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Abstract 

Statistical process monitoring (SPM) offers an important toolkit used to monitor the stability of a 

process to improve the quality of outputs and / or services. More often, the design of control charts 

requires the estimation of the probability density function that involves selecting a common distribution 

that facilitates the estimation of the process parameters. The Bayesian approach is one of the most 

efficient techniques used in such instances. It incorporates informative and non-informative priors, i.e., 

uses information on past data and charting structures, to estimate parameters more efficiently than 

classical approaches. Bayesian approaches reduce the total expected cost over a finite horizon or the 

long-run expected average cost. This paper introduces a new Bayesian exponentially weighted moving 

average (EWMA) monitoring scheme for long runs based on an ARMA-GARCH model. The properties 

of the new monitoring scheme are investigated in terms of the run-length distribution. A case study on 

monitoring the USD to ZAR exchange rate is provided using the proposed Bayesian ARMA-GARCH 

EWMA monitoring scheme. 

Keywords: ARMA; ARMA-GARCH; Bayesian approach; Control chart; EWMA; GARCH; Financial 

data; Prior distribution; Posterior distribution; Statistical process monitoring 

1. Introduction 

In production and manufacturing industries, it is important to produce goods and products of high 

quality on a regular basis. Statistical process monitoring (SPM) provides essential tools that help to 

control the stability of a process by spotting any abnormality that could ruin the outputs. One of the 

most popular tools used in SPM is the control chart (or monitoring scheme); see for instance, 

Montgomery (2020). Any process possesses a natural variability known as a “stable system of chance 

causes” which are an inherent part of the process itself. However, another type of variability can arise 

due to “special causes” resulting in the process operating in an out-of-control (OOC) state. These special 

causes of variation are also called “assignable causes” and they are often responsible for the 

deterioration of the quality of outputs or services; see for example, Montgomery (2020). The sooner a 

monitoring scheme detects assignable causes of variation, the more efficient it is and the better the 

outputs. 
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In SPM, there are two types of monitoring schemes, namely parametric and nonparametric monitoring 

schemes. Parametric monitoring schemes are typically based on the assumption of normality or a 

specific probability distribution (such as the binomial, Poisson, exponential, etc.); see for example, Sheu 

and Lin (2003) and Gadde et al. (2019). However, nonparametric monitoring schemes do not require 

any particular assumption of the underlying process distribution. They are mostly used when the nature 

of the underlying process distribution is unknow or when there is not enough information on the shape 

of the distribution; see for example, Mabude et al. (2020) and Celano and Chakraborti (2021). Very 

often, the parameters of the underlying process distribution are unknown. In this case, they must be 

estimated before the actual process monitoring starts. Thus, in practice, monitoring schemes are usually 

implemented in two stages known as phase I and phase II. Phase I (also known as the retrospective 

phase), uses historical data to estimate the parameters and control limits when a process is assumed to 

be in-control. In phase II, the parameters and control limits found in phase I are then used for monitoring 

purposes. For more details on monitoring schemes with estimated process parameters (i.e., Case U for 

unknown); see for example, Maravelakis et al. (2002), Owlia et al. (2017) and Abbas et al. (2019a, b)). 

In cases where historical data and information on the underlying process distribution and the parameters 

or target values are available, monitoring schemes are designed under the parameter known case (i.e., 

Case K for known); see for example, Malela-Majika (2022a, b). Otherwise, parametric and/or 

nonparametric monitoring schemes under the parameter unknown case are considered. In this case, 

process parameters are estimated using statistical techniques (such as maximum likelihood estimation 

(MLE), Bayesian estimation, bootstrapping, etc.); see for example, Ibazizen and Fellag (2003), Owlia 

et al. (2017) and Imran et al. (2022). For cost effective monitoring schemes, the Bayesian approach is 

used which is based on subjective probability that could include uncertainty into the model (see Abbasi 

et al. (2018) and Aunali and Venkatesan (2019)). The use of Bayesian methods in SPM is mostly in the 

areas that aim to estimate the monitoring schemes’ parameters more efficiently, considering both the 

cost of sampling and chart performance. It is well-known that the performance of a monitoring scheme 

is considerably affected by the parameter estimation and the dependency between and within samples 

(Zhou and Qui (2022) and Imran et al. (2022)). Therefore, the choice of appropriate methods that 

handles both autocorrelation and estimation issues is very important. 

In practice, data are often characterised by a serial dependency (or autocorrelation) between successive 

observations. Such data are efficiently monitored using time series monitoring schemes such as the 

autoregressive (AR), moving average (MA) and autoregressive moving average (ARMA) schemes (see, 

Alwan (1992), Jiang et al. (2000), and Ibazizen and Fellag (2003)). The choice of the time series model 

to use also depends on the type of data. Al-Osh and Alzaid (1987) introduced a model for stationary 

sequences of integer valued random variables with a lag-one dependence referred to as the integer-value 

autoregressive of order one (denoted as INAR(1)) model. They reported that the correlation structure 

and the distributional properties of the INAR(1) model are similar to those of continuous valued AR(1) 
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model. For more flexibility, Biswas and Song (2009) presented a unified framework of stationary 

ARMA processes for discrete-valued time series based on a stochastic operator. Weiß and Testik (2012) 

proposed a cumulative sum (CUSUM) control chart for integer-valued autoregressive conditional 

heteroscedasticity (INARCH) model to detect abrupt changes in count data time series. Vanli et al. 

(2019) proposed a CUSUM for Poisson integer-valued generalised autoregressive conditional 

heteroscedasticity (INGARCH) model. They showed that the CUSUM chart for INGARCH model 

based on a likelihood ratio can significantly provide improved performances in applications where serial 

correlation or seasonality is prevalent. For more details on time series for count data, readers are referred 

to McKenzie (1988), Woodall (1997), Ferland et al. (2006) and Xu et al. (2023). For continuous time 

series, Kim (2015) used an ARMA model to estimate asymmetric cost-sensitive loss functions for 

financial data. Tan et al. (2022) associated an autoregressive integrated moving average (ARIMA) 

model with a control chart to monitor stock price and trading volume at the same time. Using real-life 

stock exchange data, they demonstrated the effectiveness of the ARIMA monitoring scheme as 

compared to the performances of the volume-weighted moving average (VWMA) and relative strength 

index (RSI) schemes. Jones et al (2023) proposed the CUSUM and exponentially weighted moving 

average (EWMA) monitoring schemes using a Bayesian approach, where posterior predictive 

distributions are found using the squared error, precautionary and linex loss functions criteria. For more 

details on time series models for continuous data in SPM, readers are referred to Alwan and Roberts 

(1988), Stone (1995) and the review article by Knoth and Schmid (2004).  

Data on exchange rates and other financial transactions often exhibit a serial dependency and a 

considerable unstable clustering where periods of high volatility are quickly followed by periods of low 

volatility and vice versa. Very often, such processes do not have a constant mean. In this instance, time 

series schemes such as the AR, MA, and ARMA monitoring schemes are not recommended. Instead, 

the literature recommends the use of the Generalised Auto-Regressive Conditional Heteroskedasticity 

(GARCH) monitoring scheme to model the data in order to effectively monitor the stability of the 

process.  

This paper introduces a new long run Bayesian ARMA-GARCH EWMA monitoring scheme for 

monitoring, as an example, the United State Dollar (USD) to the South African Rand (ZAR) exchange 

rate. The remainder of this paper is organised as follows: Section 2 presents the USD/ZAR exchange 

rate data and explains how to get stationary time series data. Section 3 provides mathematical 

background of the existing times series monitoring schemes. In addition, the design and background of 

the existing Bayesian time series monitoring schemes is also given in Section 3. Section 4 develops a 

new Bayesian ARMA-GARCH EWMA (BAG EWMA) monitoring scheme. The performance of the 

proposed monitoring scheme is investigated in Section 5. The implementation and application of the 

new scheme is provided in Section 6. Section 7 presents the concluding remarks, directions for future 

research works and recommendations.    
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2. Monitoring the USD/ZAR exchange rate 

The purpose of this paper is to design a monitoring scheme that is able and efficient in monitoring the 

USD/ZAR exchange rate. Let 𝑋𝑡
∗ (𝑡 = 1,2.3,…) represents the USD/ZAR exchange rate at time 𝑡. 

