

Contents lists available at ScienceDirect

Fish and Shellfish Immunology

journal homepage: www.elsevier.com/locate/fsi

Full length article

Impact of freshwater rearing history on Atlantic salmon gill response to viral stimulation post seawater transfer^{\star}

Marlene Lorgen-Ritchie^a, Lynn Chalmers^b, Michael Clarkson^b, John F. Taylor^b, Simon MacKenzie^b, Herve Migaud^b, Samuel A.M. Martin^{a,*}

^a Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
 ^b Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK

ARTICLE INFO

Keywords: Atlantic salmon Aquaculture system Immune response RNA sequencing Seawater transfer

ABSTRACT

Land-based recirculating aquaculture systems (RAS) have risen in prevalence in recent years for Atlantic salmon production, enabling intensive production which allows increased growth and environmental control, but also having the potential for reducing water use and eutrophication. The Atlantic salmon has an anadromous life history with juvenile stages in freshwater (FW) and on-growing in seawater (SW), enabled by a transformational process known as smoltification. The timing of smoltification and transfer of smolts from FW to SW is critical under commercial production with high mortalities during this period. The impact of FW rearing system on immune function following seawater transfer (SWT) is not well understood. In this study parr were raised in either RAS or a traditional open-LOCH system until smolting and then transferred to a common marine environment. Two-weeks post-SWT fish were immune stimulated with a viral mimic (poly I:C) for 24 h to assess the ability to mount an antiviral immune response, assessed by whole transcriptome analysis of gill tissue, an important immune organ in fish. We show that unstimulated smolts reared in the LOCH had higher immune gene expression than those reared in RAS as determined by functional analysis. However, following stimulation, smolts reared in the RAS mounted a greater magnitude of response with a suite of immune genes displaying higher fold induction of transcription compared to LOCH reared smolts. We suggest RAS smolts have a lower steady state immune-associated transcriptome likely due to an unvarying environment, in terms of environmental factors and lack of exposure to pathogens, which shows a compensatory mechanism following stimulation allowing immune 'catch-up' with those reared in the LOCH. Alternatively, the RAS fish are experiencing an excessive response to the immune stimulation.

1. Introduction

As the global population continues to rise, so too does per capita fish consumption. Fish produced in aquaculture now constitute more than half of all consumption fish produced worldwide, out-producing wild-capture fisheries. From an economic standpoint, Atlantic salmon (*Salmo salar*) is the most valuable species cultured worldwide [1]. The anadromous life cycle of this fish dictates a need for periods of culture in both freshwater (FW) and seawater (SW). An important transition known as smoltification, regulated by water temperature and daylength, occurs in FW juvenile parr prior to SW migration and encompasses a suite of

physiological, morphological and behavioural changes to become SW adapted juveniles called smolts [2]. In aquaculture, light regimes need to be carefully considered to balance growth with optimum development of SW tolerance, as photoperiod regime has been shown to impact gene expression in important osmoregulatory tissues such as gill [3–5]. Production of robust, well-adapted smolts is vital to success post-transfer to SW for on-growing and mistiming of smoltification or seawater transfer (SWT) results in high mortalities [6].

The on-going expansion of aquaculture production has meant investment in systems technologies with a view to reducing environmental impacts, increasing fish welfare, and promoting sustainability in the

* Corresponding author.

https://doi.org/10.1016/j.fsi.2024.109653

Received 18 January 2024; Received in revised form 22 May 2024; Accepted 23 May 2024 Available online 25 May 2024

1050-4648/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

^{*} SAMM, JT, and HM designed the experiment. SAMM, JT, SM and HM were responsible for project management. LC, and MC conducted the sample collection. ML-R performed the RNA extraction and preparation of samples for mRNA sequencing and downstream bioinformatic data analyses, and wrote the initial manuscript draft which was reviewed and edited by SM, HM and SAMM. All authors contributed to the article and approved the submitted version.

E-mail address: sam.martin@abdn.ac.uk (S.A.M. Martin).

industry. In the Scottish aquaculture sector, cage systems open to the environment situated in large inland water bodies called lochs have traditionally been used to rear freshwater juveniles to the smolt stage and subsequent transfer to sea, exposing fish to natural freshwater as well as ambient photoperiod, temperature and seasonality. However, a shift from production of smolts in open-water (LOCH) or flow-through systems (FTS) to extended production to post-smolt stage in landbased recirculating aquaculture systems (RAS) has occurred in recent years [7]. RAS ensure year-round smolt production in a carefully controlled environment alongside increased biosecurity and prevention of eutrophication of the surrounding environment but are energetically costly to operate [8,9]. Despite the wide use of RAS, their impacts on physiology of smolts reared in these tightly controlled non-natural systems, one important aspect of which is the immune system, is still poorly understood.

Atlantic salmon have highly functioning innate and adaptive immune systems acting at local and systemic levels [10]. Mucosal surfaces are the first line of host defence against potential environmental pathogens and distinct mucosa-associated lymphoid tissues (MALT) persist in distinct tissues including the gill (GiALT) [11]. The GiALT can be sub-divided into interbranchial lymphoid tissue (ILT) and amphibranchial lymphoid tissue (ALT) in salmonids [12]. Within GiALT, local innate immune mediators include mucins, antimicrobial peptides, immune-related enzymes, lectins, complement proteins, phagocytic cells, pathogen recognition receptors (PRRs) and local cytokine signalling that regulates local inflammation [13,14]. The adaptive immune system in the gill comprises mucosal immunoglobulins (IgT/IgM) in addition to CD₄+ (helper cells), CD₈+ (cytotoxic) and FOXP₃+ (regulatory) T-cells [14,15]. The gill is a complex organ with multiple functions including gas exchange, pH balance and osmoregulation [16]. Due to its large surface area and its constant and direct contact with the environment, it often is subject to inflammation driven by abiotic and biotic factors during the SW on-growing phase in aquaculture [17].

The post-SWT period in aquaculture production is a time when fish can experience poor health and increased disease burden and mortality [18,19]. Increased susceptibility to disease has been attributed to stress, exposure to novel pathogens, adaptation to the SW environment, and immune suppression. Suppression of the immune system during smoltificiation is a phenomenon which has been independently identified in different cohorts of fish and in tissues including head kidney, gill, skin and intestine [20–23]. Downregulation of immune genes has been suggested as a side effect of large changes in endocrine regulation and a balance between immunity and transformation of osmoregulatory systems during smoltification [24].

Exposure to pathogens and other antigens in the environment during immune system development may 'prime' the system for encounters later in life and thus the rearing environment is likely to impact the development of the immune system. In this study we utilised RNA sequencing to identify a panel of genes with differing expression profiles in the gills of fish reared in RAS or LOCH environments two-weeks posttransfer to SW. Fish were additionally stimulated with a viral mimic in the form of the pathogen associated molecular pattern (PAMP) poly I:C to illicit an immune response and identify any differences in the response of genes involved in immune protection post-SWT in fish from different FW backgrounds.

2. Materials and methods

2.1. Fish

The Atlantic salmon utilised in this study were obtained from a commercial salmon production company (MOWI, Scotland) and supplied as sea-ready smolts from either a RAS or LOCH site to the Machrihanish Marine Environmental Research Laboratory (MERL). Smolts were produced out of season by using a standard smoltification regime in both RAS (9.8 °C–11.5 °C) and LOCH populations (natural

temperature ranging from 5.6 °C to 7.5 °C) consisting of 400° days 12L:12D for the RAS population and at ambient photoperiod for the LOCH population followed by continuous light (LL, starting on January 10, 2020 and December 31, 2020, respectively). Smoltification was monitored through gill Na⁺, K⁺-ATPase activity and blood chloride analyses performed every 100° days from the onset of spring photoperiod (LL). No smoltification diets were used with both parr populations fed on Skretting diet. Fish in both systems were vaccinated with AlphaJect Micro 6 (Pharmaq) in early December 2019. There were no additional disease control measures taken for these fish. Smolts from the RAS facility were transferred to MERL on February 14, 2020 (375° days (dd); mean weight = 92.2 g; mean length = 200.2 mm) while LOCHreared smolts were transferred on March 5, 2020 (430 dd; mean weight = 101.2 g; mean length = 210.1 mm). Smolts, regardless of freshwater origin, were stocked into 2 m diameter stock tanks (1 freshwater origin and \sim 120–150 fish tank⁻¹). Fish were maintained under ambient temperature (min 7 °C; max 12 °C) with aeration provided by air stones. The difference in time of seawater entry was related to the predicted peak time for transfer. All fish were from the same genetic background.

