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Simple Summary: We investigated the environmental DNA fungal diversity present in cores of
Oligocene rocks from Antarctica using a DNA metabarcoding approach. After eDNA extraction and
analysis, we identified 198 amplicon sequence variants (ASVs) representing the phyla Ascomycota,
Basidiomycota, Mortierellomycota, Chytridiomycota, Mucoromycota, Rozellomycota, Blastocladiomycota,
Monoblepharomycota, Zoopagomycota, Aphelidiomycota (Fungi), and the fungal-like Oomycota (Stra-
menopila). The dominant taxa detected were Pseudogymnoascus pannorum, Penicillium sp., Aspergillus
sp., Cladosporium sp., Aspergillaceae sp., and Diaporthaceae sp. We also detected 22 fungal ASVs as
intermediate and 170 as minor components of the assigned fungal diversity. The samples displayed
a high fungal diversity; however, rarefaction analysis suggested that further diversity remains to
be detected. The endolithic fungal community detected contains a rich and complex mycobiome
comprising taxa with different lifestyles, comparable to the diversity reported in other Antarctic
habitats. Our results suggest the need for further research to develop strategies for isolating these
fungi into culture for evolutionary, physiological, and biogeochemical studies, and to assess their
potential roles in biotechnological applications.

Abstract: In this study, we evaluated the fungal diversity present associated with cores of Oligocene
rocks using a DNA metabarcoding approach. We detected 940,969 DNA reads grouped into 198 am-
plicon sequence variants (ASVs) representing the phyla Ascomycota, Basidiomycota, Mortierellomycota,
Chytridiomycota, Mucoromycota, Rozellomycota, Blastocladiomycota, Monoblepharomycota, Zoopagomy-
cota, Aphelidiomycota (Fungi) and the fungal-like Oomycota (Stramenopila), in rank abundance order.
Pseudogymnoascus pannorum, Penicillium sp., Aspergillus sp., Cladosporium sp., Aspergillaceae sp. and
Diaporthaceae sp. were assessed to be dominant taxa, with 22 fungal ASVs displaying intermediate
abundance and 170 being minor components of the assigned fungal diversity. The data obtained
displayed high diversity indices, while rarefaction indicated that the majority of the diversity was
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detected. However, the diversity indices varied between the cores analysed. The endolithic fungal
community detected using a metabarcoding approach in the Oligocene rock samples examined
contains a rich and complex mycobiome comprising taxa with different lifestyles, comparable with
the diversity reported in recent studies of a range of Antarctic habitats. Due to the high fungal
diversity detected, our results suggest the necessity of further research to develop strategies to isolate
these fungi in culture for evolutionary, physiological, and biogeochemical studies, and to assess their
potential role in biotechnological applications.

Keywords: Antarctica; eDNA; fungi; environmental drivers

1. Introduction

Antarctic ecosystems experience polyextremophilic environmental stresses and offer
unique opportunities to discover and study extremophilic organisms [1]. While more than
99.6% of the Antarctic continent is currently permanently covered by ice and snow, the re-
maining snow-/ice-free area provides diverse habitats including soils and sediments, fresh
waters, vegetation, and rocks, hosting a diversity of organisms [2]. These are characterized
by the presence of complex microbial communities, including fungi and their allies, that
are present in virtually all Antarctic ecosystems, where they display multiple ecological
roles [3–5].

Fungal diversity is high in many ecosystems, where they play important ecological
roles. Meanwhile, these ecosystems are also facing the impacts of contemporary climatic
and other environmental changes [5–8]. Antarctic fungal communities include taxa highly
adapted to survival in habitats that experience rapid temperature fluctuations, along with
prolonged desiccation, high levels of solar radiation and lack of nutrients [5]. Rocks can
provide a range of habitats that are occupied by different fungal groups, which can live
directly on the exposed surfaces of rocks, as well as forming hypolithic communities on the
more protected undersurfaces of translucent rocks (e.g., quartz, gypsum) [3]. Fungi living
within rocks are known as endoliths, taking advantage of small and even microscopic
fissures within the rocks (chasmoendoliths) or, at the most extreme, the spaces between the
individual crystals which comprise the rock (cryptoendoliths) [3,7,9–15].