Before the monitoring phase (i.e. phase II) can begin, it is necessary to visualise the data to have an idea 

of the long-term trend (see the solid line on Figure 1 (a)). The USD/ZAR exchange rate is displayed in 

Figure 1 (a) from the 31st July 2017 to the 29th July 2022; the data was sourced from the USA Economic 

Research Division3. This figure shows that the data are non-stationary and have an upwards trend. Time 

series analytical techniques assume that each observation is independent of one another. Stationarity of 

the data is one of the most important criteria to confirm this assumption. In this case study, the 

Augmented Dickey-Fuller (ADF) test is used to confirm the non-stationarity of the original data (i.e. 

the exchange rate data); see Kwiatkowski et al. (1992), Lopez (1997) and Paparoditis and Politis (2018) 

for more details and on the ADF test. Because it is found that the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 is larger than 0.05 it 

confirms that the original data are in fact non-stationary. In other words, we cannot reject the null 

hypothesis; and therefore, conclude that the time series has a unit root. Thus, before the monitoring 

process begins, it is important to transform the underlying process data into a stationary series. In this 

case, the data are transformed by computing the percentage change in the exchange rate, denoted as 𝑋𝑡, 

which is computed as follows: 

𝑋𝑡 = (
𝑋𝑡

∗ − 𝑋𝑡−1
∗

𝑋𝑡−1
∗ ) × 100. (1) 

Figure 1 (b) displays the percentage change in the USD/ZAR exchange rate from the 1st August 2017 

to the 29th July 2022. It can be clearly noticed that the process is now stationary, i.e., the mean and the 

variance do not change over time. Using the ADF test, it is found that the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 is now less than 

0.05 which means that the transformed data (the percentage changes) are stationary. 

  

 
3 Federal Reserve Economic Data (FRED); Link: https://fred.stlouisfed.org  

https://fred.stlouisfed.org/
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(a) Trend of the exchange rate USD/ZAR  

 

(b) Daily return of USD/ZAR exchange rate 

Figure 1. USD/ZAR exchange rate data from July 31st 2017 to July 29th 2022 

Since the transformed data are stationary the process can now be monitored using an efficient 

monitoring scheme for which the control limits and parameter estimates of the time series model are 

found using the phase I analysis. For the in phase I, we used the data from the 30th July 2014 to the 30th 

July 2017 (i.e. 1097 days).  

3. Statistical background on financial time series models 

3.1 ARMA model 
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Assume that {𝑋𝑡 , 𝑡 = 1,2,3, …} is a sequence of autocorrelated normally distributed observations with 

mean 0 and variance 𝜎𝑋
2. Then, the first order ARMA (i.e. ARMA (1,1)) model for stationary processes 

is defined by 

𝑌𝑡 = 𝜃0(𝑋𝑡 − 𝜗𝑋𝑡−1) + 𝜙𝑌𝑡−1 (2) 

with 𝜃0 = 1 + 𝜃 − 𝜙, where 𝜙 and 𝜃 are the coefficients of the ARMA (1,1) process, 𝜗 = 𝜃 𝜃0⁄  and 

the stationarity and invertibility constraints of the process require |𝜙| < 1 and |𝜗| < 1, respectively. 

Let us assume that the underlying process, 𝑌𝑡, is characterised by the autocorrelation structure 𝜌𝑡 with 

𝜌𝜏 =
𝛾𝜏

𝛾0
, (3) 

where  

                                   𝛾𝜏 = 𝑐𝑜𝑣(𝑌𝑡 , 𝑌𝑡+𝜏)    

= 𝑐𝑜𝑣 (𝜃0𝑋𝑡 + 𝛼 ∑ 𝜙𝑘−1𝑋𝑡−𝑘

𝑡−1

𝑘=1

, 𝜃0𝑋𝑡+𝜏 + 𝛼 ∑ 𝜙𝑘−1𝑋𝑡+𝜏−𝑘

𝜏+𝑡−1

𝑘=1

) 

                                    

= [𝜃0
2𝜌𝜏 + 𝜃0𝛼 (∑ 𝜙𝑘−1𝜌𝑡+𝑘

𝑡−1

𝑘=1

+ ∑ 𝜙𝑘−1𝜌𝑡−𝑘

𝑡+𝜏−1

𝑘=1

)

+ 𝛼2 ∑ ∑ 𝜙𝑖+𝑗−2𝜌𝑡−𝑗+𝑖

𝑡+𝜏−1

𝑗=1

𝑡−1

𝑖=1

] 𝜎𝑋
2, 

 

with 𝛼 = 𝜙𝜃0 − 𝜃 and 𝜃0 is defined earlier.  

From Equation (3), we have that 𝜌𝑘 = 𝜌−𝑘 and therefore without loss of generality 𝜌𝑡+𝑘 and 𝜌𝑡−𝑘 can 

simply be denoted as 𝜌𝑘. Then, when 𝜏 = 0, Jiang et al. (2000) showed that the variance of 𝑌𝑡 is: 

𝑉𝑎𝑟(𝑌𝑡) = 𝜎𝑌𝑡

2 = (𝜃0
2 + 2𝜃0𝛼 ∑ 𝜙𝑘−1𝜌𝑘 + 𝛼2 ∑ ∑ 𝜙𝑖+𝑗−2𝜌𝑗−𝑖

𝑡−1

𝑗=1

𝑡−1

𝑖=1

𝑡−1

𝑘=1

) 𝜎𝑋
2. (4) 

When the scheme has been running for a long time, i.e. 𝑡 → ∞, the variance of 𝑌𝑡 simplifies to 

𝑉𝑎𝑟(𝑌∞) = 𝜎𝑌∞

2 = (𝜃0
2 +

𝛼2

1 − 𝜙2
+ 2 (𝜃0𝛼 +

𝜙𝛼2

1 − 𝜙2
) ∑ 𝜙𝑘−1𝜌𝑘

∞

𝑘=1

) 𝜎𝑋
2, (5) 
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where ∑ 𝜙𝑘𝜌𝑘
∞
𝑘=1   converges towards some value 𝜓. 

 

3.2 GARCH model 

A stochastic process {𝑌𝑡} is called a first order GARCH (i.e. GARCH (1,1)) process if it is defined by 

𝑌𝑡 = 𝜇0 + 𝜀𝑡ℎ𝑡 ,      ℎ𝑡 > 0, 𝑡 ≥ 1  

and  (6) 

ℎ𝑡
2 = 𝜔 + 𝛽(𝑌𝑡−1 − 𝜇0)2 + 𝛼ℎ𝑡−1

2 ,  

where ℎ𝑡
2 is the conditional variance, 𝛼 and 𝛽 are the coefficients of the GARCH (1,1) process such that 

𝜔 > 0, 𝛼 ≥ 0, 𝛽 ≥ 0, the random variables 𝜀𝑡 are independent and identically distributed (i.i.d.) normal 

variables with mean 0 and variance 1 (i.e. standard normal innovation). The stationarity constraint 

requires that 𝛼 + 𝛽 < 1. Then, it follows that 𝐸(𝑌𝑡) = 𝜇0, 𝑐𝑜𝑣(𝑌𝑡 , 𝑌𝑠) = 0 ∀ 𝑡 ≠ 𝑠 with 𝑠 ≥ 1. Hence,  

𝜎2 = 𝑉𝑎𝑟(𝑌𝑡) = 𝐸(𝜀𝑡
2ℎ𝑡

2) =
𝜔

1 − 𝛼 − 𝛽
. (7) 

3.3 First order ARMA-GARCH model 

A linear regression model with a first order ARMA-GARCH (ARMA (1,1)-GARCH (1,1)) error can 

be defined as follows: 

𝑋𝑡 = 𝑐 + 𝛼(𝑋𝑡−1 − 𝑐) − 𝛽𝜀𝑡−1 + 𝜀𝑡 ,    𝜀𝑡 = √ℎ𝑡𝜂𝑡 

(8) and 

ℎ𝑡 = 𝜔 + 𝛼𝜀𝑡−1
2 + 𝛽ℎ𝑡−1, 

where 𝑐 is the mean level, ℎ𝑡 is defined in Equation (6), 𝜂𝑡 is the innovation and 𝛼 and 𝛽 are the 

coefficients of the GARCH(1,1) process. In this paper, the innovation terms independently and 

identically follow a standard normal distribution. 

Let 𝝋 = (𝜙, 𝜃, 𝛼, 𝛽) is the vector of parameters where 𝜙 and 𝜃 are the coefficients of the ARMA (1,1) 

process defined in Equation (2) and 𝛼 and 𝛽 are defined in Equations (6) and (8). The parameters of the 

above process can be estimated using the maximum likelihood estimation (MLE) technique. Thus, the 

likelihood function can be written as 

𝐿(𝝋) = 𝐿(𝝋, 𝜀1, 𝜀2, … 𝜀𝑚) = ∏
1

√2𝜋ℎ𝑡

 𝑒𝑥𝑝 (
𝜀𝑡

2

2ℎ𝑡
) ,

𝑚

𝑡=1

 (9) 

where 
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𝜀𝑡 = 𝛽−1(𝐿)𝛼(𝐿)(𝑋𝑡 − 𝑐)  

is the residual of the ARMA part in which 

𝛽(𝐿) = (1 + 𝛽𝐿),      𝛼(𝐿) = (1 − 𝛼𝐿) 

and 𝐿 is the lag operator. 

