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Abstract

Statistical process monitoring (SPM) offers an important toolkit used to monitor the stability of a
process to improve the quality of outputs and / or services. More often, the design of control charts
requires the estimation of the probability density function that involves selecting a common distribution
that facilitates the estimation of the process parameters. The Bayesian approach is one of the most
efficient techniques used in such instances. It incorporates informative and non-informative priors, i.e.,
uses information on past data and charting structures, to estimate parameters more efficiently than
classical approaches. Bayesian approaches reduce the total expected cost over a finite horizon or the
long-run expected average cost. This paper introduces a new Bayesian exponentially weighted moving
average (EWMA) monitoring scheme for long runs based on an ARMA-GARCH model. The properties
of the new monitoring scheme are investigated in terms of the run-length distribution. A case study on
monitoring the USD to ZAR exchange rate is provided using the proposed Bayesian ARMA-GARCH
EWMA monitoring scheme.
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1. Introduction

In production and manufacturing industries, it is important to produce goods and products of high
quality on a regular basis. Statistical process monitoring (SPM) provides essential tools that help to
control the stability of a process by spotting any abnormality that could ruin the outputs. One of the
most popular tools used in SPM is the control chart (or monitoring scheme); see for instance,
Montgomery (2020). Any process possesses a natural variability known as a “stable system of chance
causes” which are an inherent part of the process itself. However, another type of variability can arise
due to “special causes” resulting in the process operating in an out-of-control (OOC) state. These special
causes of variation are also called “assignable causes” and they are often responsible for the
deterioration of the quality of outputs or services; see for example, Montgomery (2020). The sooner a
monitoring scheme detects assignable causes of variation, the more efficient it is and the better the

outputs.
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In SPM, there are two types of monitoring schemes, namely parametric and nonparametric monitoring
schemes. Parametric monitoring schemes are typically based on the assumption of normality or a
specific probability distribution (such as the binomial, Poisson, exponential, etc.); see for example, Sheu
and Lin (2003) and Gadde et al. (2019). However, nonparametric monitoring schemes do not require
any particular assumption of the underlying process distribution. They are mostly used when the nature
of the underlying process distribution is unknow or when there is not enough information on the shape
of the distribution; see for example, Mabude et al. (2020) and Celano and Chakraborti (2021). Very
often, the parameters of the underlying process distribution are unknown. In this case, they must be
estimated before the actual process monitoring starts. Thus, in practice, monitoring schemes are usually
implemented in two stages known as phase | and phase II. Phase | (also known as the retrospective
phase), uses historical data to estimate the parameters and control limits when a process is assumed to
be in-control. In phase Il, the parameters and control limits found in phase | are then used for monitoring
purposes. For more details on monitoring schemes with estimated process parameters (i.e., Case U for
unknown); see for example, Maravelakis et al. (2002), Owlia et al. (2017) and Abbas et al. (2019a, b)).
In cases where historical data and information on the underlying process distribution and the parameters
or target values are available, monitoring schemes are designed under the parameter known case (i.e.,
Case K for known); see for example, Malela-Majika (2022a, b). Otherwise, parametric and/or
nonparametric monitoring schemes under the parameter unknown case are considered. In this case,
process parameters are estimated using statistical techniques (such as maximum likelihood estimation
(MLE), Bayesian estimation, bootstrapping, etc.); see for example, Ibazizen and Fellag (2003), Owlia
et al. (2017) and Imran et al. (2022). For cost effective monitoring schemes, the Bayesian approach is
used which is based on subjective probability that could include uncertainty into the model (see Abbasi
et al. (2018) and Aunali and Venkatesan (2019)). The use of Bayesian methods in SPM is mostly in the
areas that aim to estimate the monitoring schemes’ parameters more efficiently, considering both the
cost of sampling and chart performance. It is well-known that the performance of a monitoring scheme
is considerably affected by the parameter estimation and the dependency between and within samples
(Zhou and Qui (2022) and Imran et al. (2022)). Therefore, the choice of appropriate methods that

handles both autocorrelation and estimation issues is very important.

In practice, data are often characterised by a serial dependency (or autocorrelation) between successive
observations. Such data are efficiently monitored using time series monitoring schemes such as the
autoregressive (AR), moving average (MA) and autoregressive moving average (ARMA) schemes (see,
Alwan (1992), Jiang et al. (2000), and Ibazizen and Fellag (2003)). The choice of the time series model
to use also depends on the type of data. Al-Osh and Alzaid (1987) introduced a model for stationary
sequences of integer valued random variables with a lag-one dependence referred to as the integer-value
autoregressive of order one (denoted as INAR(1)) model. They reported that the correlation structure

and the distributional properties of the INAR(1) model are similar to those of continuous valued AR(1)



model. For more flexibility, Biswas and Song (2009) presented a unified framework of stationary
ARMA processes for discrete-valued time series based on a stochastic operator. Weif3 and Testik (2012)
proposed a cumulative sum (CUSUM) control chart for integer-valued autoregressive conditional
heteroscedasticity (INARCH) model to detect abrupt changes in count data time series. Vanli et al.
(2019) proposed a CUSUM for Poisson integer-valued generalised autoregressive conditional
heteroscedasticity (INGARCH) model. They showed that the CUSUM chart for INGARCH model
based on a likelihood ratio can significantly provide improved performances in applications where serial
correlation or seasonality is prevalent. For more details on time series for count data, readers are referred
to McKenzie (1988), Woodall (1997), Ferland et al. (2006) and Xu et al. (2023). For continuous time
series, Kim (2015) used an ARMA model to estimate asymmetric cost-sensitive loss functions for
financial data. Tan et al. (2022) associated an autoregressive integrated moving average (ARIMA)
model with a control chart to monitor stock price and trading volume at the same time. Using real-life
stock exchange data, they demonstrated the effectiveness of the ARIMA monitoring scheme as
compared to the performances of the volume-weighted moving average (VWMA\) and relative strength
index (RSI) schemes. Jones et al (2023) proposed the CUSUM and exponentially weighted moving
average (EWMA) monitoring schemes using a Bayesian approach, where posterior predictive
distributions are found using the squared error, precautionary and linex loss functions criteria. For more
details on time series models for continuous data in SPM, readers are referred to Alwan and Roberts
(1988), Stone (1995) and the review article by Knoth and Schmid (2004).