Despite their importance, few studies of endolithic fungal diversity in Antarctica
have been reported until recently, most using traditional culturing methods [16]. Only the
studies published by [15,17] used a high-throughput sequencing (HTS) approach to analyse
the unculturable portion of the Antarctic endolithic fungal community. However, there are
differences in the fungal diversity profiles between culturable and non-culturable fungi.
The use of traditional culturing methods revealed the presence of a limited diversity of
taxa dominated by the phyla Ascomycota and Basidiomycota [18]; in contrast, metabarcoding
studies have shown high taxa richness again dominated by Ascomycota and Basidiomycota,
but also with the presence of the phyla Mortierellomycota and Mucoromycota [15,17].

The South Shetland Islands archipelago is composed of Mesozoic and Cenozoic vol-
canic and volcaniclastic rocks. These rocks were formed during the Paleogene and Neogene
periods (~23 to 66 Mya). The Oligocene age, in particular, is represented by numerous
lithostratigraphic units (formations) [18], including the study site utilized here, the Polonez
Cove Formation (33–25.7 Mya) [19]. The Oligocene (~34–23 Mya) was a period marked by
significant climatic and evolutionary changes in the Antarctic region, with the continent
undergoing cooling, eventually resulting in the formation of extensive continental ice
sheets which reached their maximum extent in the Miocene and remain to the present
day [20–25]. These considerable environmental changes were accompanied by a drastic
reduction in Antarctic terrestrial diversity [21,22]. The sediments of the Polonez Cove
Formation provide evidence of a reduced vegetation characterized by a sparse tundra flora
vegetation, with limited herbaceous plants and rare podocarp conifers and southern beech
(Nothofagus) [24].
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In recent years, Antarctic fungal diversity studies have taken advantage of the devel-
opment of environmental DNA (eDNA) metabarcoding approaches, which have revealed
the potential presence of previously unrecognized and complex communities present in
different substrates and habitats, as indicated by high levels of assigned sequence diver-
sity [26–29]. Although the importance of endolithic habitats in the search for microbial
diversity at the edge of life has been recognized, few studies on the fungal diversity of
Antarctic endolithic ecosystems have been reported until recently, as noted above. To
date, no studies of the endolithic fungal diversity present in ancient Antarctic rocks have
been conducted. Here, we used metabarcoding to detect and characterize the endolithic
fungal community in Oligocene rocks obtained from King George Island, South Shetland
Islands, Antarctica.

2. Materials and Methods
2.1. Sample Strategy and Processing

The rock material examined in this study derives from a section coded as LR-1 = Lions
Rump-1 located in the Mazurek Point Formation [30] at Lions Rump region (62◦08′30.81′′ S
58◦07′34.25′′ W), King George Island, South Shetland Islands, during the austral summer
of 2021/22 (Figure 1), which, according to paleobotanic studies, represents rock from
the Oligocene epoch. Section LR-1 has a thickness of ~58 m and five rock samples were
obtained at 9 m (sample-S2), 24 m (S11), 34.7 m (S21), 48.8 m (S36) and 57.2 m (S40)
using a geological hammer. The rock samples (Figure 2) were stored in sterile Whirl
Pack bags (Nasco, Ft. Atkinson, NH, USA) and frozen at −20 ◦C until processing for
eDNA at the Federal University of Minas Gerais, Brazil. There, the samples were first
fragmented into approximately 1 cm3 using a miniature drill device (Storm Feel-0001,
Gumroad, Sumaré, Brazil) with diamond drills, one for each sample, and autoclaved before
extraction [25]. After that, these fragments were pulverized with the aid of a previously
sterilized agate mortar. The entire process was carried out in a laminar flow cabinet to
avoid external contamination.