2.2. Poly I:C stimulation

The experimental design is outlined in Fig. 1. Fish from both RAS and LOCH origins (average weight: RAS 86.4 g; LOCH 102.4 g) were subject to experimental viral stimulation at two weeks post-seawater transfer. Prior to the stimulation, fish were randomly allocated into 1.4 m diameter (ca. 750 L) tanks (three tanks freshwater $origin^{-1}$; 18 fish tank⁻¹) for seven days and allowed to acclimate. Fish were anaesthetised prior to injection (MS-222, 50 ppm, PHARMAQ, Norway). Six fish per tank received an intraperitoneal injection of poly I:C (P1530, Sigma-Aldrich, UK) while another six received phosphate buffered saline (PBS). Poly I:C was prepared in 0.02 M PBS to a working solution of 5 mg mL⁻¹ and administered at a final concentration of 5 mg/Kg body weight. Poly I:C and PBS fish were marked with panjet (0.0652 g alcian blue ml^{-1} , Sigma-Aldrich, UK) to differentiate between treatments. Following injection, fish were returned to tanks to recover and were sampled after 24 h. Prior to sampling, fish were humanely culled by an overdose of anaesthetic (MS-222, 1000 ppm). Weight and length of all fish were recorded. Sections of gill (100 mg) from second gill arch were excised into RNAlater™ (Ambion Inc., United States), stored at 4 °C for 24 h before further storage at -20 °C until gene expression analyses.

2.3. RNA extraction

RNA was extracted from gill filaments using a standard TRIzol® reagent (Ambion by Life Technologies, Carlsbad, CA, United States) extraction protocol as previously described (Król et al., 2020). RNA quantity was determined by spectrophotometry (NanoDrop Technologies, Santa Clara, CA, United States) and RNA integrity determined by electrophoresis (Agilent Technologies, Santa Clara, CA, United States). All gill RNA samples met the criteria for RNA sequencing with all 260/280 and 260/230 ratios >1.8 and RIN >9.

2.4. RNA-seq library preparation and sequencing

For mRNA sequencing, n = 6 fish (n = 2 per triplicate tank) were randomly selected from the stimulated (poly I:C) and unstimulated (PBS) groups from RAS and LOCH reared fish (n = 24 total). Gill total RNA samples were normalized to a concentration of 50 ng/µL in 20 µL RNase-free water and (1000 ng total). mRNA selection (poly A enrichment), library construction and sequencing were performed by commercial company Novogene. Sequencing was performed on a NovaSeq 6000 platform (PE150, 6G raw data per sample).

Fig. 1. Experimental design outline. Fish were supplied as smolts from either a RAS or LOCH site to seawater (SW) tanks at the Machrihanish Marine Environmental Research Laboratory (MERL). At MERL Smolts were stocked into 2 m diameter stock tanks (1 freshwater origin and \sim 120–150 fish tank⁻¹). Prior to stimulation at 2 weeks post-seawater transfer (SWT), fish were randomly allocated into 1.4 m diameter (ca. 750 L) tanks (three tanks freshwater origin⁻¹; 12 fish tank⁻¹) for seven days and allowed to acclimate. Under light anaesthetic, six fish per tank received an intraperitoneal injection of poly I:C at a final concentration of 5 mg/Kg body weight and six of PBS. Fish were sampled after 24 h for plasma and gill.

2.5. Sequencing data quality control and read mapping

Pre-processing of sequencing data included quality assessment with FASTQC v0.11.9 and adapter removal and quality trimming with TrimGalore! v0.6.6. Genome indexes were generated with STAR and RSEM using the Atlantic salmon reference genome ICASG_v3 (GCA_905237065.2) and reads were mapped using the parameter –aligner star_rsem. Trimmed sequencing data was analysed using the nfcore RNA-seq pipeline v3.3 (github.com/nf-core/rnaseq v3.3).

2.6. Identification of differentially expressed genes (DEGs)

Differential expression analysis was performed using the package DESeq2 v1.6 [25] in R v3.6.1 (R Core Team, 2018). An estimated gene count matrix produced using featureCounts from the Rsubread package [26] was used as input to DESeq2 which performs internal normalization to library size. Based on exploratory data analysis, one RAS poly I:C library (sample A25) was identified as an outlier and removed from the subsequent analysis. Pre-filtering was carried out to remove genes with no transcript per million (TPM) counts in n = 3 or more individuals per treatment group. Both rearing history and treatment were included in the DESeq2 general linear model as fixed effects. In total, four contrasts were generated from the model: (1) RAS control vs LOCH control; (2) RAS poly I:C vs LOCH poly IC; (3) RAS control vs RAS poly I:C; (4) LOCH control vs LOCH poly I:C. Differentially expressed genes (DEGs) were identified at false discovery rate (FDR) < 0.05 and log₂ fold change (log₂FC) > 1 or < -1.

2.7. Functional enrichment analysis genes for biological processes

To facilitate functional analysis using gene ontology tools, Atlantic salmon genes were mapped to human orthologues using BLAST and annotated with HUGO Gene Nomenclature Committee (HGNC) identifiers where possible, as previously described [27]. Gene ontology analysis was conducted using the Database for Annotation, Visualization and Integrated Discovery (DAVID 2021). We also used Ingenuity Pathway Analysis (IPA; Qiagen) to identify enriched canonical pathways. DAVID accepts a list of HGNCs as an input but does not consider fold change magnitude or direction. As such when using DAVID analyses of up- and down-regulated mRNA transcripts were conducted separately. In IPA

analysis, HGNCs and corresponding fold changes are entered as input. The fold changes associated with duplicate HGNCs were averaged prior to IPA analysis. In cases where fold changes were in opposite directions, the HGNC was excluded from analysis.

3. Results

3.1. Fish growth and condition factor

Fish weight, length and condition factor at the time of sampling did not differ significantly between FW history or treatment groups (Table 1).

3.2. Sequencing outputs

An average of 53,471,120 \pm 6,158,223 raw reads were obtained from the 24 gill RNA samples sequenced. On average 92.8 \pm 0.38 % of reads were retained following filtering at Q30, resulting in an average of 49,638.580 \pm 1172.446 reads per sample for analysis. Reads mapped to 35,894 gene IDs in the Atlantic salmon genome, of which 32,986 had corresponding protein IDs. Of these protein IDs, 29,392 had corresponding annotation against the Atlantic salmon genome and 27,987 of these were mapped to a human gene identifier (HGNC).

3.3. Higher mRNA expression from immune genes in fish reared in FW LOCH compared to RAS

We first considered the effect of FW rearing history on mRNA expression in unstimulated (control) fish 2-weeks post-SWT. LOCH was

Table 1

Fish length, weight and condition factor (k) at the time of sampling (n = 6 fish, means \pm SD). Fork length was measured in millimetres and weight in grams. Lack of significant differences in metrics between groups were confirmed by ANOVA.

System	Treatment	Weight (g)	Length (mm)	k	n
RAS RAS LOCH LOCH	Control Poly I:C Control Poly I:C	96.1 ± 19.8 88.7 ± 14.1 116.8 ± 28.2 96.3 ± 14.0	$\begin{array}{c} 200.7\pm12.2\\ 200.0\pm10.1\\ 208.5\pm21.7\\ 203.2\pm12.0 \end{array}$	$\begin{array}{c} 1.10 \pm 0.07 \\ 1.10 \pm 0.03 \\ 1.09 \pm 0.07 \\ 1.07 \pm 0.06 \end{array}$	6 6 6
	-				

the baseline in the model, thus genes showing higher mRNA expression in RAS than LOCH have $\log_2 FC > 1$ while those with lower expression in RAS (i.e. higher expression in LOCH) have $\log_2 FC < -1$. In control fish, 596 differentially expressed genes (DEGs) were identified between RAS and LOCH reared fish. The majority of DEGs had higher mRNA expression in LOCH reared fish (n = 466, 78.2 %) than in RAS reared fish, with the remainder (n = 130, 21.8 %) having higher expression in RAS fish (Fig. 2). The full list of DEGs is presented in Table S1.