Data on exchange rates and other financial transactions often exhibit a serial dependency and a
considerable unstable clustering where periods of high volatility are quickly followed by periods of low
volatility and vice versa. Very often, such processes do not have a constant mean. In this instance, time
series schemes such as the AR, MA, and ARMA monitoring schemes are not recommended. Instead,
the literature recommends the use of the Generalised Auto-Regressive Conditional Heteroskedasticity
(GARCH) monitoring scheme to model the data in order to effectively monitor the stability of the

process.

This paper introduces a new long run Bayesian ARMA-GARCH EWMA monitoring scheme for
monitoring, as an example, the United State Dollar (USD) to the South African Rand (ZAR) exchange
rate. The remainder of this paper is organised as follows: Section 2 presents the USD/ZAR exchange
rate data and explains how to get stationary time series data. Section 3 provides mathematical
background of the existing times series monitoring schemes. In addition, the design and background of
the existing Bayesian time series monitoring schemes is also given in Section 3. Section 4 develops a
new Bayesian ARMA-GARCH EWMA (BAG EWMA) monitoring scheme. The performance of the
proposed monitoring scheme is investigated in Section 5. The implementation and application of the
new scheme is provided in Section 6. Section 7 presents the concluding remarks, directions for future

research works and recommendations.



2. Monitoring the USD/ZAR exchange rate

The purpose of this paper is to design a monitoring scheme that is able and efficient in monitoring the
USD/ZAR exchange rate. Let X; (t = 1,2.3,...) represents the USD/ZAR exchange rate at time t.
Before the monitoring phase (i.e. phase Il) can begin, it is necessary to visualise the data to have an idea
of the long-term trend (see the solid line on Figure 1 (a)). The USD/ZAR exchange rate is displayed in
Figure 1 (a) from the 31 July 2017 to the 29" July 2022; the data was sourced from the USA Economic
Research Division®. This figure shows that the data are non-stationary and have an upwards trend. Time
series analytical techniques assume that each observation is independent of one another. Stationarity of
the data is one of the most important criteria to confirm this assumption. In this case study, the
Augmented Dickey-Fuller (ADF) test is used to confirm the non-stationarity of the original data (i.e.
the exchange rate data); see Kwiatkowski et al. (1992), Lopez (1997) and Paparoditis and Politis (2018)
for more details and on the ADF test. Because it is found that the p — value is larger than 0.05 it
confirms that the original data are in fact non-stationary. In other words, we cannot reject the null
hypothesis; and therefore, conclude that the time series has a unit root. Thus, before the monitoring
process begins, it is important to transform the underlying process data into a stationary series. In this
case, the data are transformed by computing the percentage change in the exchange rate, denoted as X;,

which is computed as follows:

X; — X
X, = <t—“> x 100. (1)

Figure 1 (b) displays the percentage change in the USD/ZAR exchange rate from the 1°* August 2017
to the 29™ July 2022. It can be clearly noticed that the process is now stationary, i.e., the mean and the
variance do not change over time. Using the ADF test, it is found that the p — value is now less than

0.05 which means that the transformed data (the percentage changes) are stationary.

% Federal Reserve Economic Data (FRED); Link: https://fred.stlouisfed.org
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Figure 1. USD/ZAR exchange rate data from July 31st 2017 to July 29th 2022

Since the transformed data are stationary the process can now be monitored using an efficient
monitoring scheme for which the control limits and parameter estimates of the time series model are
found using the phase | analysis. For the in phase I, we used the data from the 30" July 2014 to the 30"
July 2017 (i.e. 1097 days).

3. Statistical background on financial time series models

3.1 ARMA model



Assume that {X;,t = 1,2,3, ...} is a sequence of autocorrelated normally distributed observations with

mean 0 and variance o2. Then, the first order ARMA (i.e. ARMA (1,1)) model for stationary processes

is defined by
Ve = 0o(Xy — 9X¢—1) + PYi4 2

with 6, = 1 + 6 — ¢, where ¢ and 6 are the coefficients of the ARMA (1,1) process, 9 = 6/6, and

the stationarity and invertibility constraints of the process require |¢| < 1 and [9] < 1, respectively.

Let us assume that the underlying process, Y;, is characterised by the autocorrelation structure p, with

142
Pz =" (3)

Yo
where

Yr = COU(Yt' Yt+1’)
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with @ = ¢80, — 6 and 8, is defined earlier.

From Equation (3), we have that p, = p_j and therefore without loss of generality p;,, and p;_ can

simply be denoted as p,. Then, when T = 0, Jiang et al. (2000) showed that the variance of Y, is:

t—1 t—-1t-1

Var(v) = of, = 0% + 200 ) ¥ p+a® ) > ¢ 2p, | af. (4)

k=1 i=1 j:1

When the scheme has been running for a long time, i.e. t — oo, the variance of Y; simplifies to

2 2

Var(Ye,) = of_ = (93 +7 iqsz +2 (90a + 1‘15_“¢2> Z ¢)k—1pk> o2, )

k=1




where Y5_, ¢*p, converges towards some value .

3.2 GARCH model
A stochastic process {Y;} is called a first order GARCH (i.e. GARCH (1,1)) process if it is defined by

Yt=‘u0+€tht, ht>0’t21
and (6)
hi =w+ B(Y_y — 1o)* + ahi_y,

where h? is the conditional variance, a and 3 are the coefficients of the GARCH (1,1) process such that
w>0,a=0,p = 0,therandom variables ¢; are independent and identically distributed (i.i.d.) normal
variables with mean 0 and variance 1 (i.e. standard normal innovation). The stationarity constraint

requires that @ + B < 1. Then, it follows that E(Y;) = ug, cov(Y,,Y;) = 0V t # s with s > 1. Hence,

02 =Var(Y,) = E(¢?h?) = ﬁ, (7

3.3 First order ARMA-GARCH model

A linear regression model with a first order ARMA-GARCH (ARMA (1,1)-GARCH (1,1)) error can

be defined as follows:

Xe=c+alXiog—c)—Peq+ &, &= \/h_mt
and (8)
ht =w+ a&‘g_l + ﬁht—l’

where ¢ is the mean level, h; is defined in Equation (6), n, is the innovation and a« and S are the
coefficients of the GARCH(1,1) process. In this paper, the innovation terms independently and

identically follow a standard normal distribution.