2.2. Stratigraphy

The Polonez Cove Formation is a continuous 2 km-long cliff section between Low
Head and Lions Rump. The formation consists of a basal unit dominated by glacigenic
diamictite, overlain by a series of basalt-sourced sedimentary and dacitic volcanic units [31].
The Polonez Cove Formation has been divided into six members [23]: Krakowiak Glacier;
Low Head; Bayview; Siklawa; Oberek Cliff; and Chlamys Ledge. These members have
been interpreted as: (1) sparsely fossiliferous, planar-bedded, generally fine-grained sedi-
ments (mainly siltstones and fine sandstones) formed in relatively deep water; (2) locally
fossiliferous coarse epiclastic fan deltas sourced in recently active volcanism (subunits of
the Low Head and Oberek Cliff members); and (3) gravelly conglomeratic sediments with
prominent channels and cross-stratification, typically highly fossiliferous and characteristic
of deposition under relatively shallow-water high-energy conditions (other subunits of the
Low Head and Oberek Cliff members) [24].

2.3. Geochemical Analysis

Analysis of chemical element concentrations in the LR-1 bulk sediment rock samples
(n = 1) was performed using X-ray fluorescence (XRF) at the National Museum (Rio de
Janeiro, Brazil), utilizing a Bruker Tracer 5i Handheld XRF instrument (Bruker, Billerica,
MA, USA). The data obtained were interpreted in the context of elemental ratios, specifically
the Fe/Ca ratio, to deduce the presence of terrigenous inputs. This is because iron is more
prevalent in terrestrial materials such as soils and rocks, whereas calcium tends to be
the dominant element in marine environments, owing to the abundance of calcium-rich
minerals such as calcite and aragonite. The Sr/Ca ratio was used to estimate relative sample
temperatures, where higher values indicate warmer waters (higher Sr concentration) and
lower values suggest colder waters (higher Ca concentration).
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Figure 1. Satellite images of the study region from which the rock samples analysed were obtained 
(https://www.google.com.br/maps/, accessed on 28 February 2024). (A) Antarctica, with the 
Antarctic Peninsula indicated within the red rectangle, (B) South Shetland Islands indicated within 
red rectangle and King George Island indicated by yellow arrow, (C) King George Island with the 
Lions Rump region highlighted by the red circle. Images obtained from Google Earth Pro, 2019 
(https://earth.google.com, accessed on 28 February 2024). 

Figure 1. Satellite images of the study region from which the rock samples analysed were obtained
(https://www.google.com.br/maps/, accessed on 28 February 2024). (A) Antarctica, with the
Antarctic Peninsula indicated within the red rectangle, (B) South Shetland Islands indicated within
red rectangle and King George Island indicated by yellow arrow, (C) King George Island with the
Lions Rump region highlighted by the red circle. Images obtained from Google Earth Pro, 2019
(https://earth.google.com, accessed on 28 February 2024).
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Figure 2. Lithostratigraphic scheme of the Mazurek Point Formation at Lions Rump, King George 
Island. (A–C): sections where the samples were obtained. Photographs of the limits (base and top), 
where the samples were collected. (D): Geological interpretation of the Formation; MPF = Mazurek 
Point Formation. Images by Gustavo Santiago. Samples 9.0 m (sample 2), 24.0 m (sample 11), 34.7 
m (sample 21), 48.8 m (sample 36) and 57.2 m (sample 40).  
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Figure 2. Lithostratigraphic scheme of the Mazurek Point Formation at Lions Rump, King George
Island. (A–C): sections where the samples were obtained. Photographs of the limits (base and top),
where the samples were collected. (D): Geological interpretation of the Formation; MPF = Mazurek
Point Formation. Images by Gustavo Santiago. Samples 9.0 m (sample 2), 24.0 m (sample 11), 34.7 m
(sample 21), 48.8 m (sample 36) and 57.2 m (sample 40).