Using the log likelihood function, Equation (9) becomes: 

𝑙𝑜𝑔𝐿(𝝋) = −
𝑚

2
log(2𝜋) −

1

2
∑ (log(ℎ𝑡) +

𝜀𝑡
2

ℎ𝑡
) .

𝑚

𝑡=1

 (10) 

Maximising Equation (10) is equivalent to minimising the following expression: 

𝝋̂ = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐼(𝝋), (11) 

where 𝐼(𝝋) = 𝑚−1 ∑ 𝜓𝑡
𝑚
𝑡=1  and 𝜓𝑡 = 𝜀𝑡

2 ℎ𝑡 + log (ℎ𝑡)⁄ .   

4. Design of the proposed Bayesian ARMA-GARCH EWMA monitoring scheme 

The Bayesian design of a monitoring scheme is based on the properties of the posterior density 

distribution defined by  

𝑝(𝝋|𝑋) =
𝐿(𝑌|𝑿, 𝝋)𝑝(𝝋)

∫ 𝐿(𝑌|𝑿, 𝝋)𝑝(𝝋)𝑑𝝋
  , (12) 

where 𝝋 is the set of parameters of the first order Bayesian ARMA-GARCH (hereafter, BAG) model 

as defined above, 𝐿(𝑌|𝑿, 𝝋) is the likelihood function, and 𝑝(𝝋) is the prior density. In this paper, we 

use the following proper prior for simplicity: 

𝑝(𝝋) = 𝑁(𝜇𝜀0
, 𝜎𝜀0

2 ) ×  𝑁(𝜇𝑣 , 𝜎𝑣
2) ×  𝑁(𝜇𝜙 , 𝜎𝜙

2)𝐼𝜙(𝐶1) × … × 𝑁(𝜇𝛽 , 𝜎𝛽
2)𝐼𝛽(𝐶2), (13) 

 where 𝜀0 is the pre-sample error, the prior parameters 𝜇𝜙 and 𝜇𝛽 were chosen to be equal to zero (i.e. 

𝜇𝜙 = 𝜇𝛽 = 0), 𝜎𝜙
2 = 𝜎𝛽

2 = 1, and 𝐼𝝋(𝐶𝑗) (𝑗 = 1, 2, …, 4) is the indicator function which is equal to one 

if the constraint 𝐶𝑗 holds; otherwise zero. 

In this paper, the constraints on the parameters in a BAG model are defined as follows (see also Jiang 

et al. (2000)): 
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(i) 𝐶1: all the roots of 1 − 𝛼(𝐿) = 0 are outside the unit circle, 

(ii) 𝐶2: all the roots of 1 − 𝛽(𝐿) = 0 are outside the unit circle, 

(iii)  𝐶3: 𝛼 ≥ 0, 

(iv)  𝐶4: 𝛽 ≥ 0, and 

(v)  𝐶4: 𝛼 + 𝛽 < 1, 

where 𝐿 is the lag operator. 

The expected value and variance of a function of parameters are given by  

𝐸[𝑓(𝝋)] = ∫ 𝑓(𝝋) 𝑝(𝝋|𝑿) 𝑑𝝋 (14) 

and  

𝑉𝑎𝑟[𝑓(𝝋)] = 𝐸[𝑓2(𝝋)] − [𝐸(𝑓(𝝋))]
2

, (15) 

where the integral symbol actually denotes a quadruple integral for each of the parameters 𝜙, 𝜃, 𝛼 and 

𝛽 of the ARMA-GARCH model, and 𝑓(𝝋) depends on the type of inference under consideration (i.e. 

probabilistic or non-probabilistic). In the ARMA-GARCH model it is analytically difficult to evaluate 

the quadruple integral defined in Equation (14). Therefore, numerical integration methods such as 

Monte Carlo integration have to be used to solve this integral.  

Then, Equation (14) can be approximated by Monte Carlo simulation using 

𝐸[𝑓(𝝋)] =
1

𝑚
∑ 𝑓(𝝋(𝑖)),

𝑚

𝑖=1

 (16) 

where 𝝋(1), 𝝋(2), …, 𝝋(𝑚) are 𝑚 samples of the parameter vector 𝝋 generated from the posterior 

distribution. This is done using the Metropolis-Hasting (MH) algorithm which is a Markov chain 

sampling method. For more details on the MH algorithm, readers are referred to Brooks (1998) and 

Luengo et al. (2020). 

4.1 Metropolis-Hasting algorithm 

We suggest to use the following MH algorithm to estimate the parameters of the ARMA-GARCH 

model: 

Step 1 Select the initial 𝝋, denoted as 𝝋(0), 

Step 2 For 𝑖 = 1, …, 𝑚, 
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(i) Draw candidate 𝝋(𝑖), denoted as 𝝋∗, 𝜑∗~𝑔(𝝋∗|𝝋(𝑖−1)) where 𝑝(𝝋(𝑖)) ∝

𝑔(𝝋(𝑖)).  

(ii) Determine 𝛼: 

𝛼 =
𝑔(𝝋∗) 𝑔(𝝋∗|𝝋(𝑖−1))⁄

𝑔(𝝋(𝑖−1)) 𝑔(𝝋(𝑖−1)|𝜑∗)⁄
=

𝑔(𝝋∗)𝑔(𝝋(𝑖−1)|𝝋∗)

𝑔(𝝋(𝑖−1))𝑔(𝝋∗|𝝋(𝑖−1))
 

(iii) If 𝛼 ≥ 1 accept 𝝋∗ and set 𝝋(𝑖) = 𝝋∗.   

However, if 0 < 𝛼 < 1, then accept 𝝋∗ and set 𝝋(𝑖) = 𝝋∗ with probability 𝛼. 

Otherwise, reject 𝝋∗ and set 𝝋(𝑖) = 𝝋(𝑖−1) with probability 1 − 𝛼. 

Step 3 Repeat Steps 1 and 2 a certain number of times (e.g., 10000 iterations). 

Step 4 Compute the average for elements of  𝝋(𝑖) denoted as 𝝋̂. 

Step 5 Record the result. 

To investigate the performance of the proposed BAG EWMA scheme, we first need to estimate the 

ARMA-GARCH model of the USD/ZAR exchange rate using the expression given in Equation (8). 

The Bayesian estimation of the ARMA-GARCH model is obtained by using the Markov chain Monte 

Carlo (MCMC) method explained above. The number of iterations of the Markov chain sampling is 

10000 and the size of the Monte Carlo samples is 1000 to guarantee the convergence of the parameters 

to their true values. A kernel smoothing method with a Gaussian kernel is used to estimate the strict 

stationarity and ergodicity of the GARCH model. To estimate the posterior probabilities, we generate 

𝑋~𝑁(0,1).  

4.2 Phase I study 

In this section, we explain how the parameters of the models were estimated using the in-control phase 

I sample, and also how the size of this sample was chosen. Note that the estimation of the parameters 

of the time series model were done in phase I using data from the 30th July 2014 to the 30 July 2017 

(i.e. 1097 days). The phase I data were collected on a long-term period in order to see a trend in the 

time series data. We used the rugarch and brms packages in R and every time that there was an OOC 

signal, the sample was discarded and the search for new parameters was initiated. The parameters found 

when the process was declared in-control were recorded and used to compute the control limits. Note 

that the prior parameters 𝜇𝜙 and 𝜇𝛽 were chosen to be equal to zero. For the simulation, the initial 

parameters were also set to zero. Table 1 presents the results found using the MH algorithm for two 

different cases by imposing some constraints on the parameters in the ARMA-GARCH model. The first 

case (i.e. Case 1) forces the approximation to be near the unit root and the second case (i.e. Case 2) 

imposes the variance to be strictly stationary and ergodic. Using Geweke’ s criterion, we noticed that 

all the t statistics lie within [-1.96, 1.96], which indicates that the estimates efficiently converge to their 

true values. 
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Table 1. Parameter estimates when 𝑚 = 1000 with 10000 replications 

Cases 𝑣̂ 𝜔̂ 
𝝋̂ 

𝜙̂ 𝜃̂ 𝛼̂ 𝛽̂ 

Case 1 1.045 2.857 0.017 0.557 0.561 0.110 

Case 2 0.612 0.413 0.022 0.583 1.450 0.308 

      

4.3 Bayesian ARMA-GARCH EWMA monitoring scheme 

Thus, once the parameter estimates 𝝋̂, 𝜀𝑡̂ and 𝜎̂𝑡
2 are found, then the BAG statistic is given by 

𝑍𝑡 =
𝜀𝑡̂

𝜎̂𝑡
 (17) 

and the proposed BAG EWMA monitoring scheme is constructed as follows: 

• The charting statistic of the BAG EWMA scheme, denoted as 𝐵𝐴𝐺𝐸𝑊𝑀𝐴𝑡, is defined by  

𝐵𝐴𝐺𝐸𝑊𝑀𝐴𝑡 = 𝜆𝑍𝑡 + (1 − 𝜆)𝐵𝐴𝐺𝐸𝑊𝑀𝐴𝑡−1, (18) 

where 𝑡 (𝑡 = 1,2, … ) and 𝑍𝑡 is defined as in Equation (17), 𝜆 (with 0 < 𝜆 ≤ 1) is the smoothing 

parameter and the starting value 𝐵𝐴𝐺𝐸𝑊𝑀𝐴0 is set to be equal to zero.   