Let @ = (¢, 0, a, B) is the vector of parameters where ¢ and 6 are the coefficients of the ARMA (1,1)
process defined in Equation (2) and « and 8 are defined in Equations (6) and (8). The parameters of the
above process can be estimated using the maximum likelihood estimation (MLE) technique. Thus, the

likelihood function can be written as

m

1 2
L(p) = L(@p,&1,8, ... &) = Hm exp (;—;;t), 9)
t

t=1

where



& =pH(La(L)X, —c)
is the residual of the ARMA part in which
BL) =1 +pL), a(l)=1-al)
and L is the lag operator.

Using the log likelihood function, Equation (9) becomes:

1 2
logL(p) = — %log(Zn) - Ez (log(ht) + ;—i) . (10)

t=1

Maximising Equation (10) is equivalent to minimising the following expression:

@ = argmin I(¢), (11)
where I(@) = m™ 1 Y™, and Y, = £2/h, + log (hy).

4. Design of the proposed Bayesian ARMA-GARCH EWMA monitoring scheme

The Bayesian design of a monitoring scheme is based on the properties of the posterior density

distribution defined by

_ LYIX, @)p(@)
PO = TL0iX o)p(e)de (2

where ¢ is the set of parameters of the first order Bayesian ARMA-GARCH (hereafter, BAG) model
as defined above, L(Y|X, ¢) is the likelihood function, and p(¢) is the prior density. In this paper, we

use the following proper prior for simplicity:

p(@) = N(uz,, 02) X Ny, 02) X N(ugp, 04)1p(C1) X ... X N(ug,0)1g(Cy), (13)

where &, is the pre-sample error, the prior parameters 14 and ug were chosen to be equal to zero (i.e.
pe = upg =0), a(f, = 0[)? =1,and [,(C) (j = 1,2, ..., 4) is the indicator function which is equal to one

if the constraint C; holds; otherwise zero.

In this paper, the constraints on the parameters in a BAG model are defined as follows (see also Jiang
et al. (2000)):



(i) C;:all the roots of 1 — a(L) = 0 are outside the unit circle,
(if) C,: all the roots of 1 — B(L) = 0 are outside the unit circle,
(iii) C3: @ = 0,

(iv) C4: B =0, and

(V) Cpra+p<1,

where L is the lag operator.

The expected value and variance of a function of parameters are given by

ELf ()] = j (@) p(@IX) do (14)

and

varlf(@)] = E[f2(@)] - [E(f(@)]", (15)

where the integral symbol actually denotes a quadruple integral for each of the parameters ¢, 8, « and
B of the ARMA-GARCH model, and f (¢) depends on the type of inference under consideration (i.e.
probabilistic or non-probabilistic). In the ARMA-GARCH model it is analytically difficult to evaluate
the quadruple integral defined in Equation (14). Therefore, numerical integration methods such as

Monte Carlo integration have to be used to solve this integral.

Then, Equation (14) can be approximated by Monte Carlo simulation using

I,
Elf@)] =—> flo®), (16)
i=1

where @, @@ . @™ are m samples of the parameter vector ¢ generated from the posterior
distribution. This is done using the Metropolis-Hasting (MH) algorithm which is a Markov chain
sampling method. For more details on the MH algorithm, readers are referred to Brooks (1998) and
Luengo et al. (2020).

4.1 Metropolis-Hasting algorithm

We suggest to use the following MH algorithm to estimate the parameters of the ARMA-GARCH
model:

Step 1 Select the initial ¢, denoted as ¢,
Step 2 Fori=1,...,m,



(i) Draw candidate ¢®, denoted as ¢*, ¢*~g(¢*|@ D) where p(¢®) x
g(eM).
(ii) Determine a:

_ 9@ /9(e71e") _ gleDg(e“Vle")
glpt)/ gl Vlp*)  gle=D)g(e*|let)

(iii) If @ > 1 accept ¢* and set @ = ¢*.

However, if 0 < a < 1, then accept ¢* and set ¢(© = ¢* with probability a.
Otherwise, reject ¢* and set ¢ = ¢~1 with probability 1 — a.

Step 3 Repeat Steps 1 and 2 a certain number of times (e.g., 10000 iterations).

Step 4 Compute the average for elements of ¢® denoted as @.

Step 5 Record the result.

To investigate the performance of the proposed BAG EWMA scheme, we first need to estimate the
ARMA-GARCH model of the USD/ZAR exchange rate using the expression given in Equation (8).
The Bayesian estimation of the ARMA-GARCH model is obtained by using the Markov chain Monte
Carlo (MCMC) method explained above. The number of iterations of the Markov chain sampling is
10000 and the size of the Monte Carlo samples is 1000 to guarantee the convergence of the parameters
to their true values. A kernel smoothing method with a Gaussian kernel is used to estimate the strict
stationarity and ergodicity of the GARCH model. To estimate the posterior probabilities, we generate
X~N(0,1).

4.2 Phase | study

In this section, we explain how the parameters of the models were estimated using the in-control phase
I sample, and also how the size of this sample was chosen. Note that the estimation of the parameters
of the time series model were done in phase | using data from the 30th July 2014 to the 30 July 2017
(i.e. 1097 days). The phase | data were collected on a long-term period in order to see a trend in the
time series data. We used the rugarch and brms packages in R and every time that there was an OOC
signal, the sample was discarded and the search for new parameters was initiated. The parameters found
when the process was declared in-control were recorded and used to compute the control limits. Note
that the prior parameters u¢ and ug were chosen to be equal to zero. For the simulation, the initial
parameters were also set to zero. Table 1 presents the results found using the MH algorithm for two
different cases by imposing some constraints on the parameters in the ARMA-GARCH model. The first
case (i.e. Case 1) forces the approximation to be near the unit root and the second case (i.e. Case 2)
imposes the variance to be strictly stationary and ergodic. Using Geweke’ s criterion, we noticed that
all the t statistics lie within [-1.96, 1.96], which indicates that the estimates efficiently converge to their

true values.
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Table 1. Parameter estimates when m = 1000 with 10000 replications

©

A~

Cases v o

Casel | 1.045 | 2.857 | 0.017 | 0.557 | 0.561 | 0.110
Case2 | 0.612 | 0.413 | 0.022 | 0.583 | 1.450 | 0.308