To understand the potential functional implications of rearing history on performance post-transfer to SW, gene ontology analysis (DAVID) was conducted using DEGs between unstimulated LOCH and RAS fish 2-weeks after transfer to the same SW facility. Considering only genes showing higher mRNA expression in LOCH reared fish compared to those from RAS (n = 466, 78.2 % of all DEGs), 6 enriched biological processes were identified at FDR <0.05 (Fig. 3, Table S2). The identified pathways were related to the immune response, both innate and adaptive immunity, including T cell activation and inflammatory response.

The annotated *S. salar* gene IDs which mapped to HGNCs associated with the immune-related GO terms 'T cell activation', 'innate immune response', 'inflammatory response', and 'adaptive immune response' are presented in Tables 2–5, respectively. In all tables genes are ordered by fold change and In the case of 'innate immune response' and 'inflammatory response' only the top 20 genes are tabulated.

For further investigation of enriched canonical pathways we utilised Ingenuity Pathway Analysis (IPA) that includes the magnitude of expression. IPA revealed 19 canonical pathways which were enriched in fish from a LOCH background compard to those reared in RAS. The full list of pathways is in Table S3. IPA also identified 84 downstream diseases or functions that differed significantly based on the differentially expressed genes between RAS or LOCH backgrounds. Of these 80 (95.2 %) diseases or functions were deemed decreased while the remaining 4 (4.8 %) were increased in RAS compared to LOCH fish and were defined as 'Parasitic Infection', 'Infection of mammalia' 'Organismal death' and 'Quantity of cytokine'. The full list of pathways is presented in Table S4. For decreased function we find 'Immune Cell Trafficking', 'Cell-To-Cell Signaling and Interaction' and 'Inflammatory Response' were all

Fig. 2. Differential gene expression in relation to FW history in control fish 2-weeks post-SWT. Volcano plot showing DEGs with higher mRNA expression in LOCH (green) or RAS (red) reared fish 2-weeks post-transfer to seawater. Genes were considered differentially expressed when $\log_2 FC > 1$ or < -1 and adjp < 0.05. LOCH was the baseline in the model, thus genes more highly expressed in RAS than LOCH have $\log_2 FC > 1$ while those with lower expression in RAS (i.e. higher expression in LOCH) have $\log_2 FC < -1$. Genes in black were not considered to have differential mRNA expression levels.

Fig. 3. Gene ontology analysis of gnes with higher mRNA expression in LOCH reared fish. DAVID bioloical processes differing between RAS and LOCH unstimulated groups post-SWT. Considering only differentially expressed genes (DEGs) which had higher expression in LOCH than in RAS, 253 HGNCs were accepted as a gene list against a *Homo sapiens* background. The number of input DEGs involved in each pathway is displayed at the end of each column. BP_DIRECT and FDR <0.05. For genes related to each term see Table S2.

potential outcomes driven by the gene sets. IPA also identified 183 upstream regulators with z-scores indicative of activation or inhibition of which 55 (30.1 %) were deemed to be in a state of activation while the remaining 128 (69.9 %) were inhibitive in RAS compared to LOCH fish. The full list of regulators is in Table S5. Cytokine mediators were prevalent in terms of predicted upstream regulators and constituted 20.3 % (n = 26) of inhibited regulators compared to just 1.8 % (n = 1) of activated.

3.4. Higher induction of immune gene transcription in RAS compared to LOCH reared fish following poly I:C stimulation

Following poly I:C stimulation a strong antiviral response was obtained in both RAS and LOCH reared fish in comparison to their respective unstimulated time-matched controls. We find 2035 and 1870 genes with modulated mRNA expression in RAS and LOCH reared fish respectively (full lists are available in Tables S6 and S7). The majority of DEGs were up-regulated in both groups (Fig. 4A) with 1552 upregulated and 483 down-regulated in RAS-reared fish, and 1425 upregulated and 445 down-regulated in LOCH-reared fish and more than 70 % of up-regulated DEGs in each system shared between RAS (72.4 %) and LOCH (78.8%) reared fish (Fig. 4B). In the case of genes with downregulated mRNA expression, a higher proportion of DEGs were specific to RAS or LOCH systems with only 41.2 % of RAS and 44.7 % of LOCH down-regulated DEGs shared between fish from the two FW backgrounds. The greatest difference between the four groups relates to immune stimulation by poly I:C with a lesser difference due to FW rearing environment (Fig. 4C). Principal component 1 (PC1) explained 73 % of the variance and separated samples by treatment (control vs poly I:C stimulated) while PC2 explained 6 % of the variance and separated samples by rearing history (RAS vs LOCH).

We next compared the magnitude of response of overlapping genes with significantly up- (n = 1123) or down-regulated (n = 199) mRNA expression between RAS and LOCH fish following poly I:C stimulation. The complete list of genes with a log₂FC > 1 or < -1 difference between the systems is provided in Table S8. This is equivalent to a response to poly I:C stimulation of either double or half in fish from the two FW systems. Of the DEGs identified, mRNA expression was significantly up-

Annotated DEGs associated with DAVID GO term 'T cell activation'. DEGs are ordered by \log_2 fold change (\log_2 FC) with LOCH fish as the reference level and an adjusted p-value (padj) cutoff of q < 0.05 was applied. Gene IDs refer to v3 of the Atlantic salmon genome.

Gene ID	Salmo salar description	HGNC	log ₂ FC	padj
ENSSSAG00000093109	cytotoxic T-lymphocyte protein 4	CD28	-1.77	2.30E-04
ENSSSAG00000114820	protein NLRC3	NLRC3	-1.71	8.69E-03
ENSSSAG00000099198	protein NLRC3	NLRC3	-1.61	4.86E-02
ENSSSAG0000009083	interferon regulatory factor 4	IRF4	-1.40	2.30E-05
ENSSSAG00000082171	tumor necrosis factor ligand superfamily member 14	TNFSF14	-1.33	1.11E-07
ENSSSAG00000045680	CD8 beta	CD8B	-1.26	8.26E-04
ENSSSAG0000065860	CD8 alpha	CD8A	-1.14	8.42E-04
ENSSSAG0000005984	phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta	PIK3CD	-1.12	1.58E-15
ENSSSAG00000039730	Interferon regulatory factor 4	IRF4	-1.05	1.47E-02
ENSSSAG00000100127	tumor necrosis factor ligand superfamily member 14	TNFSF14	-1.03	5.55E-04
ENSSSAG00000001991	interferon regulatory factor 4	IRF4	-1.01	3.39E-07

regulated in fish from both systems in 115 cases (90 higher in RAS / 25 higher in LOCH), down-regulated in both systems in 3 cases (2 higher in RAS / 1 higher in LOCH) and a single mRNA increased in expression in RAS reared fish but decreased in those reared in the LOCH (ENSS-SAG00000006498; interleukin 8). The top 20 annotated genes with the

largest mRNA expression differences in response to poly I:C (larger magnitude of response in RAS fish) are presented in Table 6 along with all of those with a larger magnitude of response in LOCH than RAS (n = 14), all genes with down-regulated mRNA expression (n = 3) and the single gene in which mRNA expression was modulated in opposite

Table 3

Annotated DEGs associated with DAVID GO term 'Innate immune response'. DEGs are ordered by \log_2 fold change (\log_2 FC) with LOCH fish as the reference level and an adjusted p-value (padj) cutoff of q < 0.05 was applied. Gene IDs refer to v3 of the Atlantic salmon genome.