• Then, for the time varying BAG EWMA scheme, the process is considered to be OOC if  

|𝐵𝐴𝐺𝐸𝑊𝑀𝐴𝑡| ≥ 𝑐√
𝜆

(2 − 𝜆)
(1 − (1 − 𝜆)2𝑡) ,  (19) 

where 𝑐 > 0, the control limit constant, is selected such that the attained in-control 𝐴𝑅𝐿 is as close as 

possible to a pre-specified 𝐴𝑅𝐿0 value. 

• When the process has been running for a long time, an OOC situation is simply triggered if  

|𝐵𝐴𝐺𝐸𝑊𝑀𝐴𝑡| ≥ 𝑐√
𝜆

(2 − 𝜆)
 .  (20) 

5. Results and discussion 

The performance of the proposed BAG EWMA monitoring scheme is evaluated using the 

characteristics of the run-length distribution which is the number of rational subgroups to be plotted on 
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the scheme before the first OOC signal. Here we use, the average run-length (ARL), the standard 

deviation of the run-length (SDRL) and five percentiles 𝑃0.05, 𝑃0.25, 𝑃0.5, 𝑃0.75, and 𝑃0.95 of the run-

length (PRL) which are the most popular run-length characteristics used in SPM. 

Let 𝑁 be the run-length of the proposed BAG EWMA scheme. Then, 𝑁 can be defined as follows: 

𝑁 = inf {𝑡 ≥ 1||𝐵𝐴𝐺𝐸𝑊𝑀𝐴𝑡| ≥ 𝑐√
𝜆

(2 − 𝜆)
(1 − (1 − 𝜆)2𝑡)}. (21) 

5.1 In-control performance 

In this subsection, the in-control properties of the proposed scheme under both Case 1 and Case 2 (see 

Table 1) are investigated in terms of the in-control ARL, SDRL and PRL profiles, and the results are 

summarised in Table 2 for a nominal pre-specified 𝐴𝑅𝐿 (𝐴𝑅𝐿0) = 370. The findings in Table 2 reveal 

that as the magnitude of 𝜆 increases, the control limits get wider for both time varying and asymptotic 

cases. In addition, the control limits are wider when the conditional variance is strictly stationary and 

ergodic as compared to a near unit root situation. In terms of the SDRL profile, it can be seen that the 

proposed scheme is less likely to give more false alarms when it has been running for a long time (i.e. 

for an asymptotic case). However, in terms of the PRL profile, the proposed scheme is likely to detect 

a signal a bit sooner when it has been running for a long time. 
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Table 2. Case 1 and Case 2: ARL, SDRL and PRL profiles of the BAG EWMA scheme when 𝐴𝑅𝐿0 = 370 

Case 1 In-control asymptotic control limits 

𝝀 𝒄 𝑨𝑹𝑳 𝑺𝑫𝑹𝑳 
𝑷𝑹𝑳 

𝑷𝟎.𝟎𝟓 𝑷𝟎.𝟐𝟓 𝑷𝟎.𝟓 𝑷𝟎.𝟕𝟓 𝑷𝟎.𝟗𝟓 

0.05 1.2764 370.10 357.81 31 115 259 507 1087 

0.10 1.3693 370.10 361.37 25 112 258 515 1085 

0.20 1.4298 370.06 366.47 23 108 258 511 1093 

0.35 1.4652 370.48 370.21 21 104 256 514 1122 

0.50 1.4980 370.02 374.31 19 103 252 514 1126 

0.75 1.5543 370.61 370.06 18 107 254 514 1119 

0.90 1.5731 370.40 372.27 18 107 256 510 1121 

Case 2 In-control asymptotic control limits 

0.05 1.8178 370.07 361.72 31 115 260 506 1089 

0.10 1.9156 370.06 363.28 25 113 260 510 1096 

0.20 2.0012 370.02 372.78 17 104 256 508 1125 

0.35 2.1873 370.02 379.72 13 102 255 518 1108 

0.50 2.3855 370.06 381.29 10 100 253 521 1124 

 0.75 2.6174 370.34 381.46 9 98 250 527 1131 

0.90 2.6831 370.24 381.24 9 98 251 524 1138 

Case 1 In-control time varying control limits 

0.05 1.2974 370.01 392.40 4 87 247 520 1183 

0.10 1.3782 370.07 377.99 9 98 253 523 1115 

0.20 1.4339 370.08 374.83 15 102 257 514 1111 

0.35 1.4670 369.96 374.92 16 100 2523 515 1128 

0.50 1.4989 370.08 377.53 16 101 251 515 1130 

0.75 1.5545 370.50 370.86 18 107 254 514 1119 

0.90 1.5731 370.04 371.81 18 107 255 510 1121 

Case 2 In-control time varying control limits 

0.05 1.8736 370.03 436.57 1 50 230 529 1245 

0.10 1.9515 370.01 425.16 1 60 235 531 1215 

0.20 2.0248 370.40 417.33 1 69 239 520 1207 

0.35 2.2016 370.02 405.50 1 83 245 522 1157 

0.50 2.3948 370.06 391.56 2 91 249 525 1144 

0.75 2.5673 370.64 382.87 7 97 251 527 1133 

0.90 2.6833 370.02 381.72 8 98 250 524 1137 

 

5.2 Out-of-control performance 

In this subsection, the OOC performance of the proposed scheme is investigated in terms of the OOC 

ARL, SDRL and 𝑃0.5 profiles, respectively, with simultaneous shifts in the mean level of the process 

(𝜇1 = 𝜇0 + 𝛿𝜎0 = 𝛿 since 𝜇0 = 0 and 𝜎0 = 1) and error variance (𝜎1 = Δ𝜎0 = Δ since 𝜎0 is taken to be 

equal to 1 and Δ > 1). In addition to the run-length characteristics, the quality loss function (QLF) is 

used to study the overall performance of the proposed scheme. A QLF describes the relationship 

between the shift size and the quality impact. Thus, the EQL is mathematically defined by 

 𝐸𝑄𝐿(𝛿) =
1

𝛿𝑚𝑎𝑥(∆𝑚𝑎𝑥−1)
∫ ∫ 𝑤(𝛿, ∆). 𝐴𝑅𝐿(𝛿, ∆)

𝛿𝑚𝑎𝑥

1
  𝑑𝛿 𝑑∆

𝛿𝑚𝑎𝑥

0
,                                  (22)           

where 𝛿𝑚𝑎𝑥 and ∆𝑚𝑎𝑥 are the upper boundaries of the range of shifts in the mean and error variance, 

respectively, and 𝑤(𝛿, ∆) (with 𝑤(𝛿, ∆) = 𝛿2 + ∆2 − 1) represents the weight function associated with 

𝛿 and ∆.   

The expression of the EQL given in Equation (22) can also be written as follows 
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𝐸𝑄𝐿(𝛿, ∆) =
1

𝛿𝑚𝑎𝑥(∆𝑚𝑎𝑥 − 1)
∑ ∑ (𝛿2 + ∆2 − 1) × 𝐴𝑅𝐿(𝛿, ∆)

∆𝑚𝑎𝑥

∆=1

𝛿𝑚𝑎𝑥

𝛿=0

. (23) 

Note that the minimum value of the EQL implies the best performance. 

Tables 3 and 4 present the results of the OOC properties of the proposed scheme when 𝜆 ∈{0.05, 0.10, 

0.20, 0.35, 0.50, 0.90} and 𝐴𝑅𝐿0 = 370 for an asymptotic case. The results in Tables 3 and 4 can be 

summarized as follows: 

• When the mean level is in-control and ∆∈{1.5, 2, 3.5,5,5.5,8}, the proposed scheme performs 

better for large values of 𝜆 in terms of the 𝐴𝑅𝐿 profile. However, in terms of the 𝑃0.5 profile, 

the smaller the smoothing parameter the better the performance of the proposed scheme. 

• In terms of the 𝐴𝑅𝐿 and 𝑃0.5 profiles, when there is a simultaneous shift in the mean level and 

the error standard deviation, the smaller the value of 𝜆 the more efficient the proposed scheme 

is.  