4.3 Bayesian ARMA-GARCH EWMA monitoring scheme

Thus, once the parameter estimates @, &, and 672 are found, then the BAG statistic is given by

Zy =+ (17)

and the proposed BAG EWMA monitoring scheme is constructed as follows:

e The charting statistic of the BAG EWMA scheme, denoted as BAGEWMA,, is defined by

BAGEWMA, = AZ, + (1 — )BAGEWMA,_, (18)

where t (t = 1,2,...) and Z; is defined as in Equation (17), A (with 0 < A < 1) is the smoothing

parameter and the starting value BAGEWMA,, is set to be equal to zero.

e Then, for the time varying BAG EWMA scheme, the process is considered to be OOC if

A t
|BAGEWMA,| > c]mm —(1-212%), (19)

where ¢ > 0, the control limit constant, is selected such that the attained in-control ARL is as close as

possible to a pre-specified ARL value.

o \When the process has been running for a long time, an OOC situation is simply triggered if

|IBAGEWMA,| = ¢ (20)

2-2

5. Results and discussion

The performance of the proposed BAG EWMA monitoring scheme is evaluated using the

characteristics of the run-length distribution which is the number of rational subgroups to be plotted on

11



the scheme before the first OOC signal. Here we use, the average run-length (ARL), the standard
deviation of the run-length (SDRL) and five percentiles Py g5, Py 25, Pos, Py7s, and Py o5 Of the run-

length (PRL) which are the most popular run-length characteristics used in SPM.

Let N be the run-length of the proposed BAG EWMA scheme. Then, N can be defined as follows:

N = inf{t > 1‘|BAGEWMAt| > C\/(zlﬁ a1-Qa- A)Zt)}. (21)
5.1 In-control performance

In this subsection, the in-control properties of the proposed scheme under both Case 1 and Case 2 (see
Table 1) are investigated in terms of the in-control ARL, SDRL and PRL profiles, and the results are
summarised in Table 2 for a nominal pre-specified ARL (ARL,) = 370. The findings in Table 2 reveal
that as the magnitude of A increases, the control limits get wider for both time varying and asymptotic
cases. In addition, the control limits are wider when the conditional variance is strictly stationary and
ergodic as compared to a near unit root situation. In terms of the SDRL profile, it can be seen that the
proposed scheme is less likely to give more false alarms when it has been running for a long time (i.e.
for an asymptotic case). However, in terms of the PRL profile, the proposed scheme is likely to detect

a signal a bit sooner when it has been running for a long time.

12



Table 2. Case 1 and Case 2: ARL, SDRL and PRL profiles of the BAG EWMA scheme when ARL, = 370

Case 1 In-control asymptotic control limits

PRL

4 ¢ ARL SDRL Poos Po2s Pos Po 75 Pgos
0.05 1.2764 370.10 357.81 31 115 259 507 1087
0.10 1.3693 370.10 361.37 25 112 258 515 1085
0.20 1.4298 370.06 366.47 23 108 258 511 1093
0.35 1.4652 370.48 370.21 21 104 256 514 1122
0.50 1.4980 370.02 374.31 19 103 252 514 1126
0.75 1.5543 370.61 370.06 18 107 254 514 1119
0.90 1.5731 370.40 372.27 18 107 256 510 1121

Case 2 In-control asymptotic control limits
0.05 1.8178 370.07 361.72 31 115 260 506 1089
0.10 1.9156 370.06 363.28 25 113 260 510 1096
0.20 2.0012 370.02 372.78 17 104 256 508 1125
0.35 2.1873 370.02 379.72 13 102 255 518 1108
0.50 2.3855 370.06 381.29 10 100 253 521 1124
0.75 2.6174 370.34 381.46 9 98 250 527 1131
0.90 2.6831 370.24 381.24 9 98 251 524 1138
Case 1 In-control time varying control limits
0.05 1.2974 370.01 392.40 4 87 247 520 1183
0.10 1.3782 370.07 377.99 9 98 253 523 1115
0.20 1.4339 370.08 374.83 15 102 257 514 1111
0.35 1.4670 369.96 374.92 16 100 2523 515 1128
0.50 1.4989 370.08 377.53 16 101 251 515 1130
0.75 1.5545 370.50 370.86 18 107 254 514 1119
0.90 1.5731 370.04 371.81 18 107 255 510 1121
Case 2 In-control time varying control limits

0.05 1.8736 370.03 436.57 1 50 230 529 1245
0.10 1.9515 370.01 425.16 1 60 235 531 1215
0.20 2.0248 370.40 417.33 1 69 239 520 1207
0.35 2.2016 370.02 405.50 1 83 245 522 1157
0.50 2.3948 370.06 391.56 2 91 249 525 1144
0.75 2.5673 370.64 382.87 7 97 251 527 1133
0.90 2.6833 370.02 381.72 8 98 250 524 1137

5.2 Out-of-control performance

In this subsection, the OOC performance of the proposed scheme is investigated in terms of the OOC
ARL, SDRL and P, 5 profiles, respectively, with simultaneous shifts in the mean level of the process
(uq = po + 60y =& since uy = 0and g, = 1) and error variance (o, = Ag, = A since g is taken to be
equal to 1 and A > 1). In addition to the run-length characteristics, the quality loss function (QLF) is
used to study the overall performance of the proposed scheme. A QLF describes the relationship
between the shift size and the quality impact. Thus, the EQL is mathematically defined by

EQL(S) = m [omax [Omax (5, A). ARL(S,4) d8 dA, (22)
where §,,4, and A4, are the upper boundaries of the range of shifts in the mean and error variance,
respectively, and w(§, A) (with w(8,A) = §2 + A% — 1) represents the weight function associated with
6 and A.

The expression of the EQL given in Equation (22) can also be written as follows

13



5max Amax

1
EQL(S, ) = 53— —— ; AZ (62 + A2 — 1) x ARL(5, b). (23)

Note that the minimum value of the EQL implies the best performance.

Tables 3 and 4 present the results of the OOC properties of the proposed scheme when A4 €{0.05, 0.10,
0.20, 0.35, 0.50, 0.90} and ARL, = 370 for an asymptotic case. The results in Tables 3 and 4 can be

summarized as follows:

e When the mean level is in-control and Ae{1.5, 2, 3.5,5,5.5,8}, the proposed scheme performs
better for large values of A in terms of the ARL profile. However, in terms of the P, 5 profile,
the smaller the smoothing parameter the better the performance of the proposed scheme.

e Interms of the ARL and P, 5 profiles, when there is a simultaneous shift in the mean level and
the error standard deviation, the smaller the value of A the more efficient the proposed scheme
is.

e The proposed scheme becomes more sensitive when there is a simultaneous shift in the process
mean and error variance.

e The SDRL profile reveals that the proposed scheme is likely to give more false alarms for large
values of 1.

