theorem 1], a contradiction.
We may assume that 1 6= A ∩ B 6 F (G) by Lemma 2.3. Let N be a minimal normal
subgroup of G which is contained in F (G). Note that N is abelian. Suppose that N
is contained in A. Since AF is a normal subgroup of A, N normalizes AF and so AF is
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a normal subgroup of AFN = GF. We also have that GF/AF is abelian, which means
that (GF)′ 6 AF. If (GF)′ 6= 1, then AF contains a minimal normal subgroup N of G
and therefore GF = AFN = AF, a contradiction. We may assume that (GF)′ = 1, that
is, GF is abelian. Suppose that N is not contained in A. Consider Y = AN . Then
Y = A(Y ∩B) is the weakly mutually permutable product of A and Y ∩B. Moreover,
Y ∩ B is nilpotent and permutes with each Sylow subgroup of A. If Y < G, then
Y F = AF and N normalizes AF, which implies that GF is abelian since (GF)′ 6 AF. We
assume that G = Y = AN . Since B is nilpotent and A∩B is a subnormal subgroup of
A, (A ∩ B)[A ∩ B,A] = (A ∩ B)A 6 (A ∩ B)G 6 F (G) and [A ∩ B,A] is contained in
A. It follows that [A ∩ B,A] is a subnormal nilpotent subgroup of G. By [6, A, 14.3],
[A∩B,A] is normalized by N . Since [A∩B,A] is a normal subgroup of A, we have that
[A∩B,A] is a normal subgroup of AN = G. If [A∩B,A] = 1, then (A∩B)A = A∩B
is normalized by A and N , and thus A∩B is a normal subgroup of G. If [A∩B,A] 6= 1,
then it is a normal subgroup of G contained in A and in F (G). In both cases, there
exists N a minimal normal subgroup of G contained in F (G) and in A. By the same
argument as above, we have that GF is abelian.

We now show that GF is a p-group. Let N2 be a minimal normal subgroup of G.
Then N2 6 GF is an elementary abelian p-group for some prime p. Since GF = AFN2

and GF/AF is a p-group, we have that Op(GF) 6 AF. If Op(GF) 6= 1, then Op(GF) is a
normal subgroup of G, and AF contains a minimal normal subgroup of G. This means
that GF = AF, a contradiction. Hence Op(GF) = 1, that is, GF is a p-group for some
prime p. Since Soc(G) is contained in GF, we have that F (G) = Op(G).

(b) GF is contained in B and A ∩B is the unique Sylow p-subgroup of A.
Consider (A ∩ B)Ap′ , where Ap′ is a Hall p′-subgroup of A and let X be a maximal

subgroup of A containing (A ∩ B)Ap′ . Consider the subgroup H = XB which is the
weakly mutually permutable product of X and B. Note that B permutes with all Sylow
q-subgroups of X, for q 6= p since they are all Sylow q-subgroups of A and B also per-
mutes with all Sylow p-subgroups of X since they all contain A∩B (note A∩B 6 Op(X)
which is contained in all Sylow p-subgroups of X). If G = H, then A = X(A∩B) = X,
a contradiction. Hence H is a proper subgroup of G, hence HF = XF and so H normal-
izes XF. Note that XF 6 AF. If XF 6= 1, then (XF)G 6 (XF)A 6 AF, a contradiction.
Hence HF = XF = 1, that is H and X belong to F. Since X is a maximal subgroup of
A, X is an F-projector of A. Since AF is abelian, AFX = A and X ∩AF = 1 by [6, IV,
5.18]. This means that G = AFXB = GFH. By [6, III, 3.2], there exist an F-projector
F of G containing H and so G = GFF and F∩GF = 1. Hence GF = AF(GF∩XB) = AF,
a contradiction. Consequently, A = (A ∩ B)Ap′ . In particular, AF 6 A ∩ B 6 B and
A ∩ B is the unique Sylow subgroup of A since A ∩ B is a subnormal subgroup of A.
On the other hand, 1 6= (A ∩ B)G = (A ∩ B)B ≤ B. Hence there exists N a minimal
normal subgroup of G contained in B. Consequently GF = AFN ≤ B.

(c) AF (G) is a proper subgroup of G.
Suppose that G = AF (G). Let Z be a maximal subgroup of G such that A 6 Z.

Then Z = A(Z ∩B) is the weakly mutually permutable product of A and Z ∩B. Note
that Z ∩B permutes with each Sylow subgroup of A by Lemma 2.2. By the minimality
of G, we have ZF = AF, that is, AF is normal in Z. We also have that G = ZF (G).
Suppose that GF is not contained in Z. Then G = GFZ and so AF = ZF is normal in
G since AF is normal in GF. Therefore AF = GF, a contradiction. We may assume that
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GF 6 Z. Let N be a minimal normal subgroup of G. Since Soc(G) 6 GF by Step (a),
we have N 6 GF. Note that F (G) centralizes N . Hence N is also a minimal normal
subgroup of Z. This means that either N ∩ ZF ∈ {1, N}. If N ∩ ZF = N , then N is
contained in AF, a contradiction. Suppose that N∩ZF = 1. Then NZF/ZF is a minimal
normal subgroup of Z/ZF. Since Z/ZF ∈ F, we have N is F-central in Z and hence N
is also F-central in G. This means that N is contained in every F-normalizer of G using
[6, V, 3.2]. Let F be such an F-normalizer of G. Then G = GFF and GF ∩ F = 1, a
contradiction.