Gene ID	Salmo salar description	HGNC	log ₂ FC	padj
ENSSSAG00000028365	pentraxin	APCS	-3.10	2.00E-02
ENSSSAG00000096170	interferon-induced GTP-binding protein Mx	MX1	-2.95	5.37E-19
ENSSSAG00000043705	complement C8 beta chain	C8B	-2.38	1.17E-04
ENSSSAG00000116533	tripartite motif-containing protein 16	TRIM25	-2.34	3.28E-04
ENSSSAG00000119033	tripartite motif-containing protein 47	TRIM25	-2.22	3.92E-02
ENSSSAG00000051905	interferon-induced GTP-binding protein Mx	MX1	-2.14	1.30E-08
ENSSSAG00000108840	radical S-adenosyl methionine domain containing 2	RSAD2	-1.95	1.08E-02
ENSSSAG00000109260	tripartite motif-containing protein 47	TRIM25	-1.91	1.70E-03
ENSSSAG00000110590	nuclear pore complex protein Nup214	TRIM25	-1.86	4.00E-05
ENSSSAG00000076982	nuclear factor 7, brain	TRIM35	-1.82	1.24E-03
ENSSSAG00000071290	src-like-adapter	SLA	-1.78	8.22E-04
ENSSSAG00000064417	nuclear factor 7, ovary	TRIM29	-1.78	3.06E-04
ENSSSAG00000042324	toll-like receptor 7	TLR7	-1.69	1.52E-08
ENSSSAG00000077530	myxovirus resistance 2	MX1	-1.54	9.87E-05
ENSSSAG00000086690	Ig heavy chain Mem5	IGLL1	-1.49	4.56E-05
ENSSSAG00000085879	tripartite motif-containing protein 16	TRIM25	-1.44	3.51E-05
ENSSSAG00000048067	Ribonuclease T2	RNASET2	-1.43	2.40E-13
ENSSSAG00000081800	tripartite motif-containing protein 16	TRIM25	-1.42	2.38E-13
ENSSSAG0000063817	E3 ubiquitin-protein ligase TRIM39	TRIM25	-1.42	6.49E-07
ENSSSAG00000079026	interferon-induced protein with tetratricopeptide repeats 5	IFIT5	-1.37	3.39E-04

Table 4

Annotated DEGs associated with DAVID GO term 'Inflammatory response'. DEGs are ordered by \log_2 fold change (\log_2 FC) with LOCH fish as the reference level and an adjusted p-value (padj) cutoff of q < 0.05 was applied. Gene IDs refer to v3 of the Atlantic salmon genome.

Gene ID	Salmo salar description	HGNC	log ₂ FC	padj
ENSSSAG00000078145	eotaxin	CCL11	-2.24	1.00E-07
ENSSSAG00000066280	C–C motif chemokine 20	CCL13	-2.14	6.55E-08
ENSSSAG0000006380	probable polyketide synthase 1	FASN	-2.13	7.73E-09
ENSSSAG00000071823	C–C motif chemokine 19	XCL2	-2.12	2.16E-11
ENSSSAG00000042324	toll-like receptor 7	TLR7	-1.69	1.52E-08
ENSSSAG00000118511	C–C motif chemokine 13	CCL13	-1.64	3.39E-04
ENSSSAG0000065312	tumor necrosis factor alpha-1 precursor	TNF	-1.47	3.71E-02
ENSSSAG00000075631	galectin-9	LGALS9	-1.42	2.52E-14
ENSSSAG0000003774	C–C motif chemokine 4	XCL2	-1.35	1.31E-09
ENSSSAG00000075658	chemokine (C motif) receptor 1b, duplicate 1	XCR1	-1.33	7.04E-08
ENSSSAG0000066649	toll-like receptor 22	TLR1	-1.29	7.65E-03
ENSSSAG00000108488	toll-like receptor 21	TLR1	-1.26	9.86E-09
ENSSSAG00000115800	C-X-C chemokine receptor type 3	CXCR3	-1.26	8.42E-04
ENSSSAG00000072987	nitric oxide synthase 2	NOS2	-1.25	1.71E-02
ENSSSAG00000042309	TLR8	TLR7	-1.23	4.95E-11
ENSSSAG0000003152	meprin A subunit beta	MEP1B	-1.17	2.02E-06
ENSSSAG00000023874	B-cell linker	BLNK	-1.15	2.36E-07
ENSSSAG0000007182	phospholipase D4	PLD4	-1.13	1.20E-11
ENSSSAG0000005984	phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta	PIK3CD	-1.12	1.58E-15
ENSSSAG00000103354	chemokine XC receptor 1	XCR1	-1.11	2.63E-02

Annotated DEGs associated with DAVID GO term 'Adaptive immune response'. DEGs are ordered by \log_2 fold change (\log_2 FC) with LOCH fish as the reference level and an adjusted p-value (padj) cutoff of q < 0.05 was applied. Gene IDs refer to v3 of the Atlantic salmon genome.

Gene ID	Salmo salar description	HGNC	log ₂ FC	padj
ENSSSAG00000114455	eomesodermin	EOMES	-1.83	3.04E-02
ENSSSAG00000049121	cytotoxic and regulatory T-cell molecule	CRTAM	-1.80	8.76E-12
ENSSSAG00000039883	B- and T-lymphocyte attenuator	BTLA	-1.50	1.37E-02
ENSSSAG0000068877	cytotoxic and regulatory T cell molecule	CRTAM	-1.36	2.43E-05
ENSSSAG00000045680	CD8 beta	CD8B	-1.26	8.26E-04
ENSSSAG00000048537	Lck interacting transmembrane adaptor 1	LIME1	-1.14	6.18E-08
ENSSSAG0000005984	phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta	PIK3CD	-1.12	1.58E-15
ENSSSAG00000099702	major histocompatibility complex class I-related gene protein	HLA-C	-1.11	2.44E-02
ENSSSAG0000009995	Salmo salar CD3 gammadelta-B (LOC100137057), mRNA	CD3D	-1.08	1.11E-07
ENSSSAG00000084854	T-cell receptor alpha/delta variable 31.0	TRAV18	-1.06	3.68E-04
ENSSSAG0000007543	rap1 GTPase-activating protein 2	RAP1GAP	-1.05	5.94E-04
ENSSSAG00000085531	H-2 class II histocompatibility antigen, A-Q alpha chain	HLA-DQA1	-1.02	5.19E-06

directions in fish from the two rearing histories.

We also compared the magnitude of response for genes which were only defined as having differential mRNA expression in fish reared in one system or the other (Tables S9 and S10). Of the 429 genes with mRNA expression uniquely up-regulated in fish from the RAS system, 162 were also significantly up-regulated in LOCH, but did not reach the log₂FC of >1 cut-off to be defined as a DEG. Of the 302 genes with mRNA expression uniquely up-regulated in the LOCH system, 109 were significantly up-regulated in RAS, but did not reach the \log_2 FC of >1 to be defined as a DEG. Of the 284 genes with mRNA expression uniquely down-regulated in fish from the RAS system, 94 were also significantly down-regulated in LOCH, but did not reach the \log_2 FC of < -1 cut-off to be defined as a DEG. Of the 246 genes with mRNA expression uniquely down-regulated in the LOCH system, 90 were significantly down-

Fig. 4. Differential gene expression in response to poly I:C stimulation. (A) Volcano plots showing genes with down (red) and up (green) regulated mRNA expression in response to poly I:C stimulation in fish reared in FW LOCH or RAS. mRNAs were considered differentially expressed if $\log_2 FC > 1$ or < -1 and adjp < 0.05. (B) Venn diagram showing unique and shared differentially expressed genes (DEGs) in response to stimulation with poly I:C in fish reared in FW LOCH or RAS systems (C) PCA depicting separation between the four treatment groups.

Differentially expressed genes which differ in size of mRNA expression response to poly I:C stimulation between fish reared in FW RAS and LOCH systems. Genes which were significantly differentially expressed in both RAS and LOCH reared fish were considered. mRNA expression was categorised as up-regulated, down-regulated or regulated in opposite directions. Genes with a difference in magnitude of response in excess of \log_2 fold change (FC) > 1 or < -1 are presented in Table S8 and the annotated genes are presented here.