¢ Inmany situations, the performance of the proposed scheme deteriorates in Case 2 as compared

to Case 1.
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Table 3. Case 1: ARL, SDRL and P, 5 profiles for the asymptotic BAG EWMA scheme with shifts in the error variance term (A) and mean level (8) for different A values and ARL, = 370

J1

5§ | A 0.05 0.10 0.20 0.35 0.50 0.75 0.90
ARL  SDRL Pys | ARL SDRL P, | ARL _ SDRL P, ARL  SDRL P ARL  SDRL P, ARL  SDRL P, ARL  SDRL P
15 | 784 710 570 | 584 542 420 | 421 39.7 30.0 32.0 313 22.0 28.2 28.2 20.0 27.3 27.7 19.0 27.4 27.7 19.0
20 | 383 34.1 280 | 26.7 236 200 | 172 16.1 12.0 12.0 11.7 8.0 10.1 10.1 7.0 9.3 9.8 6.0 9.3 9.9 6.0
o | 35 | 144 133 10.0 8.7 8.7 6.0 5.3 5.4 3.0 3.7 3.7 2.0 3.1 3.0 2.0 2.8 2.6 2.0 2.7 2.6 2.0
50 | 83 8.5 5.0 5.0 5.3 3.0 3.1 3.1 2.0 2.3 2.0 1.0 2.0 17 1.0 1.9 15 1.0 1.8 1.4 1.0
55 | 7.0 7.4 4.0 43 4.7 2.0 2.7 2.6 2.0 2.0 17 1.0 1.9 15 1.0 1.7 1.3 1.0 1.7 13 1.0
80 | 42 5.0 2.0 2.8 3.1 2.0 1.9 18 1.0 16 1.1 1.0 15 0.9 1.0 1.4 0.8 1.0 1.4 0.8 1.0
EQL 37.3 384 225 240 24.9 156 156 15.1 9.9 11.9 10.1 6.8 10.7 8.6 6.6 9.9 7.8 6.4 9.8 7.7 6.4
10 | 974 80.8 740 | 1180 1067 850 | 1571  151.9  111.0 | 2044 1991 1440 | 2461 2423 1730 | 2943 | 2920 | 2060 | 3063 3052  211.0
15 | 56.0 475 420 | 453 403 330 | 359 33.7 25.0 28.6 27.4 20.0 26.1 25.9 18.0 26.1 26.5 18.0 26.6 26.8 18.0
20 | 347 303 250 | 248 225 180 | 163 155 12.0 115 11.4 8.0 9.8 9.7 7.0 9.2 95 6.0 9.1 9.4 6.0
02 | 35 | 139 13.0 10.0 8.8 85 6.0 5.3 5.2 3.0 3.7 3.6 2.0 3.1 3.0 2.0 2.8 2.59 2.0 2.8 25 2.0
50 | 81 8.4 5.0 4.9 5.2 3.0 3.1 3.2 2.0 2.3 2.1 1.0 2.0 17 1.0 1.9 15 1.0 1.9 1.4 1.0
55 | 7.4 7.4 4.0 43 4.7 2.0 2.8 2.8 2.0 2.1 18 1.0 1.9 15 1.0 1.7 1.3 1.0 1.7 13 1.0
80 | 42 5.0 2.0 2.7 3.0 1.0 1.9 17 1.0 16 1.1 1.0 15 1.0 1.0 1.4 0.8 1.0 1.4 0.9 1.0
EQL 35.9 370 218 | 233 24.0 129 | 157 15.1 9.9 12.1 104 7.0 10.9 9.1 6.8 103 8.2 6.7 10.3 8.3 6.7
10 | 362 234 300 | 403 315 310 | 526 471 38.0 79.6 76.8 570 | 1148 1140 790 | 1778 | 1799 [ 1230 | 2020 2066  137.0
15 | 314 239 240 | 277 230 210 | 241 21.3 18.0 21.6 20.4 15.0 21.2 205 15.0 225 22.9 15.0 23.0 23.4 16.0
20 | 264 213 200 | 202 17.4 150 | 142 13.0 10.0 105 10.2 7.0 9.1 8.9 6.0 8.6 8.9 6.0 8.9 9.0 6.0
04 | 35 | 134 12.2 10.0 8.4 8.0 6.0 5.1 5.1 3.0 3.7 3.6 2.0 3.1 3.0 2.0 2.8 2.6 2.0 2.8 2.6 2.0
50 | 82 8.3 5.0 5.0 5.3 3.0 3.1 3.2 2.0 2.3 2.1 1.0 2.0 17 1.0 1.9 15 1.0 1.9 1.4 1.0
55 | 7.0 7.4 4.0 43 4.6 2.0 2.8 2.7 2.0 2.1 18 1.0 1.9 15 1.0 1.8 1.3 1.0 1.8 13 1.0
80 | 43 5.1 2.0 2.7 3.0 2.0 1.9 17 1.0 16 11 1.0 15 0.9 1.0 1.4 0.8 1.0 1.4 0.8 1.0
EQL 34.4 35.2 207 222 22.7 146 151 143 9.6 12.0 103 6.9 11.1 9.0 6.9 10.9 8.7 7.1 111 8.8 7.2
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Table 4. Case 2: ARL, SDRL and P, profiles for the asymptotic BAG EWMA scheme with shifts in the error variance term (A) and mean level (§) for different A values and ARL, = 370