• The proposed scheme becomes more sensitive when there is a simultaneous shift in the process 

mean and error variance. 

• The 𝑆𝐷𝑅𝐿 profile reveals that the proposed scheme is likely to give more false alarms for large 

values of 𝜆. 

• In many situations, the performance of the proposed scheme deteriorates in Case 2 as compared 

to Case 1.
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Table 3. Case 1: 𝐴𝑅𝐿, 𝑆𝐷𝑅𝐿 and 𝑃0.5 profiles for the asymptotic BAG EWMA scheme with shifts in the error variance term (Δ) and mean level (𝛿) for different 𝜆 values and 𝐴𝑅𝐿0 = 370 

𝜹 𝚫 

𝝀 

0.05 0.10 0.20 0.35 0.50 0.75 0.90 

𝑨𝑹𝑳 𝑺𝑫𝑹𝑳 𝑷𝟎.𝟓 𝑨𝑹𝑳 𝑺𝑫𝑹𝑳 𝑷𝟎.𝟓 𝑨𝑹𝑳 𝑺𝑫𝑹𝑳 𝑷𝟎.𝟓 𝑨𝑹𝑳 𝑺𝑫𝑹𝑳 𝑷𝟎.𝟓 𝑨𝑹𝑳 𝑺𝑫𝑹𝑳 𝑷𝟎.𝟓 𝑨𝑹𝑳 𝑺𝑫𝑹𝑳 𝑷𝟎.𝟓 𝑨𝑹𝑳 𝑺𝑫𝑹𝑳 𝑷𝟎.𝟓 

0 

1.5 78.4 71.0 57.0 58.4 54.2 42.0 42.1 39.7 30.0 32.0 31.3 22.0 28.2 28.2 20.0 27.3 27.7 19.0 27.4 27.7 19.0 

2.0 38.3 34.1 28.0 26.7 23.6 20.0 17.2 16.1 12.0 12.0 11.7 8.0 10.1 10.1 7.0 9.3 9.8 6.0 9.3 9.9 6.0 

3.5 14.4 13.3 10.0 8.7 8.7 6.0 5.3 5.4 3.0 3.7 3.7 2.0 3.1 3.0 2.0 2.8 2.6 2.0 2.7 2.6 2.0 

5.0 8.3 8.5 5.0 5.0 5.3 3.0 3.1 3.1 2.0 2.3 2.0 1.0 2.0 1.7 1.0 1.9 1.5 1.0 1.8 1.4 1.0 

5.5 7.0 7.4 4.0 4.3 4.7 2.0 2.7 2.6 2.0 2.0 1.7 1.0 1.9 1.5 1.0 1.7 1.3 1.0 1.7 1.3 1.0 

8.0 4.2 5.0 2.0 2.8 3.1 2.0 1.9 1.8 1.0 1.6 1.1 1.0 1.5 0.9 1.0 1.4 0.8 1.0 1.4 0.8 1.0 

EQL 37.3 38.4 22.5 24.0 24.9 15.6 15.6 15.1 9.9 11.9 10.1 6.8 10.7 8.6 6.6 9.9 7.8 6.4 9.8 7.7 6.4 

0.2 

1.0 97.4 80.8 74.0 118.0 106.7 85.0 157.1 151.9 111.0 204.4 199.1 144.0 246.1 242.3 173.0 294.3 292.0 206.0 306.3 305.2 211.0 

1.5 56.0 47.5 42.0 45.3 40.3 33.0 35.9 33.7 25.0 28.6 27.4 20.0 26.1 25.9 18.0 26.1 26.5 18.0 26.6 26.8 18.0 

2.0 34.7 30.3 25.0 24.8 22.5 18.0 16.3 15.5 12.0 11.5 11.4 8.0 9.8 9.7 7.0 9.2 9.5 6.0 9.1 9.4 6.0 

3.5 13.9 13.0 10.0 8.8 8.5 6.0 5.3 5.2 3.0 3.7 3.6 2.0 3.1 3.0 2.0 2.8 2.59 2.0 2.8 2.5 2.0 

5.0 8.1 8.4 5.0 4.9 5.2 3.0 3.1 3.2 2.0 2.3 2.1 1.0 2.0 1.7 1.0 1.9 1.5 1.0 1.9 1.4 1.0 

5.5 7.1 7.4 4.0 4.3 4.7 2.0 2.8 2.8 2.0 2.1 1.8 1.0 1.9 1.5 1.0 1.7 1.3 1.0 1.7 1.3 1.0 

8.0 4.2 5.0 2.0 2.7 3.0 1.0 1.9 1.7 1.0 1.6 1.1 1.0 1.5 1.0 1.0 1.4 0.8 1.0 1.4 0.9 1.0 

EQL 35.9 37.0 21.8 23.3 24.0 12.9 15.7 15.1 9.9 12.1 10.4 7.0 10.9 9.1 6.8 10.3 8.2 6.7 10.3 8.3 6.7 

0.4 

1.0 36.2 23.4 30.0 40.3 31.5 31.0 52.6 47.1 38.0 79.6 76.8 57.0 114.8 114.0 79.0 177.8 179.9 123.0 202.0 206.6 137.0 

1.5 31.4 23.9 24.0 27.7 23.0 21.0 24.1 21.3 18.0 21.6 20.4 15.0 21.2 20.5 15.0 22.5 22.9 15.0 23.0 23.4 16.0 

2.0 26.4 21.3 20.0 20.2 17.4 15.0 14.2 13.0 10.0 10.5 10.2 7.0 9.1 8.9 6.0 8.6 8.9 6.0 8.9 9.0 6.0 

3.5 13.4 12.2 10.0 8.4 8.0 6.0 5.1 5.1 3.0 3.7 3.6 2.0 3.1 3.0 2.0 2.8 2.6 2.0 2.8 2.6 2.0 

5.0 8.2 8.3 5.0 5.0 5.3 3.0 3.1 3.2 2.0 2.3 2.1 1.0 2.0 1.7 1.0 1.9 1.5 1.0 1.9 1.4 1.0 

5.5 7.0 7.4 4.0 4.3 4.6 2.0 2.8 2.7 2.0 2.1 1.8 1.0 1.9 1.5 1.0 1.8 1.3 1.0 1.8 1.3 1.0 

8.0 4.3 5.1 2.0 2.7 3.0 2.0 1.9 1.7 1.0 1.6 1.1 1.0 1.5 0.9 1.0 1.4 0.8 1.0 1.4 0.8 1.0 

EQL 34.4 35.2 20.7 22.2 22.7 14.6 15.1 14.3 9.6 12.0 10.3 6.9 11.1 9.0 6.9 10.9 8.7 7.1 11.1 8.8 7.2 
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Table 4. Case 2: ARL, SDRL and 𝑃0.5 profiles for the asymptotic BAG EWMA scheme with shifts in the error variance term (Δ) and mean level (𝛿) for different 𝜆 values and 𝐴𝑅𝐿0 = 370 

𝜹 𝚫 

𝝀 

0.05 0.10 0.20 0.35 0.50 0.75 0.90 

𝑨𝑹𝑳 𝑺𝑫𝑹𝑳 𝑷𝟎.𝟓 𝑨𝑹𝑳 𝑺𝑫𝑹𝑳 𝑷𝟎.𝟓 𝑨𝑹𝑳 𝑺𝑫𝑹𝑳 𝑷𝟎.𝟓 𝑨𝑹𝑳 𝑺𝑫𝑹𝑳 𝑷𝟎.𝟓 𝑨𝑹𝑳 𝑺𝑫𝑹𝑳 𝑷𝟎.𝟓 𝑨𝑹𝑳 𝑺𝑫𝑹𝑳 𝑷𝟎.𝟓 𝑨𝑹𝑳 𝑺𝑫𝑹𝑳 𝑷𝟎.𝟓 

0 

1.5 152.2 146.0 107.0 116.4 117.8 80.0 84.2 91.6 55.0 76.9 87.9 49.0 76.8 88.9 48.0 77.1 

34.5 

10.6 

5.5 

4.8 

2.5 

90.2 

47.3 

21.5 

14.5 

13.4 

8.4 

48.0 

14.0 

1.0 

1.0 

1.0 

1.0 

77.7 91.5 48.0 

2.0 101.1 99.9 70.0 66.3 72.2 43.0 38.8 49.4 21.0 33.1 45.4 14.0 33.6 46.6 14.0 34.7 47.6 15.0 

3.5 50.4 63.8 27.0 27.4 41.7 6.0 13.8 26.0 2.0 10.3 20.7 2.0 10.3 21.2 1.0 10.9 21.6 1.0 