UP-REGULATED Partial Set	Gene ID	Salmo salar description	HGNC	RAS poly I:C log ₂ FC	LOCH poly I:C log ₂ FC	FC difference
ENSS.K00000053029 Hepcidin-1 hmp1 5.43 3.15 5.58 ENSS.K00000045029 MARCKSI. 5.25 3.08 4.48 ENSS.K0000004509 MARCKSI. 5.25 3.08 4.48 ENSS.K0000004509 basic leacine zipper transcriptional factor ATF BAT 3.11 1.74 4.19 ENSS.K00000004520 tripatitie multi-containing protein 147 TEM25 4.02 2.15 3.67 ENSS.K00000042607 septin-7 EPTIN7 2.83 1.19 3.12 ENSS.K000000042607 septin-7 EPTIN7 2.83 1.10 3.12 ENSS.K0000000881 forter-compled receptor 84 GP toterin-compled receptor 84 GP toterin-compled receptor 84 GP toterin-compled receptor 84 GP toterin-compled receptor 84 GP toterin-completing roterin 10 0 3.44 2.07 2.97 ENSSKA000000108945 CUB and zona pellicid-like domain containing 2 RSN12 5.88 4.11 2.97 ENSSKA000000102145 triparite motif-containing protein 16 TEM27 2.86 2.91 ENSSKA0	UP-REGULATED					
ENSS.800000004529 MARCKS-related protein MAR S.25 3.08 4.48 ENSS.8000000045729 interleukin 1 beta BATF 3.81 1.74 4.19 ENSS.800000005809 probable polykeide synthas 1 FANN 3.40 1.44 3.89 ENSS.800000005809 E3 ubiquitin 7/5015 ligase TRIM25 TRM25 4.02 2.15 3.67 ENSS.800000004507 septin-7 TRM25 4.39 2.52 3.67 ENSS.800000004507 septin-7 BRM2 3.11 3.12 3.66 ENSS.800000009030 interfeno regulatory factor 4 IRF4 2.21 1.60 3.66 ENSS.800000009030 interfeno regulatory factor 4 IRF4 2.97 1.20 3.01 ENSS.800000009030 interfeno regulatory factor 4 IRF4 2.52 1.66 2.91 ENSS.80000000090450 ID and zana pallocida-like domain containing 2 RSAD2 5.68 4.11 2.77 ENSS.8000000021216 tripartite motif-containing protein 16 TRM27 3.20 1.66 2.91	ENSSSAG00000053028	Hepcidin-1	hamp1	5.63	3.15	5.58
ENSS.K00000004548 iter leacher apper transcriptional factor ATF BLT 3.81 1.74 4.19 ENSS.K00000005486 iterdeukin - beta ILIB 5.30 3.34 3.90 ENSS.K00000006549 probable polyheirde synthase 1 FNNN 3.40 1.44 3.89 ENSS.K00000006870 protein different synthase 1 FNNN 3.40 1.44 3.89 ENSS.K000000120058 tripartite motif-containing protein 47 TENM25 4.30 2.52 3.67 ENSS.K000000120058 tripartite motif-containing protein 16 TENM25 4.321 1.60 3.06 ENSS.K0000000508 interien regulatory factor 4 GPR44 2.95 1.36 3.03 ENSS.K000000010845 GLB and zona pellucial-bike domain-containing protein 1 0 3.64 2.07 2.97 ENSS.K00000010845 triparite motif-containing protein 16 TENM27 3.84 2.73 2.86 2.91 2.86 2.91 2.85 2.92 1.48 2.73 ENSS.K00000005021 triparitite motif-containing protein 16 TENM27	ENSSSAG00000045029	MARCKS-related protein	MARCKSL1	5.25	3.08	4.48
ENSS.84,00000004540 interleukin-1 bein ILB 5.30 3.44 3.90 ENSS.86,0000006380 robust polybeitde synthase 1 FASN 3.40 1.44 3.89 ENSS.86,00000083610 tripartite motif-containing protein 47 TRM25 4.02 2.15 3.67 ENSS.86,00000042607 septin 7 SEPTIN7 2.83 1.19 3.12 ENSS.86,0000004260 tripartite motif-containing protein 16 TRN39 3.86 2.23 3.08 ENSS.86,00000004616 E3 ubiquitin-protein ligser RVF138 RVF138 2.79 1.20 3.01 ENSS.86,00000004840 adleal S-adenosity methonine domain containing 2 RSN12 2.86 4.11 2.97 ENSS.86,0000000849 putative inactive phenolphthocerol synthesis polykeide synthase type IPASIS FASN 3.20 1.66 2.91 ENSS.86,00000066307 regulator G-protein signalling 5 RGSS 2.92 1.44 2.73 ENSS.86,000000062507 tingatter motif-containing protein 16 TRIM25 3.52 2.07 2.26 ENSSS.86,000000005604 triparitie motif-c	ENSSSAG00000046729	basic leucine zipper transcriptional factor ATF	BATF	3.81	1.74	4.19
ENSS.84,000000068397 Probable polyhetide synthase 1 FASN 3.40 1.44 3.89 ENSS.84,00000088379 Eijapartite motif-containing protein 47 TRM25 4.02 2.15 3.67 ENSS.84,00000088379 Eijapartite motif-containing protein 16 TRM39 3.80 2.23 3.08 ENSS.84,000000083 interfrom regulatory factor 4 IRF4 2.95 1.36 3.03 ENSS.84,0000009083 interfrom regulatory factor 4 IRF4 2.95 1.36 3.03 ENSS.84,000000041615 E3 ubiquitin-protein ligase RNF138 RNF138 2.79 1.20 3.01 ENSS.84,0000000222 tritorite inactive phathesis oplyketide synthase type 1 Pks15 FASN 3.20 1.66 2.91 ENSS.84,000000021589 tripartite motif-containing protein 16 TRM47 2.63 1.09 2.90 ENSS.84,000000015898 tripartite motif-containing protein 16 TRM47 2.63 1.73 2.88 ENSS.84,000000015899 tripartite motif-containing protein 16 TRM27 3.52 2.07 2.72 ENSS.84,00000006594<	ENSSSAG00000045448	interleukin-1 beta	IL1B	5.30	3.34	3.90
ENSSA 60000008829 E3 ubiquitin/SG15 ligase TRIM25 TRIM25 4.02 2.15 3.67 ENSSA 60000004200 septin-7 REM25 4.36 2.23 3.67 ENSSA 600000008219 irpartite motif-containing protein 16 TRIM39 3.86 2.23 3.08 ENSSA 600000000031155 firpartite motif-containing protein 16 TRIM39 3.86 2.20 3.03 ENSSA 60000000001516 firpartite motif-containing protein 1 0 3.64 2.07 2.97 ENSSA 600000000845 CUB and zona pellucida-like domain-containing 2 RSAD2 5.68 4.11 2.97 ENSSA 600000000845 putative inactive phenolphilicerol synthesis polyketide synthase type 1Pk35 FASN 3.20 1.66 2.91 ENSSA 600000006207 regulator of G-protein signalling 5 RGSS 2.92 1.48 2.73 ENSSA 600000005204 tripartite motif-containing protein 16 TRIM47 2.63 1.09 2.90 ENSSA 600000005205 tripartite motif-containing protein 16 TRIM47 2.32 2.07 2.72 ENSSA 6000000005204 <	ENSSSAG0000006380	probable polyketide synthase 1	FASN	3.40	1.44	3.89
ENSSA 600000066219 tripartite motif-containing protein 47 FTFN 2.83 1.19 3.12 ENSSA 600000121058 tripartite motif-containing protein 16 TRIM39 3.86 2.23 3.06 ENSSA 6000000303 interferon regulatory factor 4 IRP4 2.95 1.36 3.03 ENSSA 60000004161 E3 ubiquitin-protein ligase RNF138 IRP4 2.95 1.36 3.03 ENSSA 60000002845 Did and zona pelluida-alike domain-containing protein 1 0 3.64 2.07 2.97 ENSSA 6000000282 putative inactive phenolphthicocord synthesis polyketide synthase type IPks15 FASN 3.20 1.66 2.91 ENSSA 600000002158 tripartite motif-containing protein 16 TRIM47 2.63 1.73 2.88 ENSSA 600000061589 tripartite motif-containing protein 16 TRIM47 3.52 2.07 2.72 ENSSA 60000006594 tripartite motif-containing protein 1 TRIM25 3.52 2.07 2.72 ENSSA 600000066294 tripartite motif-containing protein 16 TRIM25 3.52 2.07 2.72	ENSSSAG0000083879	E3 ubiquitin/ISG15 ligase TRIM25	TRIM25	4.02	2.15	3.67