2.4. Petrographic Analyses

Thin sections were made with the undisturbed samples, and optical microscopic
investigations were carried out using a Zeiss trinocular optical microscope (Axiophot
model) with an integrated digital camera, to identify the types of rocks and their features,
in particular any crack/fissure patterns. Rock porosity is an important part of the formation
of habitats suitable for microbial colonization [13,31]. We follow [9] for void system
description. Samples 11, 36, and 40 (n = 1), which displayed the best structural conditions
for petrographic analysis, were selected to analyse the relationship between the degree of
rock porosity and its chemical alteration, in order to identify whether the rocks showed
any evidence of recent colonization by fungi, as some fungal species (particularly those
that can become lichenized) are known to exude chemicals that can alter the rock minerals
present [32]. For this, we used a scanning electron microscope (SEM, QUANTA FEI 3D)
coupled with an energy dispersive system (EDS), operated with an acceleration potential
of 15 kV and a current of 20 nA. The following elements were determined in the analysis:
Na, K, Mg, Ca, Fe, Al and Si. The thin sections were metalized with carbon films, and this
element was used as an indicator of porosity in the microchemical maps produced.

2.5. DNA Extraction, Illumina Library Construction and Sequencing

One sub-sample (approximately 100 g) of each of sample S2, S11, S21, S36 and S40 (five
for each sample) was pulverized as described by [31]. Total DNA was extracted from these
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using the FastDNA Spin Kit for Soil (MPBIO, Solon, OH, USA) under strict contamination
control conditions, following the manufacturer’s instructions. DNA quality was analysed
using agarose gel electrophoresis (1% agarose in 1 × Trisborate-EDTA) and then quan-
tified using the Quanti- iT™ Pico Green dsDNA Assay (Invitrogen, Carlsbad, CA, USA).
Extracted DNA was used as template for generating PCR amplicons.

The internal transcribed spacer 2 (ITS2) of the nuclear ribosomal DNA was used
as a DNA barcode for molecular species identification [27,33–35]. PCR amplicons gen-
erated using the universal primers ITS3 and ITS4 [36] were sequenced commercially by
Macrogen Inc. (Seoul, Republic of Korea) using high-throughput paired-end sequencing
(2 × 300 bp) on a MiSeq System (Illumina, San Diego, CA, USA), using the MiSeq Reagent
Kit v3 (600 cycles). Library construction and DNA amplification were performed using
the Library kit Herculase II Fusion DNA Polymerase Nextera XT Index Kit V2 (Illumina,
San Diego, CA, USA), following Illumina 16S Metagenomic Sequencing Library Preparation
Part #15044223 Rev. B protocol.

2.6. Data Analysis and Fungal Identification

Quality analysis was carried out using BBDuk v. 38.87 in BBmap software [37] with
the following parameters: Illumina adapters removing (Illumina artefacts and the PhiX
Control v3 Library); ktrim = l; k = 23; mink = 11; hdist = 1; minlen = 50; tpe; tbo; qtrim = rl;
trimq = 20; ftm = 5; maq = 20. The remaining sequences were imported to QIIME2 version
2021.4 (https://qiime2.org/, accessed on 28 February 2024) for bioinformatics analyses [38].
The qiime2-dada2 plugin was used for filtering, dereplication, turn paired-end fastq files
into merged, and to remove chimeras, using default parameters [39]. Taxonomic assign-
ments were determined for amplicon sequence variants (ASVs) in three steps. First, ASVs
were classified using the qiime2-feature-classifier [40] classify-sklearn against the UNITE
Eukaryotes ITS database version 8.3 [41]. Second, remaining unclassified ASVs were filtered
and aligned against the filtered NCBI non-redundant nucleotide sequences (nt) database
(October 2021) using BLASTn [42] with default parameters; the nt database was filtered
using the following keywords: “ITS1”, “ITS2”, “Internal transcribed spacer”, and “internal
transcribed spacer”. Third, output files from BLASTn [42] were imported to MEGAN6 [43]
and taxonomic assignments were performed using the “megan-nucl-Jan2021.db” mapping
file with default parameters and trained with Naive Bayes classifier and a confidence
threshold of 98.5%. Taxonomic profiles were plotted using the Krona [44]. The heatmap of
ASV abundance and clustering analysis were performed using Heatmapper [45]; clustering
analysis was performed using the following parameters: average linkage, Spearman’s rank
correlation, and Z-score among samples for each ASV. Sequences have been submitted to
GenBank under the accession numbers SAMN37305760-SAMN37305772.