1

5| A 0.05 0.10 0.20 0.35 0.50 0.75 0.90
ARL SDRL P,: | ARL SDRL P, | ARL SDRL P,: | ARL SDRL Py, | ARL SDRL P,: | ARL SDRL P,. | ARL SDRL P
15| 1522 1460 1070 | 1164 1178 80.0 | 842 916 550 | 769 879 490 | 768 889 480 | 771 902 480 | 777 915 480
201011 999 700 | 663 722 430 | 388 494 210 | 331 454 140 | 336 466 140 | 345 473 140 | 347 476 150
o |35| 504 638 270 | 274 417 60 | 138 260 20 | 103 207 20 | 103 212 10 | 106 215 10 | 109 216 10
50| 309 504 50 | 145 292 20 | 72 171 10 | 57 144 10 | 55 146 1.0 55 145 10 5.8 152 1.0
55| 275 489 30 | 131 275 20 | 65 164 10 | 46 124 10 | 44 124 10 48 134 10 48 134 10
80| 165 376 10 | 81 217 10 | 35 105 10 | 26 7.4 1.0 | 24 6.9 1.0 2.5 8.4 1.0 2.5 8.0 1.0
EQL [130.2 2217 328 676 1323 166 343 752 97 267 591 86 259 585 82 | 268 631 82 | 272 629 83
10[ 1027 865 770 | 1249 1152 90.0 | 187.6 1875 1265 | 280.3 286.6 193.0 | 3150 3228 2150 | 331.0 3430 2250 | 336.0 3434 2290
15| 948 8.2 680 | 835 818 580 | 69.0 741 450 | 67.4 788 410 | 714 829 440 | 736 866 450 | 740 865 450
20| 810 791 570 | 578 620 380 | 365 466 200 | 330 448 140 | 332 465 140 | 349 494 140 | 356 502 150
02(35| 485 619 260 | 259 397 60 | 128 238 20 | 98 199 20 | 100 202 10 | 105 214 10 | 110 222 10
50| 314 510 60 | 145 297 20 | 72 176 10 | 54 137 10 | 51 132 10 55 147 10 5.4 140 1.0
55| 277 474 30 | 132 282 20 | 62 1561 10 | 45 121 10 | 43 118 10 44 123 10 4.6 127 10
80| 162 374 10 | 77 206 10 | 35 104 10 | 25 7.0 10 | 25 75 1.0 2.5 7.6 1.0 2.5 7.8 1.0
EQL [1253 2152 305 | 643 1281 154 | 331 727 94 | 260 571 86 | 259 580 84 | 268 611 85 | 273 617 86
10| 387 252 320 | 438 343 330 | 700 661 500 | 159.7 1649 109.0 | 219.7 2282 1490 | 261.9 2738 180.0 | 270.0 2814 186.0
15| 468 371 360 | 445 398 330 | 437 461 290 | 558 660 340 | 627 761 390 | 679 820 410 | 690 832 420
20| 511 461 380 | 407 421 280 | 298 370 160 | 292 412 120 | 31.2 437 120 | 331 466 130 | 340 477 140
04(35| 415 521 230 | 243 372 60 | 124 232 20 | 95 197 20 | 101 211 20 | 106 223 10 | 105 218 10
50| 285 461 50 | 144 284 20 | 7.0 160 10 | 54 140 10 | 53 139 10 54 143 10 5.5 143 10
55| 263 451 30 | 124 264 20 | 63 1566 10 | 47 128 10 | 43 117 10 47 136 10 4.6 131 10
80| 155 353 10 | 72 192 10 | 36 110 10 | 26 8.3 1.0 | 24 7.3 1.0 2.4 7.2 1.0 2.5 7.4 1.0
EQL | 1124 1952 254 587 1177 135 318 713 85 264 612 87 266 594 92 | 280 629 91 | 284 629 93
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Tables 5 and 6 present the results of the OOC properties of the proposed scheme when 4 €{0.05, 0.1,
0.2, 0.35, 0.5, 0.9} for a nominal ARL, = 370 for time varying case. The results in Tables 5 and 6 can

be summarized as follows:

e When the mean level is in-control and Ae{1.5, 2, 3.5,5,5.5,8}, the proposed scheme performs
better for moderate values of 4 in terms of the ARL profile. However, in terms of the P, 5 profile,
the smaller the smoothing parameter the better the performance of the proposed scheme.

e Interms of the ARL and P, 5 profiles, when there is a simultaneous shift in the mean level and
the error standard deviation, the smaller the value of A the more efficient the proposed scheme
is.

e The proposed scheme becomes more sensitive as the effect of the combined shift increases.

e The SDRL profile reveals that the proposed scheme is likely to give more false alarms for large
and very small values of A.

e It is also noticed that in many situations, the proposed scheme performs better in Case 1 as
compared to Case 2.
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Table 5. Case 1: ARL, SDRL and P, 5 profiles for the time-varying BAG EWMA scheme with shifts in the error variance term (A) and mean level (§) for different A values and ARL, = 370