ENSSA CO0000042607 septin 7 SEPTIN 7 2.83 1.19 3.12 ENSSA CO000012105 triparite motif-containing protein 16 TRM39 3.86 2.23 3.08 ENSSA CO000001205 tinterferon regulatory factor 4 GPR84 3.21 1.60 3.06 ENSSA CO0000014165 ES Ubiquitin protein ligase RN138 RNF138 2.79 1.20 3.01 ENSSA CO0000001684 radical S-adenosal metationic domain containing 2 RSA 2.56 4.11 2.97 ENSSA CO00000012045 triparite motif-containing protein 16 RIM47 3.26 1.09 2.90 ENSSA CO0000002235 tripartite motif-containing protein 16 TRIM27 3.26 1.73 2.88 ENSSA CO000007255 tripartite motif-containing protein 16 TRIM27 3.22 1.48 2.73 ENSSA CO000007252 tripartite motif-containing protein 16 TRIM25 3.22 2.07 2.72 ENSSA CO000007252 tripartite motif-containing protein 16 TRIM25 3.24 -201 ENSSA CO0000007254 tripartite motif-containing protein 2 TN	ENSSSAG0000086219	tripartite motif-containing protein 47	TRIM25	4.39	2.52	3.67
ENSSA0000012105s tripartite motif-containing protein 16 TRIM39 3.86 2.23 3.08 ENSSA0000000104176 G protein-coupled receptor 84 GR84 3.21 1.60 3.06 ENSSA000000010850 CUB and zona peluida-like domain-containing protein 1 0 3.64 2.07 2.97 ENSSA00000009282 putative inactive domain- containing protein 1 0 3.64 2.07 2.97 ENSSA00000009282 tradical S-adenosyl methionine domain containing 2 RSAD2 5.68 4.11 2.97 ENSSA000000120154 tripartite motif-containing protein 16 TRIM47 2.63 1.09 2.90 ENSSA000000005589 tripartite motif-containing protein 16 TRIM27 3.26 1.73 2.88 ENSSA0000000725 tripartite motif-containing protein 16 TRIM27 2.60 1.21 2.62 ENSSA0000000725 tripartite motif-containing protein 2 TNFAIP2 4.23 2.86 -2.07 ENSSA00000000725 tripartite motif-containing protein 4 TNFAIP2 4.33 2.45 -2.18 ENSSA0000000072	ENSSSAG00000042607	septin-7	SEPTIN7	2.83	1.19	3.12
ENSSA000000104176 G protein-coupled receptor 84 GPR84 3.21 1.60 3.06 ENSSA00000090968 interferon regulatory factor 4 RR4 2.95 1.36 3.03 ENSSA0000000846 E3 ubiquitin-protein ligase RNF138 RNF138 2.79 1.20 3.01 ENSSA0000000845 CUB and sona pellucida-like domain-containing protein 1 0 3.64 2.07 2.97 ENSSA0000000282 putative inactive phenolphthiccrol synthesis polyketide synthase type 1Pks15 FASN 3.20 1.66 2.91 ENSSA000000012145 tripartite motif-containing protein 16 TRIM27 3.26 1.73 2.88 ENSSA000000065277 tripartite motif-containing protein 16 TRIM25 3.52 2.07 2.72 ENSSA000000062274 tumor necrosis factor alpha-induced protein 2 TNFAIP2 4.23 2.86 2.59 ENSSA000000002275 tripartite motif-containing protein 3 SR0110 2.24 3.24 -2.01 ENSSA000000002275 tumor necrosis factor alpha-induced protein 2 TNFAIP2 4.31 5.51 -2.32	ENSSSAG00000121058	tripartite motif-containing protein 16	TRIM39	3.86	2.23	3.08
ENSSA400000009038 interferon regulatory factor 4 IRF4 2.95 1.36 3.03 ENSSA5000000041661 E3 ubiquitin-protein ligase RNF138 RNF138 2.79 1.20 3.01 ENSSA500000009459 CUB and zona pellucida-like domain-containing protein 1 0 3.64 2.07 2.97 ENSSA50000009282 putative inactive phenolphthiccorel synthesis polyketide synthase type I Pks15 RSAD 5.68 4.11 2.97 ENSSA500000009282 putative inactive phenolphthiccorel synthesis polyketide synthase type I Pks15 RSAD 3.09 2.90 ENSSA500000005458 tripartite motif-containing protein 16 TRIM47 2.36 1.73 2.88 ENSSA500000005294 tumor necrosis factor alpha-induced protein 2 TNFAIP2 4.23 2.86 2.59 ENSSA600000005594 sil-tike protein 4 SAL12 2.24 3.29 -2.18 ENSSA600000006545 stromal cell-derived factor 1-like CXCL5 1.33 2.45 -2.218 ENSSA600000008545 sal-tike protein 4 SAL12 2.44 3.39 -2.230 ENSSS	ENSSSAG00000104176	G protein-coupled receptor 84	GPR84	3.21	1.60	3.06
ENSSAG00000041661 E3 ubiquita-protein lgase RNF138 RNF138 2.79 1.20 3.01 ENSSAG0000009459 CUB and zona pellucida-like domain-containing protein 1 0 3.64 2.07 2.97 ENSSAG0000009222 putative inactive phenolphthiccerol synthesis polyketide synthase type I Pks15 FASN 3.20 1.66 2.91 ENSSAG00000122045 tripartite motif-containing protein 16 TRIM47 2.63 1.09 2.90 ENSSAG0000007225 tripartite motif-containing protein 16 TRIM27 3.26 1.73 2.88 ENSSAG0000007252 tipartite motif-containing protein 16 TRIM27 3.26 1.21 2.62 ENSSAG0000007252 tipartite motif-containing protein 16 TRIM27 3.28 2.86 2.59 ENSSAG0000007252 tumor necrosis factor alpha-induced protein 2 TNFAIP2 4.23 2.46 -2.01 ENSSAG00000006329 stromal cell-derived factor 1-like CXC15 1.33 2.45 -2.18 ENSSAG00000006453 sal-like protein 4 SAL12 2.24 3.39 -2.23 EN	ENSSSAG0000009083	interferon regulatory factor 4	IRF4	2.95	1.36	3.03
ENSSA600000018840 CUB and zona pelluicia-like domain-containing protein 1 0 3.64 2.07 2.97 ENSSA60000018840 radical 8-adenosyl methionine domain containing 2 RSAD2 5.68 4.11 2.97 ENSSA600000120145 tripartite motif-containing protein 16 TRIM47 2.63 1.09 2.90 ENSSA600000015898 tripartite motif-containing protein 16 TRIM47 3.26 1.73 2.88 ENSSA600000007225 tripartite motif-containing protein 16 TRIM25 3.52 2.07 2.72 ENSSA600000006204 titerieukin-17F 0 2.60 1.21 2.62 ENSSA6000000005594 titerieukin-17F 0 2.43 2.45 -2.18 ENSSA6000000005359 sal-like protein 4 SALL2 2.24 3.39 -2.23 ENSSA600000006359 sal-like protein 34 SALL2 2.43 3.551 -2.30 ENSSA60000006455 Salmo salar interferon alpha 2 (fina2), mRNA IFNA2 4.31 5.51 -2.30 ENSSA600000006359 Salmo salar interferon alpha 2 (fina2), mRNA	ENSSSAG00000041661	E3 ubiquitin-protein ligase RNF138	RNF138	2.79	1.20	3.01
ENSSAG0000010840 radical Sadenosyl methionine domain containing 2 RSAD2 5.68 4.11 2.97 ENSSAG0000090282 putative inactive phenolphthicerol synthesis polyketide synthase type I Pks15 FASN 3.20 1.66 2.91 ENSSAG00000120145 tripartite motif-containing protein 16 TRIM47 2.63 1.09 2.90 ENSSAG00000066307 regulator of C-protein signalling 5 RGSS 2.92 1.48 2.73 ENSSAG00000065275 tripartite motif-containing protein 16 TRIM25 3.52 2.07 2.72 ENSSAG0000006227 tumor necrosis factor alpha-induced protein 2 TINFLP2 4.23 2.86 2.59 ENSSAG0000006527 tumor necrosis factor alpha-induced protein 2 TINFLP2 4.23 3.24 -2.01 ENSSAG0000006635 stromat cell-derived factor 1-like CXCL5 1.33 2.45 -2.18 ENSSAG0000004525 G protein-coupled receptor 101 GPR101 1.66 2.85 -2.27 ENSSAG0000004525 G protein alpha 2 (fm2), mRNA IFNA2 4.31 5.51 -2.30	ENSSSAG0000089459	CUB and zona pellucida-like domain-containing protein 1	0	3.64	2.07	2.97