5.0 30.9 50.4 5.0 14.5 29.2 2.0 7.2 17.1 1.0 5.7 14.4 1.0 5.5 14.6 1.0 5.8 15.2 1.0 

5.5 27.5 48.9 3.0 13.1 27.5 2.0 6.5 16.4 1.0 4.6 12.4 1.0 4.4 12.4 1.0 4.8 13.4 1.0 

8.0 16.5 37.6 1.0 8.1 21.7 1.0 3.5 10.5 1.0 2.6 7.4 1.0 2.4 6.9 1.0 2.5 8.0 1.0 

EQL 130.2 221.7 32.8 67.6 132.3 16.6 34.3 75.2 9.7 26.7 59.1 8.6 25.9 58.5 8.2 26.8 63.1 8.2 27.2 62.9 8.3 

0.2 

1.0 102.7 86.5 77.0 124.9 115.2 90.0 187.6 187.5 126.5 280.3 286.6 193.0 315.0 322.8 215.0 331.0 343.0 225.0 336.0 343.4 229.0 

1.5 94.8 86.2 68.0 83.5 81.8 58.0 69.0 74.1 45.0 67.4 78.8 41.0 71.4 82.9 44.0 73.6 86.6 45.0 74.0 86.5 45.0 

2.0 81.0 79.1 57.0 57.8 62.0 38.0 36.5 46.6 20.0 33.0 44.8 14.0 33.2 46.5 14.0 34.9 49.4 14.0 35.6 50.2 15.0 

3.5 48.5 61.9 26.0 25.9 39.7 6.0 12.8 23.8 2.0 9.8 19.9 2.0 10.0 20.2 1.0 10.5 21.4 1.0 11.0 22.2 1.0 

5.0 31.4 51.0 6.0 14.5 29.7 2.0 7.2 17.6 1.0 5.4 13.7 1.0 5.1 13.2 1.0 5.5 14.7 1.0 5.4 14.0 1.0 

5.5 27.7 47.4 3.0 13.2 28.2 2.0 6.2 15.1 1.0 4.5 12.1 1.0 4.3 11.8 1.0 4.4 12.3 1.0 4.6 12.7 1.0 

8.0 16.2 37.4 1.0 7.7 20.6 1.0 3.5 10.4 1.0 2.5 7.0 1.0 2.5 7.5 1.0 2.5 7.6 1.0 2.5 7.8 1.0 

EQL 125.3 215.2 30.5 64.3 128.1 15.4 33.1 72.7 9.4 26.0 57.1 8.6 25.9 58.0 8.4 26.8 61.1 8.5 27.3 61.7 8.6 

0.4 

1.0 38.7 25.2 32.0 43.8 34.3 33.0 70.0 66.1 50.0 159.7 164.9 109.0 219.7 228.2 149.0 261.9 273.8 180.0 270.0 281.4 186.0 

1.5 46.8 37.1 36.0 44.5 39.8 33.0 43.7 46.1 29.0 55.8 66.0 34.0 62.7 76.1 39.0 67.9 82.0 41.0 69.0 83.2 42.0 

2.0 51.1 46.1 38.0 40.7 42.1 28.0 29.8 37.0 16.0 29.2 41.2 12.0 31.2 43.7 12.0 33.1 46.6 13.0 34.0 47.7 14.0 

3.5 41.5 52.1 23.0 24.3 37.2 6.0 12.4 23.2 2.0 9.5 19.7 2.0 10.1 21.1 2.0 10.6 22.3 1.0 10.5 21.8 1.0 

5.0 28.5 46.1 5.0 14.4 28.4 2.0 7.0 16.0 1.0 5.4 14.0 1.0 5.3 13.9 1.0 5.4 14.3 1.0 5.5 14.3 1.0 

5.5 26.3 45.1 3.0 12.4 26.4 2.0 6.3 15.6 1.0 4.7 12.8 1.0 4.3 11.7 1.0 4.7 13.6 1.0 4.6 13.1 1.0 

8.0 15.5 35.3 1.0 7.2 19.2 1.0 3.6 11.0 1.0 2.6 8.3 1.0 2.4 7.3 1.0 2.4 7.2 1.0 2.5 7.4 1.0 

EQL 112.4 195.2 25.4 58.7 117.7 13.5 31.8 71.3 8.5 26.4 61.2 8.7 26.6 59.4 9.2 28.0 62.9 9.1 28.4 62.9 9.3 
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Tables 5 and 6 present the results of the OOC properties of the proposed scheme when 𝜆 ∈{0.05, 0.1, 

0.2, 0.35, 0.5, 0.9} for a nominal 𝐴𝑅𝐿0 = 370 for time varying case. The results in Tables 5 and 6 can 

be summarized as follows: 

• When the mean level is in-control and ∆∈{1.5, 2, 3.5,5,5.5,8}, the proposed scheme performs 

better for moderate values of 𝜆 in terms of the 𝐴𝑅𝐿 profile. However, in terms of the 𝑃0.5 profile, 

the smaller the smoothing parameter the better the performance of the proposed scheme. 

• In terms of the 𝐴𝑅𝐿 and 𝑃0.5 profiles, when there is a simultaneous shift in the mean level and 

the error standard deviation, the smaller the value of 𝜆 the more efficient the proposed scheme 

is.  

• The proposed scheme becomes more sensitive as the effect of the combined shift increases. 

• The 𝑆𝐷𝑅𝐿 profile reveals that the proposed scheme is likely to give more false alarms for large 

and very small values of 𝜆. 

• It is also noticed that in many situations, the proposed scheme performs better in Case 1 as 

compared to Case 2.
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Table 5. Case 1: ARL, SDRL and 𝑃0.5 profiles for the time-varying BAG EWMA scheme with shifts in the error variance term (Δ) and mean level (𝛿) for different 𝜆 values and 𝐴𝑅𝐿0 = 370 

𝜹 𝚫 

𝝀 

0.05 0.10 0.20 0.35 0.50 0.75 0.90 

𝑨𝑹𝑳 𝑺𝑫𝑹𝑳 𝑷𝟎.𝟓 𝑨𝑹𝑳 𝑺𝑫𝑹𝑳 𝑷𝟎.𝟓 𝑨𝑹𝑳 𝑺𝑫𝑹𝑳 𝑷𝟎.𝟓 𝑨𝑹𝑳 𝑺𝑫𝑹𝑳 𝑷𝟎.𝟓 𝑨𝑹𝑳 𝑺𝑫𝑹𝑳 𝑷𝟎.𝟓 𝑨𝑹𝑳 𝑺𝑫𝑹𝑳 𝑷𝟎.𝟓 𝑨𝑹𝑳 𝑺𝑫𝑹𝑳 𝑷𝟎.𝟓 

0 1.5 54.4 71.6 26.0 46.2 54.7 28.0 36.3 39.5 24.0 29.6 31.5 20.0 27.0 28.2 18.0 27.1 27.8 19.0 27.3 27.8 19.0 

2.0 18.9 29.3 6.0 16.3 22.0 7.0 12.6 15.2 7.0 10.1 11.4 6.0 9.3 10.1 6.0 9.2 9.8 6.0 9.3 9.9 6.0 

3.5 3.9 7.1 1.0 3.9 5.8 2.0 3.4 4.3 2.0 3.0 3.3 2.0 2.8 2.8 2.0 2.7 2.6 2.0 2.7 2.6 2.0 

5.0 2.0 2.9 1.0 2.1 2.7 1.0 2.0 2.1 1.0 2.0 1.8 1.0 1.9 1.6 1.0 1.8 1.5 1.0 1.9 1.5 1.0 

5.5 1.9 2.5 1.0 1.9 2.3 1.0 1.9 1.8 1.0 1.8 1.5 1.0 1.7 1.4 1.0 1.7 1.3 1.0 1.7 1.3 1.0 

8.0 1.4 1.3 1.0 1.5 1.3 1.0 1.4 1.1 1.0 1.4 0.9 1.0 1.4 0.9 1.0 1.4 0.8 1.0 1.4 0.8 1.0 

EQL 12.9 17.2 6.4 12.5 14.8 7.0 11.2 11.3 6.8 10.4 9.1 6.5 9.9 8.3 6.4 9.7 7.8 6.4 9.9 7.8 6.4 

0.2 1.0 90.7 86.0 66.0 114.6 110.3 81.0 154.7 155.3 107.0 203.1 201.4 143.0 245.2 243.5 172.0 294.3 292.4 206.0 306.2 305.2 211.0 

1.5 38.2 46.8 21.0 35.3 40.0 22.0 30.8 33.6 20.0 26.4 27.4 18.0 24.9 25.9 17.0 25.8 26.6 18.0 26.5 26.8 18.0 

2.0 16.9 26.2 5.0 14.7 19.8 6.0 12.4 14.9 7.0 9.9 11.2 6.0 9.0 9.6 6.0 9.1 9.5 6.0 9.0 9.4 6.0 