1

5§ | A 0.05 0.10 0.20 0.35 0.50 0.75 0.90
ARL SDRL P,; | ARL SDRL P, | ARL SDRL P, | ARL SDRL P,. | ARL SDRL P, | ARL SDRL P,: | ARL SDRL P,
0 [15[544 716 260 | 462 547 280 | 363 395 240 | 296 315 20.0 | 270 282 180 | 271 278 19.0 | 273 278 19.0
20| 189 293 60 | 163 220 70 | 126 152 70 | 101 114 60 | 93 101 60 | 92 98 60 | 93 99 6.0
35 39 71 10 | 39 58 20 | 34 43 20 | 30 33 20 | 28 28 20 | 27 26 20 | 27 26 2.0
50| 20 29 10 | 21 27 10 | 20 21 10 | 20 18 10 | 19 16 10 | 18 15 10 | 19 15 1.0
55| 1.9 25 10 | 1.9 23 10 | 1.9 18 10 | 1.8 15 10 | 1.7 14 10 | 1.7 13 10 | 1.7 13 1.0
80| 14 13 10 | 15 13 10 | 14 11 10 | 14 09 10 | 14 09 10 | 14 08 10 | 14 08 1.0
EQL | 129 172 64 | 125 148 70 | 112 113 68 | 104 91 65 | 99 83 64 | 97 78 64 | 99 78 6.4
0.2 [10][ 907 860 660 | 1146 1103 810 |1547 1553 107.0 [203.1 2014 1430 | 2452 2435 172.0 | 2943 2924 206.0 [ 306.2 3052 211.0
15| 382 468 210 | 353 400 220 | 308 336 200 | 264 274 180 | 249 259 170 | 258 266 180 | 265 268  18.0
20| 169 262 50 | 147 198 60 | 124 149 70 | 99 112 60 | 90 96 60 | 91 95 60 | 90 94 6.0
35| 38 69 10 | 37 55 20 | 34 43 20 | 29 32 20 | 28 29 20 | 28 26 20 | 28 25 2.0
50| 21 30 10 | 21 27 10 | 20 22 10 | 1.9 18 10 | 19 16 10 | 19 15 10 | 19 14 1.0
55| 1.9 24 10 | 1.9 21 10 | 1.9 19 10 | 1.8 15 10 | 1.7 14 10 | 1.7 13 10 | 1.7 13 1.0
80| 14 12 10 | 14 11 10 | 14 11 10 | 14 10 10 | 14 08 10 | 14 08 10 | 14 08 1.0
EQL [ 122 157 62 118 134 67 112 115 6.8 104 94 6.6 102 8.4 66 103 82 67 103 81 6.7
04 [10] 305 253 240 | 37.1 325 280 | 51.0 477 360 | 784 777 550 | 1141 1147 780 |177.6 180.1 123.0|201.9 206.6 137.0
15| 208 239 130 | 212 235 140 | 202 211 140 | 197 203 130 | 203 205 140 | 223 229 150 | 230 234  16.0
20| 127 184 50 | 122 160 60 | 106 126 60 | 91 102 60 | 84 89 50 | 84 88 50 | 88 90 6.0
35| 36 64 10 | 37 54 10 | 33 41 20 | 30 31 20 | 27 27 20 | 27 26 20 | 28 26 2.0
50| 21 32 10 | 21 26 10 | 20 21 10 | 1.9 18 10 | 19 16 10 | 18 14 10 | 18 14 1.0
55| 1.9 25 10 | 1.9 23 10 | 1.8 18 10 | 1.8 16 10 | 1.7 13 10 | 1.7 13 10 | 18 13 1.0
80| 14 13 10 | 14 12 10 | 14 10 10 | 14 09 10 | 14 09 10 | 14 08 10 | 14 08 1.0
EQL | 111 144 59 111 127 61 106 104 66 104 91 6.6 103 86 67 107 86 70 110 88 7.2
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Table 6. Case 2: ARL, SDRL and P, ¢ profiles for the time-varying BAG EWMA scheme with shifts in the error variance term (A) and mean level (6) for different A values when ARL, = 370

A

5| A 0.05 0.10 0.20 0.35 0.50 0.75 0.90
ARL SDRL P, | ARL SDRL Py: | ARL SDRL P,: | ARL SDRL P,. | ARL SDRL P, | ARL SDRL P, | ARL SDRL P
15| 950 1529 180 | 80.6 1221 245 | 647 929 250 | 666 882 335 | 720 891 420 | 764 905 470 | 776 915 480
20| 418 83 20 | 334 641 20 | 264 471 30 | 273 450 40 | 311 472 90 | 339 473 130 | 346 475 150
o |35|114 378 10 | 89 262 10 | 67 182 10 | 74 177 10 | 82 191 10 | 104 216 10 | 108 219 10
50| 56 227 10 | 45 166 10 | 36 114 10 | 35 105 10 | 43 122 10 | 54 146 10 | 58 150 1.0
55 43 197 10 | 39 157 10 | 30 98 10 | 31 92 10 | 38 113 10 | 46 128 10 | 48 134 10
80| 22 107 10 | 22 90 10 | 19 60 10 | 1.9 53 10 | 21 65 10 | 24 75 10 | 25 77 1.0
EQL | 275 953 56 236 737 59 189 500 60 194 464 65 222 536 74 261 605 80 271 622 83
10| 902 980 600 | 116.8 1280 770 | 1843 2081 1160 | 2769 3010 1820 | 315.7 3344 2120 | 332.1 3443 2260 | 336.0 3434 229.0
15| 563 860 140 | 555 823 180 | 531 753 210 | 592 799 280 | 672 833 380 | 727 865 440 | 739 865 450
20| 328 673 20 |301 566 20 | 237 428 20 | 261 423 40 | 305 463 80 | 340 492 120 | 355 502 150
02(35| 107 346 10 | 84 249 10 | 65 175 10 | 74 182 10 | 87 196 10 | 99 209 1.0 | 110 221 10
50 52 213 10 | 44 156 10 | 36 118 10 | 39 116 10 | 43 122 10 | 54 148 10 | 53 139 10
55| 41 187 10 | 34 127 10 | 30 98 10 | 32 98 10 | 38 114 10 | 44 125 10 | 46 127 1.0
80| 23 108 10 | 21 82 10 | 18 59 10 | 1.8 52 10 | 21 66 10 | 22 66 10 | 26 81 1.0
EQL | 245 875 55 | 214 653 57 | 182 491 59 | 107 480 65 | 228 545 75 | 257 589 82 | 274 623 86
10| 297 286 230 | 37.6 376 270 | 656 728 420 |1555 1719 102.0 | 219.4 2346 147.0 | 261.4 2749 179.0 | 269.8 2815 186.0
15| 265 382 80 | 283 400 110 | 330 459 130 | 489 661 230 | 591 768 330 | 67.2 822 390 | 689 831 420
20199 371 20 | 202 361 20 | 189 332 20 | 233 389 30 |282 433 60 | 325 464 120|339 476 130
04(35| 89 274 10 | 75 218 10 | 64 171 10 | 70 170 10 | 85 197 10 | 102 215 1.0 | 105 218 10
50| 50 207 10 | 44 162 10 | 35 112 10 | 37 112 10 | 42 117 10 | 51 136 10 | 55 143 10
55 42 180 10 | 36 130 10 | 30 101 10 | 32 98 10 | 36 104 10 | 44 125 10 | 46 131 1.0
80| 21 105 10 | 20 76 10 | 18 58 10 | 20 62 1.0 | 22 69 10 | 25 77 10 | 25 75 1.0
EQL | 208 779 53 191 600 55 170 468 57 109 496 67 232 547 78 274 619 89 283 631 92
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5.3. Performance of the proposed scheme under different prior distributions

In this section, specific and overall performances of the proposed scheme in terms of the ARL and EQL
profiles are evaluated using different prior distributions when A €{0.1,0.5,0.9} for a nominal ARL, =
370. For illustration purpose, the sensitivity of the proposed scheme using the proper prior introduced
earlier (normal prior hereafter) is compared to its sensitivity under the Student’ s t and gamma prior
distributions with degrees of freedom df =5 and parameters (a, b) =(1,1), respectively. These prior
distributions are denoted as t(df) and Gamma(a,b).