ENSSAG0000009282 putative inactive phenolphthiccerol synthesis polyketide synthase type I Pks15 FASN 3.20 1.66 2.91 ENSSAG00000120145 tripartite motif-containing protein 16 TRIM47 2.63 1.73 2.88 ENSSAG00000015898 regulator of C-protein signalling 5 RGSS 2.92 1.48 2.73 ENSSAG0000007225 tripartite motif-containing protein 16 TRIM25 3.52 2.07 2.72 ENSSAG0000005604 interleukin-17F 0 2.60 1.21 2.62 ENSSAG00000005279 tumor necrosis factor alpha-induced protein 2 TNFAIP2 4.23 2.86 2.59 ENSSAG00000006459 sal-like protein 4 SALL2 2.24 3.29 -2.18 ENSSAG00000006459 sal-like protein 4 SALL2 2.24 3.39 -2.23 ENSSAG00000068509 sal-like protein 101 GPR101 1.66 2.85 -2.27 ENSSAG000000168205 G protein ingare Effector 4.918 (fma2), mRA TIND4 1.73 3.86 -2.36 ENSSAG000000188605 Salmo salar	ENSSSAG00000108840	radical S-adenosyl methionine domain containing 2	RSAD2	5.68	4.11	2.97
ENSSSAG00000120145 tripartite motif-containing protein 16 TRIM47 2.63 1.09 2.90 ENSSSAG0000015898 tripartite motif-containing protein 16 TRIM27 3.26 1.73 2.88 ENSSSAG00000056094 tripartite motif-containing protein 16 TRIM25 3.52 2.07 2.72 ENSSSAG00000056094 tripartite motif-containing protein 16 TRIM25 3.52 2.07 2.72 ENSSSAG00000056094 tintereukin-17F 0 2.60 1.21 2.62 ENSSSAG000000662279 tumor necrosis factor alpha-induced protein 2 TNFAIP2 4.23 2.86 2.59 ENSSSAG00000066359 saluke protein 4 SALL2 2.24 3.24 -2.18 ENSSSAG00000066359 G protein-coupled receptor 101 GPR101 1.66 2.85 -2.27 ENSSSAG000000121489 Saluo salar interferon alpha 2 (fina2), mRNA IFNA2 4.31 5.51 -2.30 ENSSSAG000000121489 El SIG15-protein igase HERC5 RUN domain-containing protein 4 HEM04 1.76 3.08 -2.47 ENSSSAG00000012	ENSSSAG00000090282	putative inactive phenolphthiocerol synthesis polyketide synthase type I Pks15	FASN	3.20	1.66	2.91
ENSSAG00000015898 tripartite motif-containing protein 16 TRIM27 3.26 1.73 2.88 ENSSAG00000066307 regulator of G-protein signalling 5 RGS5 2.92 1.48 2.73 ENSSAG00000007225 timpartite motif-containing protein 16 TRIM27 3.52 2.07 2.72 ENSSAG00000062279 tumor necrosis factor alpha-induced protein 2 0 2.60 1.21 2.62 ENSSAG000000062279 tumor necrosis factor alpha-induced protein 2 TNFAIP2 4.23 2.86 2.59 ENSSAG000000060527 stormal cell-derived factor 1-like CXCL5 1.33 2.45 -2.18 ENSSAG000000060550 sal-like protein 4 SAL12 2.24 3.39 -2.23 ENSSAG000000068060 G protein-coupled receptor 101 GPR101 1.66 2.85 -2.23 ENSSAG00000069539 Sal-mo salar interferon alpha 2 (fina2), mRNA IFNA2 4.31 5.51 -2.30 ENSSAG000000069534 T-cell immungoloulin and mucin domain-containing protein 4 TMD41 1.76 3.08 -2.49 ENSSSAG0000000595	ENSSSAG00000120145	tripartite motif-containing protein 16	TRIM47	2.63	1.09	2.90
ENSSAG0000066307 regulator of G-protein signalling 5 RGS5 2.92 1.48 2.73 ENSSSAG000000056049 tripertite motif-containing protein 16 TRIM25 3.52 2.07 2.72 ENSSSAG000000560247 tumor necrosis factor alpha-induced protein 2 TNFAIP2 4.23 2.86 2.59 ENSSSAG00000063279 tumor necrosis factor alpha-induced protein 2 TNFAIP2 4.23 2.84 -2.01 ENSSSAG000000063279 sal-like protein 4 CXCL5 1.33 2.45 -2.18 ENSSSAG00000006350 G protein-coupled receptor 101 GPR101 1.66 2.85 -2.27 ENSSSAG000000048752 Sub rotein 4 TIMDA FINA2 4.31 5.51 -2.30 ENSSSAG000000084959 Salmo salar interferon alpha 2 (fina2), mRNA IFNA2 4.31 5.51 -2.30 ENSSSAG000000084954 T-cell immunoglobuli and mucin domain-containing protein 4 TIMD4 1.76 3.08 -2.49 ENSSSAG00000003551 leucine-rich repeat-containing protein 4 LIRC4 2.48 4.36 -3.66 <td< td=""><td>ENSSSAG0000015898</td><td>tripartite motif-containing protein 16</td><td>TRIM27</td><td>3.26</td><td>1.73</td><td>2.88</td></td<>	ENSSSAG0000015898	tripartite motif-containing protein 16	TRIM27	3.26	1.73	2.88
ENSSSAG0000007225 tripartite motif-containing protein 16 TRIM25 3.52 2.07 2.72 ENSSSAG00000056024 interleukin-17F 0 2.60 1.21 2.62 ENSSSAG00000062279 tumor necrosis factor alpha-induced protein 2 TNFAIP2 4.23 2.86 2.59 ENSSSAG00000065279 sal-like protein 4 CXCL5 1.33 2.45 -2.18 ENSSSAG0000006539 sal-like protein 4 SALL2 2.24 3.39 -2.23 ENSSSAG0000000859 G protein-coupled receptor 101 GPR101 1.66 2.85 -2.37 ENSSSAG000000859 Salmo salar interferon alpha 2 (fina2), mRNA IFNA2 4.31 5.51 -2.30 ENSSSAG0000001523 RUN domain-containing protein 3B RUNDC3B 1.49 2.73 -2.36 ENSSSAG000000124875 RUN domain-containing protein 4 IRC4 2.43 3.87 -2.91 ENSSSAG00000012651 leucine-rich repeat-containing protein FLRT3 ILRC4 2.48 4.36 -3.66 ENSSSAG000000109055 leucine-rich repeat-containing protein FLRT3 <td>ENSSSAG0000066307</td> <td>regulator of G-protein signalling 5</td> <td>RGS5</td> <td>2.92</td> <td>1.48</td> <td>2.73</td>	ENSSSAG0000066307	regulator of G-protein signalling 5	RGS5	2.92	1.48	2.73
ENSSSAG00000065094 interleukin-17F 0 2.60 1.21 2.62 ENSSSAG00000062277 tumor necrosis factor alpha-induced protein 2 TNFAIP2 4.23 2.86 2.59 ENSSSAG00000000451 stromal cell-derived factor 1-like RDH10 2.24 3.24 -2.01 ENSSSAG000000066359 sal-like protein 4 SALL2 2.24 3.39 -2.23 ENSSSAG00000068205 G protein-coupled receptor 101 GPR101 1.66 2.85 -2.30 ENSSSAG00000088059 salum interferon alpha 2 (fina2), mRNA IFNA2 4.31 5.51 -2.30 ENSSSAG00000048752 RUN domain-containing protein 3B RUNDC3B 1.49 2.73 -2.46 ENSSSAG000000121489 E3 ISG15—protein ligase HERC5 HECT 4.98 6.45 -2.77 ENSSSAG00000009351 leucine-rich repeat-containing protein 4 LRRC4 2.33 3.87 -2.91 ENSSSAG00000009354 nectrich repeat-containing protein 4 LRRC4 2.48 4.36 -3.66 ENSSSAG00000009544 neuritin neuritin	ENSSSAG0000007225	tripartite motif-containing protein 16	TRIM25	3.52	2.07	2.72