3.5 3.8 6.9 1.0 3.7 5.5 2.0 3.4 4.3 2.0 2.9 3.2 2.0 2.8 2.9 2.0 2.8 2.6 2.0 2.8 2.5 2.0 

5.0 2.1 3.0 1.0 2.1 2.7 1.0 2.0 2.2 1.0 1.9 1.8 1.0 1.9 1.6 1.0 1.9 1.5 1.0 1.9 1.4 1.0 

5.5 1.9 2.4 1.0 1.9 2.1 1.0 1.9 1.9 1.0 1.8 1.5 1.0 1.7 1.4 1.0 1.7 1.3 1.0 1.7 1.3 1.0 

8.0 1.4 1.2 1.0 1.4 1.1 1.0 1.4 1.1 1.0 1.4 1.0 1.0 1.4 0.8 1.0 1.4 0.8 1.0 1.4 0.8 1.0 

EQL 12.2 15.7 6.2 11.8 13.4 6.7 11.2 11.5 6.8 10.4 9.4 6.6 10.2 8.4 6.6 10.3 8.2 6.7 10.3 8.1 6.7 

0.4 1.0 30.5 25.3 24.0 37.1 32.5 28.0 51.0 47.7 36.0 78.4 77.7 55.0 114.1 114.7 78.0 177.6 180.1 123.0 201.9 206.6 137.0 

1.5 20.8 23.9 13.0 21.2 23.5 14.0 20.2 21.1 14.0 19.7 20.3 13.0 20.3 20.5 14.0 22.3 22.9 15.0 23.0 23.4 16.0 

2.0 12.7 18.4 5.0 12.2 16.0 6.0 10.6 12.6 6.0 9.1 10.2 6.0 8.4 8.9 5.0 8.4 8.8 5.0 8.8 9.0 6.0 

3.5 3.6 6.4 1.0 3.7 5.4 1.0 3.3 4.1 2.0 3.0 3.1 2.0 2.7 2.7 2.0 2.7 2.6 2.0 2.8 2.6 2.0 

5.0 2.1 3.2 1.0 2.1 2.6 1.0 2.0 2.1 1.0 1.9 1.8 1.0 1.9 1.6 1.0 1.8 1.4 1.0 1.8 1.4 1.0 

5.5 1.9 2.5 1.0 1.9 2.3 1.0 1.8 1.8 1.0 1.8 1.6 1.0 1.7 1.3 1.0 1.7 1.3 1.0 1.8 1.3 1.0 

8.0 1.4 1.3 1.0 1.4 1.2 1.0 1.4 1.0 1.0 1.4 0.9 1.0 1.4 0.9 1.0 1.4 0.8 1.0 1.4 0.8 1.0 

EQL 11.1 14.4 5.9 11.1 12.7 6.1 10.6 10.4 6.6 10.4 9.1 6.6 10.3 8.6 6.7 10.7 8.6 7.0 11.0 8.8 7.2 
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Table 6. Case 2: ARL, SDRL and 𝑃0.5 profiles for the time-varying BAG EWMA scheme with shifts in the error variance term (Δ) and mean level (𝛿) for different 𝜆 values when 𝐴𝑅𝐿0 = 370 

𝜹 𝚫 

𝝀 

0.05 0.10 0.20 0.35 0.50 0.75 0.90 

𝑨𝑹𝑳 𝑺𝑫𝑹𝑳 𝑷𝟎.𝟓 𝑨𝑹𝑳 𝑺𝑫𝑹𝑳 𝑷𝟎.𝟓 𝑨𝑹𝑳 𝑺𝑫𝑹𝑳 𝑷𝟎.𝟓 𝑨𝑹𝑳 𝑺𝑫𝑹𝑳 𝑷𝟎.𝟓 𝑨𝑹𝑳 𝑺𝑫𝑹𝑳 𝑷𝟎.𝟓 𝑨𝑹𝑳 𝑺𝑫𝑹𝑳 𝑷𝟎.𝟓 𝑨𝑹𝑳 𝑺𝑫𝑹𝑳 𝑷𝟎.𝟓 

0 

1.5 95.0 152.9 18.0 80.6 122.1 24.5 64.7 92.9 25.0 66.6 88.2 33.5 72.0 89.1 42.0 76.4 90.5 47.0 77.6 91.5 48.0 

2.0 41.8 85.3 2.0 33.4 64.1 2.0 26.4 47.1 3.0 27.3 45.0 4.0 31.1 47.2 9.0 33.9 47.3 13.0 34.6 47.5 15.0 

3.5 11.4 37.8 1.0 8.9 26.2 1.0 6.7 18.2 1.0 7.4 17.7 1.0 8.2 19.1 1.0 10.4 21.6 1.0 10.8 21.9 1.0 

5.0 5.6 22.7 1.0 4.5 16.6 1.0 3.6 11.4 1.0 3.5 10.5 1.0 4.3 12.2 1.0 5.4 14.6 1.0 5.8 15.0 1.0 

5.5 4.3 19.7 1.0 3.9 15.7 1.0 3.0 9.8 1.0 3.1 9.2 1.0 3.8 11.3 1.0 4.6 12.8 1.0 4.8 13.4 1.0 

8.0 2.2 10.7 1.0 2.2 9.0 1.0 1.9 6.0 1.0 1.9 5.3 1.0 2.1 6.5 1.0 2.4 7.5 1.0 2.5 7.7 1.0 

EQL 27.5 95.3 5.6 23.6 73.7 5.9 18.9 50.0 6.0 19.4 46.4 6.5 22.2 53.6 7.4 26.1 60.5 8.0 27.1 62.2 8.3 

0.2 

1.0 90.2 98.0 60.0 116.8 128.0 77.0 184.3 208.1 116.0 276.9 301.0 182.0 315.7 334.4 212.0 332.1 344.3 226.0 336.0 343.4 229.0 

1.5 56.3 86.0 14.0 55.5 82.3 18.0 53.1 75.3 21.0 59.2 79.9 28.0 67.2 83.3 38.0 72.7 86.5 44.0 73.9 86.5 45.0 

2.0 32.8 67.3 2.0 30.1 56.6 2.0 23.7 42.8 2.0 26.1 42.3 4.0 30.5 46.3 8.0 34.0 49.2 12.0 35.5 50.2 15.0 

3.5 10.7 34.6 1.0 8.4 24.9 1.0 6.5 17.5 1.0 7.4 18.2 1.0 8.7 19.6 1.0 9.9 20.9 1.0 11.0 22.1 1.0 

5.0 5.2 21.3 1.0 4.4 15.6 1.0 3.6 11.8 1.0 3.9 11.6 1.0 4.3 12.2 1.0 5.4 14.8 1.0 5.3 13.9 1.0 

5.5 4.1 18.7 1.0 3.4 12.7 1.0 3.0 9.8 1.0 3.2 9.8 1.0 3.8 11.4 1.0 4.4 12.5 1.0 4.6 12.7 1.0 

8.0 2.3 10.8 1.0 2.1 8.2 1.0 1.8 5.9 1.0 1.8 5.2 1.0 2.1 6.6 1.0 2.2 6.6 1.0 2.6 8.1 1.0 

EQL 24.5 87.5 5.5 21.4 65.3 5.7 18.2 49.1 5.9 19.7 48.0 6.5 22.8 54.5 7.5 25.7 58.9 8.2 27.4 62.3 8.6 

0.4 

1.0 29.7 28.6 23.0 37.6 37.6 27.0 65.6 72.8 42.0 155.5 171.9 102.0 219.4 234.6 147.0 261.4 274.9 179.0 269.8 281.5 186.0 

1.5 26.5 38.2 8.0 28.3 40.0 11.0 33.0 45.9 13.0 48.9 66.1 23.0 59.1 76.8 33.0 67.2 82.2 39.0 68.9 83.1 42.0 

2.0 19.9 37.1 2.0 20.2 36.1 2.0 18.9 33.2 2.0 23.3 38.9 3.0 28.2 43.3 6.0 32.5 46.4 12.0 33.9 47.6 13.0 

3.5 8.9 27.4 1.0 7.5 21.8 1.0 6.4 17.1 1.0 7.0 17.0 1.0 8.5 19.7 1.0 10.2 21.5 1.0 10.5 21.8 1.0 

5.0 5.0 20.7 1.0 4.4 16.2 1.0 3.5 11.2 1.0 3.7 11.2 1.0 4.2 11.7 1.0 5.1 13.6 1.0 5.5 14.3 1.0 

5.5 4.2 18.0 1.0 3.6 13.0 1.0 3.0 10.1 1.0 3.2 9.8 1.0 3.6 10.4 1.0 4.4 12.5 1.0 4.6 13.1 1.0 

8.0 2.1 10.5 1.0 2.0 7.6 1.0 1.8 5.8 1.0 2.0 6.2 1.0 2.2 6.9 1.0 2.5 7.7 1.0 2.5 7.5 1.0 

EQL 20.8 77.9 5.3 19.1 60.0 5.5 17.0 46.8 5.7 19.9 49.6 6.7 23.2 54.7 7.8 27.4 61.9 8.9 28.3 63.1 9.2 
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5.3. Performance of the proposed scheme under different prior distributions 

In this section, specific and overall performances of the proposed scheme in terms of the 𝐴𝑅𝐿 and 𝐸𝑄𝐿 

profiles are evaluated using different prior distributions when 𝜆 ∈{0.1,0.5,0.9} for a nominal 𝐴𝑅𝐿0 = 

370. For illustration purpose, the sensitivity of the proposed scheme using the proper prior introduced 

earlier (normal prior hereafter) is compared to its sensitivity under the Student’ s t and gamma prior 

distributions with degrees of freedom 𝑑𝑓 = 5 and parameters (𝑎, 𝑏) =(1,1), respectively. These prior 

distributions are denoted as 𝑡(𝑑𝑓) and Gamma(𝑎,𝑏). 