Many factors, including extraction, PCR and primer bias, can affect the number of
reads obtained [46], and thus lead to misinterpretation of absolute abundances [47]. How-
ever, ref. [48] concluded that such biases did not affect the proportionality between reads
and cell abundance, implying that more reads are linked with higher abundance [49,50].
Therefore, for comparative purposes, we used the number of reads as a proxy for relative
abundance. Fungal classification followed [51,52], MycoBank (http://www.mycobank.org,
accessed on 28 February 2024) and the Index Fungorum (http://www.indexfungorum.org,
accessed on 28 February 2024).

2.7. Fungal Diversity

The relative abundances of the ASVs were used to quantify the fungal taxa present in
the samples; fungal ASVs with relative abundance > 10% were considered dominant, those
between 1% and 10% as intermediate, and those with <1% as minor (rare) components of
the fungal community [27]. The relative abundances were used to quantify taxon diversity,
richness, and dominance, using the following indices: (i) Fisher’s α, (ii) Margalef’s and
(iii) Simpson’s, respectively. In addition, species accumulation rarefaction curves were
obtained using the Mao Tao index. All results were obtained with 95% confidence, and

https://qiime2.org/
http://www.mycobank.org
http://www.indexfungorum.org
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bootstrap values were calculated from 1000 replicates using the PAST 1.90 [53]. Venn
diagrams were prepared following [54] to visualise the fungal assemblages present in the
different sampling areas.

3. Results
3.1. Fungal Identification

A total of 940,969 fungal DNA reads were obtained, which were assigned to 198 am-
plicon sequence variants (ASVs) (Figure 3, Supplementary Table S1). Ascomycota was
the dominant phylum, followed by Basidiomycota, Mortierellomycota, Chytridiomycota, Mu-
coromycota, Rozellomycota, Blastocladiomycota, Monoblepharomycota, Zoopagomycota, Aphe-
lidiomycota (Fungi) and the fungal-like Oomycota (Stramenopila), in rank order (Supple-
mentary Figure S1). Pseudogymnoascus pannorum, Penicillium sp., Aspergillus sp., Cladospo-
rium sp., Aspergillaceae sp. and Diaporthaceae sp. were the most abundant taxa (relative
abundance ≥ 10%). In addition, 22 fungal ASVs displayed intermediate abundance, and
170 formed minor components of the assigned fungal community.

3.2. Fungal Diversity and Distribution

The Mao Tao rarefaction curves reached asymptote for all fungal assemblages from
the different sites, indicating that the majority of the diversity was detected (Figure 4). The
diversity indices varied among the fungal assemblages for the five sites sampled (Table 1).
The highest diversity assemblages were detected in S21 and S2, whilst those from S11, S36
and S40 displayed the lowest values. Among the 198 fungal ASVs assigned, 30 (15%) were
detected in all five samples (Figure 5).

Table 1. Chemical elements present in the rock samples analysed and diversity indices of fungal
assemblages detected associated with the different rock samples.