(d) Final contradiction.
We want to show that G = AP , where P is the Sylow p-subgroup of G, to obtain

our final contradiction. We also want to show that p is the largest prime dividing |G|.
Suppose that for every q dividing |B| and every Sylow q-subgroup Q of B, we have that
AQ is a proper subgroup of G. Then A(A ∩ B)Q is the weakly mutually permutable
product of A and (A ∩ B)Q. By Lemma 2.2, (A ∩ B)Q permutes with each Sylow
subgroup of A. Using the minimality of G, we have (AQ)F = AF. Therefore AF is
normalized by every Sylow q-subgroup of B, that is, AF is normal in G, a contradiction.
Hence G = AQ for some Sylow q-subgroup of B, Q say. Suppose that q 6= p. Then
AF is centralized by Q and that means AF is a normal subgroup of G, a contradiction.
Hence G = AP , where P is a Sylow p-subgroup of B. In particular, B is a p-group and
since A = (A ∩B)Ap′ , we have that G = Ap′P and P is a Sylow p-subgroup of G.

We now show that p is the largest prime dividing |G|. Let l be the largest prime
dividing |G| and L be a Sylow l-subgroup of G. Suppose l 6= p. We may assume that
L 6 A. Note that LGF is a normal subgroup of G since G/GF ∈ F and hence has a
Sylow tower of supersoluble type. Let Z be a maximal subgroup of G containing A.
Then Z = (Z ∩ B)A is the weakly mutually permutable product of A and Z ∩ B, and
Z ∩ B permutes with each Sylow subgroup of A. By the minimality of G, ZF = AF.
If GF is not contained in Z, then by the same argument in step (c), AF is a normal
subgroup of G, a contradiction. Hence GF is contained in Z. Therefore LGF is contained
in Z and so (LGF)F 6 ZF = AF. If (LGF)F 6= 1, then (LGF)F is a normal subgroup
of G contained in AF, a contradiction. This means that LGF ∈ F. In particular, L is
a normal subgroup of G since it is a characteristic subgroup of the normal subgroup
LGF. It follows that L 6 F (G) = Op(G), a contradiction. Therefore p is the largest
prime dividing |G|. Since GF 6 P and P/GF is a normal subgroup of G, P is a normal
subgroup of G. Hence P = F (G) and so G = AF (G), a contradiction to step (c). This
contradiction concludes our proof. �

Theorem 3.2. Let F be a formation. Assume that either F = U or F is a saturated
Fitting formation containing U. Let G = AB be the weakly mutually permutable product
of the subgroups A and B. Suppose that G′ is nilpotent, A1 is an F-normaliser of A
such that A ∩ B 6 A1 and B1 is an F-normaliser of B such that A ∩ B 6 B1, then
A1B1 is an F-normaliser of G.

Proof. Suppose the result is not true and let G be a counterexample with |G|+ |A|+ |B|
minimal. If A and B are both F-groups, then G is an F-group by [3, Lemma 2.6]. Hence
we may assume without loss of generality that 1 6= AF. Since F is a saturated formation,
AF is not contained in Φ(A). There is a subgroup T of A such that F (AF/(Φ(A)∩AF)) =
T/(Φ(A) ∩ AF) 6= 1. Note that T ∩ Φ(A) = AF ∩ Φ(A). Using [6, V, 3.7], it follows
that T is a nilpotent subgroup of G. Moreover, since GF ≤ G′, it follows that GF is
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nilpotent. Therefore T is a subnormal subgroup of G. Let M be a maximal subgroup
of A such that T is not contained in M . Then A = TM = AFM = F (A)M . Thus
M is an F-critical maximal subgroup of A. By [6, V, 3.7], every F-normaliser of M is
an F-normaliser of A. By [6, V, 3.2], F-normalisers of A are conjugate and so we may
assume that A1 6M . Note that G = T (MB) = F (G)(MB) = GF(MB). If G = MB,
then G is the weakly mutually permutable product of subgroups M and B and also
|G|+ |M |+ |B| < |G|+ |A|+ |B|. By the choice of G, A1B1 is an F-normaliser of G, a
contradiction. We may assume that MB < G. Note that MB is a maximal F-critical
subgroup of G. We have A1B1 is an F-normaliser of MB. Using [6, V, 3.7], we have
that A1B1 is an F-normaliser of G, a contradiction. This concludes our proof. �

As we have said in the introduction, the result is also true under these same hypothe-
ses for projectors.

The above result is not true for saturated Fitting formations containing U when B is
nilpotent as Example 1.3 shows.
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