The results in Table 7 reveal that in terms of the 𝐴𝑅𝐿 and 𝐸𝑄𝐿 profiles, the proposed scheme performs 

better under the normal prior as compared to its performance under the t(5) and Gamma(1,1) prior 

distributions. The proposed scheme performs worst under skewed prior distributions (see large 𝐴𝑅𝐿 

and 𝐸𝑄𝐿 values under the Gamma(1,1) prior distribution). Under heavy-tailed and skewed prior 

distributions the performance of the proposed scheme degrades as 𝜆 increases. 

 

Table 7. Case 1: ARL profiles for the time-varying BAG EWMA scheme with shifts in the error variance term 

(Δ) and mean level (𝛿) for 𝜆 ∈{0.10,0.5,0.9} values when 𝐴𝑅𝐿0 = 370 

𝜹 𝚫 
The proposed proper prior 

𝒑(𝝋) 

t(5) Gamma(1,1) 

0.1 0.5 0.9 0.1 0.5 0.9 0.10 0.5 0.9 

0 1.5 46.2 27.0 27.3 46.5 40.2 80.1 55.1 57.8 79.0 

 2.0 16.3 9.3 9.3 17.5 20.8 39.3 19.4 27.9 25.7 

 3.5 3.9 2.8 2.7 3.5 4.5 12.1 5.6 6.7 10.2 

 5.0 2.1 1.9 1.9 2.2 2.5 5.6 2.9 2.9 8.1 

 5.5 1.9 1.7 1.7 1.4 1.9 4.5 2.2 2.3 7.0 

 8.0 1.5 1.4 1.4 1.3 1.5 2.3 1.9 1.9 3.9 

EQL 12.5 9.9 9.9 11.6 13.3 27.3 15.8 17.4 33.4 

0.2 1.0 114.6 245.2 306.2 110.4 219.3 316.3 125.5 295.9 350.4 

1.5 35.3 28.9 26.5 39.3 29.9 32.1 40.6 32.3 38.9 

2.0 14.7 9.0 9.0 15.9 13.7 14.0 18.2 16.4 20.7 

3.5 3.7 3.2 2.8 3.8 4.3 5.2 4.3 6.0 9.1 

5.0 2.1 1.9 1.9 1.9 2.2 2.7 3.1 3.1 4.3 

5.5 1.9 1.7 1.7 1.5 1.9 1.9 2.3 2.4 3.5 

8.0 1.4 1.4 1.4 1.4 1.5 1.5 2.1 2.0 2.8 

EQL 11.8 10.5 10.3 11.6 12.2 13.2 15.7 15.8 21.9 

0.4 1.0 37.1 114.1 201.9 40.6 120.7 233.4 45.4 136.6 267.6 

1.5 21.2 24.3 23.0 24.1 26.9 29.6 26.4 33.3 36.4 

2.0 12.2 10.4 8.8 11.4 13.2 12.1 14.3 14.4 20.4 

3.5 3.7 2.7 2.8 3.4 3.1 3.7 4.8 6.6 8.2 

5.0 2.1 1.9 1.8 1.9 2.1 2.6 2.0 4.6 5.1 

5.5 1.9 1.7 1.8 1.7 1.7 2.0 1.6 2.7 3.0 

 8.0 1.4 1.4 1.4 1.3 1.5 1.7 1.5 1.8 2.2 

EQL 11.1 10.7 11.0 10.5 11.8 13.9 11.9 17.6 21.5 

 

6. Case study: monitoring the USD/ZAR exchange rate using the proposed Bayesian ARMA-

GARCH monitoring scheme 

Volatility is an integral part of financial time series analysis and can be well-handled by models such 

as ARCH, GARCH and other variants of time series models; see, for example, Lange (2011) and 

Lawrance (2013). In financial industries, it is very important to detect a change (or shift) in the process 

as soon as they occur. This is made possible through the use of appropriate flexible and more efficient 

time series monitoring schemes. The combination of ARMA and GARCH models for the innovations 
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results, denoted as ARMA-GARCH model, is more recommended by econometrician in such instances. 

This model is used because of its flexibility to model both the mean and variance. In this section, the 

proposed BAG EWMA scheme is used to monitor the USD/ZAR exchange rate. In this case study, it is 

necessary to detect any departure from the target process parameter as soon as possible. A change in 

the process parameter can be due to or lead to significant changes in the exchange rate and affects 

businesses in two ways: i) by changing the cost of supplies that are purchased from a different country, 

and ii) by changing the attractiveness of their products to overseas customers. 

The charting statistics of the proposed BAG EWMA scheme are displayed in Figure 2.  For Case 1, the 

control limit constants used to compute the asymptotic control limits of the proposed BAG EWMA 

scheme are 1.2764 and 1.3693 when 𝜆 = 0.05 and 0.1, respectively; while the ones for Case 2 are given 

by 1.8178 and 1.9156, respectively (see Table 2); the asymptotic control limits are displayed in the 

figures below. Figures 2 (a)-(d) show that for Case 1, when 𝜆 = 0.05 and 0.10, the proposed monitoring 

scheme gives a signal on the 55th and 391st samples in the prospective phase.  These samples correspond 

to the 16th of Oct 2017 and 29th of January 2019, respectively. However, for Case 2, when 𝜆 = 0.05 and 

0.10, the proposed scheme gives a signal on the 36th and 393rd samples which corresponds to the 19th of 

September 2017 and the 31st of Jan 2019. It can be seen that the proposed BAG EWMA scheme 

performs better for small smoothing parameters when the variance is strictly stationary and ergodic, i.e. 

Case 2. Apart from the general deterioration in the South African Rand, as shown in steady upward 

trend observed in Figure 1(a), it is interesting to note that both charts signal before the start of the Covid 

19 pandemic. We can thus conclude that despite the severe negative impact the pandemic had, it did 

not lead to any statistically significant changes in the ZAR/USD exchange rate as monitored using the 

BAG EWMA scheme. 
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(a) Case 1 when 𝜆 = 0.05 (OOC 55th sample) 

 

(b) Case 1 when 𝜆 = 0.1 (OOC 391st sample) 
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(c) Case 2 when 𝜆 = 0.05 (OOC 36th sample) 

 

(d) Case 2 when 𝜆 = 0.1 (OOC 393rd sample) 

Figure 2. BAG EWMA monitoring scheme for the returns of the USD/ZAR exchange rate data 
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7. Conclusion 

This paper introduces a new ARMA-GARMA EWMA monitoring scheme for volatile long run 

processes using the Bayesian approach where the method is implemented utilising the MH algorithm to 

find the posterior and parameters of the model. It is found that, in many cases, the proposed monitoring 

scheme performs better when the approximation is done near the unit root. However, the case study 

revealed that the ability of the proposed scheme increases when the variance is strictly stationary and 

ergodic with small smoothing parameters. Thus, the proposed scheme is mostly recommended when 

the process is significantly volatile. 

Note that the performance of the proposed monitoring scheme was investigated for two cases, i.e. when 

the estimation is done near the unit root and when the variance is strictly stationary and ergodic. For 

other cases and assumptions, the results might differ from the findings observed in this paper. Therefore, 

the performance of the proposed scheme needs to be investigated according to assumptions. 

In future, researchers can investigate the performance and robustness of the proposed monitoring 

scheme using different priors and assumptions. Researchers can also investigate the performance of the 

proposed monitoring schemes for higher order ARMA models, i.e., when 𝑝 > 1 and 𝑞 > 1 and also 

look at the design of the ARMA-GARMA CUSUM monitoring scheme using the Bayesian approach. 
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