The results in Table 7 reveal that in terms of the ARL and EQL profiles, the proposed scheme performs
better under the normal prior as compared to its performance under the t(5) and Gamma(1,1) prior
distributions. The proposed scheme performs worst under skewed prior distributions (see large ARL
and EQL values under the Gamma(l1,1) prior distribution). Under heavy-tailed and skewed prior

distributions the performance of the proposed scheme degrades as A increases.

Table 7. Case 1: ARL profiles for the time-varying BAG EWMA scheme with shifts in the error variance term
(A) and mean level (8) for A €{0.10,0.5,0.9} values when ARL, = 370

5 A The proposed proper prior t(5) Gamma(1,1)
0.1 0.5 0.9 0.1 0.5 0.9 0.10 0.5 0.9
0 15 46.2 27.0 27.3 46.5 40.2 80.1 55.1 57.8 79.0
2.0 16.3 9.3 9.3 175 20.8 39.3 19.4 27.9 25.7
35 3.9 2.8 2.7 35 45 12.1 5.6 6.7 10.2
5.0 2.1 1.9 1.9 2.2 2.5 5.6 2.9 2.9 8.1
5.5 1.9 1.7 1.7 14 1.9 45 2.2 2.3 7.0
8.0 15 14 14 1.3 15 2.3 1.9 1.9 3.9
EQL 12.5 9.9 9.9 11.6 13.3 27.3 15.8 17.4 33.4

0.2 1.0 114.6 245.2 306.2 1104 2193  316.3 | 1255 295.9 350.4

3.5 3.7 3.2 2.8 3.8 4.3 5.2 43 6.0 9.1
5.0 2.1 1.9 1.9 1.9 2.2 2.7 31 3.1 4.3
55 1.9 1.7 17 15 1.9 1.9 2.3 2.4 35
8.0 1.4 1.4 1.4 1.4 1.5 15 2.1 2.0 2.8
EQL 11.8 10.5 10.3 11.6 12.2 13.2 15.7 15.8 21.9

0.4 1.0 37.1 114.1 201.9 40.6 120.7 2334 454 136.6 267.6

3.5 3.7 2.7 2.8 3.4 3.1 3.7 4.8 6.6 8.2
5.0 2.1 1.9 1.8 1.9 2.1 2.6 2.0 4.6 51
55 1.9 1.7 1.8 1.7 1.7 2.0 1.6 2.7 3.0
8.0 1.4 1.4 1.4 1.3 15 1.7 15 1.8 2.2
EQL 11.1 10.7 11.0 10.5 11.8 13.9 11.9 17.6 21.5

6. Case study: monitoring the USD/ZAR exchange rate using the proposed Bayesian ARMA.-
GARCH monitoring scheme

Volatility is an integral part of financial time series analysis and can be well-handled by models such
as ARCH, GARCH and other variants of time series models; see, for example, Lange (2011) and
Lawrance (2013). In financial industries, it is very important to detect a change (or shift) in the process
as soon as they occur. This is made possible through the use of appropriate flexible and more efficient

time series monitoring schemes. The combination of ARMA and GARCH maodels for the innovations
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results, denoted as ARMA-GARCH model, is more recommended by econometrician in such instances.
This model is used because of its flexibility to model both the mean and variance. In this section, the
proposed BAG EWMA scheme is used to monitor the USD/ZAR exchange rate. In this case study, it is
necessary to detect any departure from the target process parameter as soon as possible. A change in
the process parameter can be due to or lead to significant changes in the exchange rate and affects
businesses in two ways: i) by changing the cost of supplies that are purchased from a different country,
and ii) by changing the attractiveness of their products to overseas customers.

The charting statistics of the proposed BAG EWMA scheme are displayed in Figure 2. For Case 1, the
control limit constants used to compute the asymptotic control limits of the proposed BAG EWMA
scheme are 1.2764 and 1.3693 when A = 0.05 and 0.1, respectively; while the ones for Case 2 are given
by 1.8178 and 1.9156, respectively (see Table 2); the asymptotic control limits are displayed in the
figures below. Figures 2 (a)-(d) show that for Case 1, when 2 = 0.05 and 0.10, the proposed monitoring
scheme gives a signal on the 55" and 391° samples in the prospective phase. These samples correspond
to the 16" of Oct 2017 and 29" of January 2019, respectively. However, for Case 2, when A = 0.05 and
0.10, the proposed scheme gives a signal on the 36" and 393 samples which corresponds to the 19" of
September 2017 and the 31% of Jan 2019. It can be seen that the proposed BAG EWMA scheme
performs better for small smoothing parameters when the variance is strictly stationary and ergodic, i.e.
Case 2. Apart from the general deterioration in the South African Rand, as shown in steady upward
trend observed in Figure 1(a), it is interesting to note that both charts signal before the start of the Covid
19 pandemic. We can thus conclude that despite the severe negative impact the pandemic had, it did
not lead to any statistically significant changes in the ZAR/USD exchange rate as monitored using the
BAG EWMA scheme.
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Figure 2. BAG EWMA monitoring scheme for the returns of the USD/ZAR exchange rate data
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7. Conclusion

This paper introduces a new ARMA-GARMA EWMA monitoring scheme for volatile long run
processes using the Bayesian approach where the method is implemented utilising the MH algorithm to
find the posterior and parameters of the model. It is found that, in many cases, the proposed monitoring
scheme performs better when the approximation is done near the unit root. However, the case study
revealed that the ability of the proposed scheme increases when the variance is strictly stationary and
ergodic with small smoothing parameters. Thus, the proposed scheme is mostly recommended when

the process is significantly volatile.

Note that the performance of the proposed monitoring scheme was investigated for two cases, i.e. when
the estimation is done near the unit root and when the variance is strictly stationary and ergodic. For
other cases and assumptions, the results might differ from the findings observed in this paper. Therefore,
the performance of the proposed scheme needs to be investigated according to assumptions.

In future, researchers can investigate the performance and robustness of the proposed monitoring
scheme using different priors and assumptions. Researchers can also investigate the performance of the
proposed monitoring schemes for higher order ARMA models, i.e., when p > 1 and g > 1 and also
look at the design of the ARMA-GARMA CUSUM monitoring scheme using the Bayesian approach.
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