Sample

Chemical Elements * S2 S11 S21 S36 S40

Mg 4.13 4.89 3.40 <LOD <LOD
Ca 4.14 18.07 14.92 7.97 2.76
Al 5.87 7.89 8.16 8.83 7.88
Si 44.06 45.62 38.68 49.14 44.61
P 0.14 2.54 1.13 0.45 0.13
S 0.75 2.90 1.64 0.66 0.704
Ti 1.81 0.79 2.15 1.96 2.43
V 0.05 <LOD 0.05 <LOD 0.0858
Cr 0.21 0.15 0.215 0.27 0.11
Mn 0.64 2.23 0.59 1.17 2.15
Fe 40.03 29.72 41.83 34.27 38.25
Co 0.12 <LOD 0.14 <LOD 0.0794
Ni 0.52 0.31 0.22 0.33 0.21
Cu 0.1 0.1 0.11 0.02 0.09
Zn 0.05 0.05 0.06 0.04 0.06
Zr 0.34 0.58 0.45 0.19 0.38
Pd 1.11 2.06 1.16 0.87 1.08

Altitude above sea level (m) 9.0 24.0 34.7 48.8 57.2

Diversity indices
Number of amplicon sequence variants (ASVs) 90 49 101 68 67
Number of assigned ASVs 225 177,098 319,448 219,426 172,971
Fisher’s α 9.42 5.17 11.97 6.84 7.13
Margalef 7.63 4.39 9.55 5.69 5.89
Simpson 0.88 0.87 0.91 0.89 0.88

* The concentration measured in percentage. LOD = limit of detection, ASV = amplicon sequence variant.
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Figure 3. Krona charts of the fungal assemblages detected from the five different rock samples
obtained at Lions Rump, King George Island, South Shetland Islands. (a) Sample 2, (b) sample 11,
(c) sample 21, (d) sample 36, and (e) sample 40, each referring to a specific fungal community. ‘More’
indicates the presence of other different taxa.

3.3. Geochemical Results

X-ray fluorescence results (Table 1) revealed differences in the chemical compositions
of the five samples. The major chemical elements were Si (with an average of 42.8%),
Fe (37.2%) and Al (7.3%). Other elements were also present in minor proportions in
the samples, including Mg, P, and Ti (Table 1). The curves of the Fe/Ca and Sr/Ca
ratios exhibited similar patterns, with the lowest concentrations found in sample S2 and
the highest in sample S40. Meanwhile, the phosphorus (P) concentration, indicative of
productivity, exhibited its lowest levels in sample S21 and highest in S36 (Figure 6).

The stratigraphic distribution of the relevant fungal ASVs revealed a correlation
between high diversity (S21) in conjunction with rocks formed during a period of reduced
terrigenous input and higher temperatures. Conversely, lower diversity values (S11) were
associated with rocks formed during periods of moderate to high terrigenous input and
lower temperatures. (Figure 6). Specifically, the abundance curve of P. pannorum followed
the same pattern as the curve of terrigenous input (Figure 6), suggesting a connection
between this species and rocks whose formation and properties are related to terrigenous
input. Conversely, the species Aspergillus sp. and Penicillium sp. were associated with rocks
formed during periods of higher temperatures.
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3.4. Petrographic Analyses

The photomicrographs show that the samples had different degrees and patterns of
micro-fissure formation (Figure 7). Samples S2, S11, and S40 were the most fragmented,
with voids that varied from flat and curved planes to a simple packing void system. In
conglomerates (S2 and S11), fissure formation had occurred through the fragmentation of
the matrix and the release of rounded clasts. The sandstone rock (S40) was also fractured,
with some rotated clasts. Samples S21 and S36 showed the lowest degree of fragmentation,
with some areas with poorly connected flat voids. The less fragmented samples were those
that presented the highest fungal diversity values (Figure 7).
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Our analyses identified little evidence of chemical weathering, with the presence of an
alteration cortex observed under optical microscopy only in sample S2 (sandstone). In the
conglomerate rocks, backscattered electron microscopy images and microchemical maps
(Supplementary Figures S2–S4) indicated that zones of geochemical alteration were not
evident in the void systems present. Comparing samples S11, S36, and S40, there were
differences in void size, but no evidence of chemical alteration. The specific location of
carbon indicates the presence of pores, as the thin sections were metallized with graphite,
with the numbers increasing from samples S36 and S40 to S11, respectively 20.33%, 25.66%,
and 44.05% carbon (Supplementary Figures S2d, S3d, and S4d).

3.5. Assignment to Fungal Lifestyles

The 101 fungal ASVs genera detected were assigned to fungal lifestyles using FunGuild
(Supplementary Table S2). The majority of assignments were to saprotrophic, pathogenic,
and symbiotic taxa, with some displaying multiple ecological roles (Figure 8). The fungal
genera included animal and plant pathogens, soil, wood, litter and undefined saprophytic
taxa, endophytes, and lichenized fungi. Considering only ASVs classified to a single
ecological status (Figure 9), in four of the samples saprophytic taxa dominated, followed
by pathogenic and symbiotic taxa, while, in sample S40, symbiotic taxa were more diverse
than pathogenic taxa.
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4. Discussion
Fungal Taxonomy, Fungal Diversity, and Fungal Lifestyle

Existing studies of endolithic fungal communities present in Antarctic rocks have
involved their direct observation in the substrate, cultivation techniques, or culture-
independent methods [13]. Rocks from Antarctic can be considered a unique microhabitat
for life forms, providing a natural habitat for rock-inhabiting microbes, including fungal
taxa [7,13,17]. In the extreme conditions across Antarctica, endolithic fungi present within
rocks are dominated by the phyla Ascomycota and Basidiomycota, as revealed by studies
using traditional culturing methods [13].

The use in this study of metabarcoding to detect fungal eDNA associated with Antarc-
tic Oligocene rocks revealed the presence of eDNA assigned to the widespread and common
phyla Ascomycota and Basidiomycota. It also detected members of the less commonly re-
ported Mortierellomycota, Chytridiomycota, and Mucoromycota, as well as cryptic fungi from
the phyla Rozellomycota, Blastocladiomycota, Monoblepharomycota, Zoopagomycota, Aphelid-
iomycota, and fungal-like Oomycota (Stramenopila). Among the ASVs assigned, 74 were
resolved only at higher hierarchical taxonomic levels (family, class, order, and phylum),
suggesting that they might represent undescribed fungi or taxa not currently included in
publicly accessible databases, which deserve further taxonomic studies.

In a study carried out in a polar desert region of continental Antarctica, rocks were
analysed using DNA metabarcoding, reporting 262,268 fungal DNA reads grouped into
517 fungal ASVs dominated by the phyla Ascomycota, Basidiomycota, Mortierellomycota, and
Mucoromycota, in abundance order [17]. These results showed similarity to those obtained
in our study [55–57], in which Ascomycota and Basidiomycota represented the dominant
phyla, with Mortierellomycota and Mucoromycota as minor components. However, in the
current study, we detected taxa from further phyla including Chytridiomycota, Rozellomycota,
Blastocladiomycota, Monoblepharomycota, Zoopagomycota, Aphelidiomycota, and the fungal-like
Oomycota (Stramenopila). The dominant genera detected in the current study (Pseudogym-
noascus, Penicillium, Aspergillus, and Cladosporium) were similar to those reported in [17].

Endolithic microbes, including those present in Antarctica, can exist in a dormant
form alongside non-viable cells that retain their morphological integrity [58]. It is therefore
important to recognize that the metabarcoding approach can detected only the presence of
DNA and does not confirm viability. The petrographic analysis confirms the presence of
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microchannels within the rocks, and we assume that spores, hyphal fragments, or resistant
structures might be recovered from such structures, as proposed by [13].

Amongst the taxa assigned, Pseudogymnoascus pannorum and representatives of the
genera Penicillium, Aspergillus, and Cladosporium were the most abundant. The genus Pseu-
dogymnoascus (syn. Geomyces) includes many psychrophilic and psychrotolerant species
commonly present in Antarctic terrestrial and marine habitats [5]. Although the genus
is widely distributed in cold environments globally [59,60], it is particularly well repre-
sented in Antarctica, with reports from habitats including soils [59,61,62], in association
with plants [63], marine macroalgae [64,65], lichens [66], sponges [67] and in freshwater
lakes [1,68]. Pseudogymnoascus pannorum was reported to produce high levels of protease at
low temperatures [69], which may contribute to its occurrence, dominance, and capability
to survive in the extreme conditions of Antarctica.

Representatives of the genera Penicillium, Aspergillus, and Cladosporium are found
globally, including some truly cosmopolitan species. They have been reported from multi-
ple Antarctic habitats, including soils [62,70] and permafrost [71,72]. Taxa of Penicillium,
Aspergillus, and Cladosporium have been reported as endolithic microbes in rocks across
various environments. Within Antarctic rocks, taxa from these genera have been identified
as dominant [13,17,73]. Recent metabarcoding studies in Antarctica have reported eDNA
assignments to members of Pseudogymnoascus, Penicillium, Aspergillus, and Cladosporium
from habitats including mosses, soils [26,72,74], snow [75], rock surfaces [55], marine
environments [76], and lake sediments [29].

The diversity indices and similarity among the fungal assemblages varied. The highest
diversity values were detected in the fungal assemblages of S21 and S2, followed by those
of S11, S36, and S40. These results might be explained by differences in the formation
of the rock samples. Rock fragmentation in periglacial environments occurs primarily
through cryoclastic processes [77,78] and is influenced by the type of rock, its position
in the relief, exposure time, and the intensity of freezing and thawing cycles [79–81]. In
the South Shetland Islands, some studies have shown that sedimentary rocks are more
easily fragmented than igneous rocks [82]. This is consistent with the high degree of
fragmentation observed in the samples studied here, which included conglomerates and
sandstones. The latter are also more affected by cryoturbation, because of their greater
compositional homogeneity. As they are progressively fragmented, the rocks can become
chemically altered along the fissures, or fragments may be physically removed by water or
ice activity. However, chemical modification was not evident in the rock samples analysed
here (Supplementary Figures S2–S4). Therefore, the chemical change might be promoted
by biological action as proposed by [31,83–85].

Although this study is based on a small sample size, samples S2, S11, and S40 were the
most fragmented rocks, while samples S21 and S36 displayed the lowest degree of fragmen-
tation. We therefore expected that samples S21 and S36 would present low diversity indices
and the most fragmented samples would have the highest diversity indices. However,
fragmentation did not show a correlation with eDNA fungal assemblage diversity. Rather,
our data suggest a possible link between (undefined) rock properties developed at their
time of formation under the influence of different environmental temperatures (as indicated
by Sr/Ca ratio) and their subsequent, much more recent, colonization by endolithic fungi.

The ecological functional group assignments in the current study are similar to our recent
metabarcoding studies of fungal communities in various Antarctic habitats [26,28,29,72,74,86,87].
Our ASV assignments suggest the presence of a diverse fungal community associated with
the Oligocene rock samples analysed. The dominance of saprophytic fungi is consistent
with the studies of [57,88], which suggest that fungi can colonize and establish in cold
environments, slowly degrading the limited organic matter available, releasing nutrients,
and making them available to other organisms.
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5. Conclusions

The use of a metabarcoding approach led to detection of a diverse endolithic fungal
community associated with the Oligocene rock samples examined. The endolithic fun-
gal community detected contains a rich and complex mycobiome comprising taxa with
different lifestyles, comparable with the diversity reported in recent studies of a range
of Antarctic habitats. Due to the high fungal diversity detected, our results highlight the
need for further research to develop strategies to isolate these fungi in culture for evolu-
tionary, physiological, and biogeochemical studies, and to assess their potential role in
biotechnological applications.
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