ENSSSAG0000062279 tumor necrosis factor alpha-induced protein 2 TNFAIP2 4.23 2.86 2.59 ENSSSAG00000091114 retinol dehydrogenase 10 RDH10 2.24 3.24 -2.01 ENSSSAG0000000454 stromal cell-derived factor 1-like CXCL5 1.33 2.45 -2.18 ENSSSAG0000006359 sal-like protein 4 SALL2 2.24 3.39 -2.23 ENSSSAG00000048069 G protein-coupled receptor 101 GPR101 1.66 2.85 -2.27 ENSSSAG000000048752 RUN domain-containing protein 3B RUNDC3B 1.49 2.73 -2.36 ENSSSAG000000048752 RUN domain-containing protein 3B RUNDC3B 1.49 2.73 -2.36 ENSSSAG00000002551 leucine-rich repeat-containing protein 4 TTMFAIP2 4.38 6.45 -2.77 ENSSSAG000000009354 leucine-rich repeat-containing protein 4 LRRC4 2.33 3.87 -2.91 ENSSSAG00000009356 leucine-rich repeat-containing protein FLRT3 FLRT3 1.48 3.23 -3.36 ENSSSAG000000095422 neuritin	ENSSSAG00000056094	interleukin-17F	0	2.60	1.21	2.62
ENSSSAG00000091114 retinol dehydrogenase 10 RDH10 2.24 3.24 -2.01 ENSSSAG0000000454 stromal cell-derived factor 1-like CXCL5 1.33 2.45 -2.18 ENSSSAG00000066559 sal-like protein 4 SALL2 2.24 3.39 -2.23 ENSSSAG0000016205 G protein-coupled receptor 101 GPR101 1.66 2.85 -2.27 ENSSSAG000000488069 Salmo salar interferon alpha 2 (ifna2), mRNA IFNA2 4.31 5.51 -2.30 ENSSSAG000000048752 RUN domain-containing protein 3B RUNDC3B 1.49 2.73 -2.36 ENSSSAG000000048754 T-cell immunoglobulin and mucin domain-containing protein 4 TIMD4 1.76 3.08 -2.49 ENSSSAG00000002551 leucine-rich repeat-containing protein 4 LRRC4 2.33 3.87 -2.91 ENSSSAG0000000355 leucine-rich repeat-containing protein 4 LRRC4 2.48 4.36 -3.66 ENSSSAG00000009542 neuritin RSSAG000000095442 neuritin Salfor2.01 -4.39 ENSSSAG000000095442 <t< td=""><td>ENSSSAG00000062279</td><td>tumor necrosis factor alpha-induced protein 2</td><td>TNFAIP2</td><td>4.23</td><td>2.86</td><td>2.59</td></t<>	ENSSSAG00000062279	tumor necrosis factor alpha-induced protein 2	TNFAIP2	4.23	2.86	2.59
ENSSSAG0000000454 stromal cell-derived factor 1-like CXCL5 1.33 2.45 -2.18 ENSSSAG0000006359 sal-like protein 4 SALL2 2.24 3.39 -2.23 ENSSSAG00000068359 G protein-coupled receptor 101 1.66 2.85 -2.20 ENSSSAG00000088069 Salmo salar interferon alpha 2 (ifna2), mRNA IFNA2 4.31 5.51 -2.30 ENSSSAG00000048752 RUN domain-containing protein 3B RUNDC3B 1.49 2.73 -2.36 ENSSSAG00000059384 T-cell immunoglobulin and mucin domain-containing protein 4 TIMD4 1.76 3.08 -2.49 ENSSSAG00000005261 leucine-rich repeat-containing protein 4 LRRC4 2.33 3.87 -2.91 ENSSSAG0000000935 leucine-rich repeat-containing protein 4 LRRC4 2.48 4.36 -3.66 ENSSSAG00000009542 neuritin neuritin neuritin -3.95 -3.95 ENSSSAG00000005442 neuritin salmo salar Interferon-induced transmembrane protein 5 (ifm5), mRNA IFTM3 1.77 4.09 -4.99 ENSSSAG0000	ENSSSAG00000091114	retinol dehydrogenase 10	RDH10	2.24	3.24	-2.01
ENSSSAG0000066359 sal-like protein 4 SALL2 2.24 3.39 -2.23 ENSSSAG00000106205 G protein-coupled receptor 101 GPR101 1.66 2.85 -2.27 ENSSSAG00000088069 Salmo salar interferon alpha 2 (ifna2), mRNA IFNA2 4.31 5.51 -2.30 ENSSSAG00000088069 RUN domain-containing protein 3B RUNDC3B 1.49 2.73 -2.36 ENSSSAG00000069384 T-cell immunoglobulin and mucin domain-containing protein 4 TIMD4 1.76 3.08 -2.49 ENSSSAG0000002032651 leucine-rich repeat-containing protein 4 IRRC4 2.33 3.87 -2.36 ENSSSAG000000032651 leucine-rich repeat-containing protein 4 IRRC4 2.33 3.87 -2.91 ENSSSAG00000019065 leucine-rich repeat-containing protein 4 IRRC4 2.48 4.36 -3.66 ENSSSAG00000005428 neuritin neuritin NRN1 6.39 8.37 -3.95 ENSSSAG00000005468 E3 ISG15—protein ligase HERC5 HERC3 HERC3 4.86 7.00 -4.99	ENSSSAG0000000454	stromal cell-derived factor 1-like	CXCL5	1.33	2.45	-2.18
ENSSSAG0000106205 G protein-coupled receptor 101 GPR101 1.66 2.85 -2.27 ENSSSAG0000088069 Salmo salar interferon alpha 2 (fina2), mRNA IFNA2 4.31 5.51 -2.30 ENSSSAG00000088054 T-cell immunoglobulin and mucin domain-containing protein 4 TIMD4 1.76 3.08 -2.49 ENSSSAG00000032651 leucine-rich repeat-containing protein 4 LRRC4 2.33 3.87 -2.91 ENSSSAG0000000935 leucine-rich repeat containing protein 4 LRRC4 2.33 3.87 -2.91 ENSSSAG00000009055 leucine-rich repeat containing protein 4 LRRC4 2.48 4.36 -3.66 ENSSSAG0000009055 leucine-rich repeat containing protein 4 LRRC4 2.48 4.36 -3.66 ENSSSAG0000009642 neuritin metritin NRN1 6.39 8.37 -3.95 ENSSSAG00000085838 Salmo salar Interferon-induced transmembrane protein 5 (ifm5), mRNA IFITM3 1.77 4.09 -4.99 DOWN-REGULATED short stature homeobox 2 Short stature homeodomain protein irx-3 IRX3	ENSSSAG0000066359	sal-like protein 4	SALL2	2.24	3.39	-2.23
ENSSSAG0000088069 Salmo salar interferon alpha 2 (ifna2), mRNA IFNA2 4.31 5.51 -2.30 ENSSSAG00000048752 RUN domain-containing protein 3B RUNDC3B 1.49 2.73 -2.36 ENSSSAG00000069384 T-cell immunoglobulin and mucin domain-containing protein 4 TIMD4 1.76 3.08 -2.49 ENSSSAG0000002121489 E3 ISG15—protein ligase HERC5 HECT 4.98 6.45 -2.77 ENSSSAG0000000935 leucine-rich repeat-containing protein 4 LRRC4 2.33 3.87 -2.91 ENSSSAG000000935 leucine-rich repeat ransmembrane protein FLRT3 FLRT3 1.48 3.23 -3.36 ENSSSAG0000009542 neuritin neuritin NRN1 6.39 8.37 -3.95 ENSSSAG00000085838 Salmo salar Interferon-induced transmembrane protein 5 (ifm5), mRNA IFTM3 1.77 4.09 -4.99 DOWN-REGULATED Short stature homeobox 2 SHOX2 -1.41 -3.00 3.00 ENSSSAG00000075896 iroquois-class homeodomain protein irx-3 SH1 -2.11 -1.08 -2.04 <td>ENSSSAG00000106205</td> <td>G protein-coupled receptor 101</td> <td>GPR101</td> <td>1.66</td> <td>2.85</td> <td>-2.27</td>	ENSSSAG00000106205	G protein-coupled receptor 101	GPR101	1.66	2.85	-2.27
ENSSSAG00000048752 RUN domain-containing protein 3B RUNDC3B 1.49 2.73 -2.36 ENSSSAG0000069384 T-cell immunoglobulin and mucin domain-containing protein 4 TIMD4 1.76 3.08 -2.49 ENSSSAG00000121489 E3 ISG15—protein ligase HERC5 HECT 4.98 6.45 -2.77 ENSSSAG00000032651 leucine-rich repeat-containing protein 4 LRRC4 2.33 3.87 -2.91 ENSSSAG0000009355 leucine-rich repeat transmembrane protein FLRT3 FLRT3 1.48 3.23 -3.36 ENSSSAG0000009542 neuritin protein ligase HERC5 RRC4 2.48 4.36 -3.66 ENSSSAG0000005668 E3 ISG15—protein ligase HERC5 MRN1 6.39 8.37 -3.95 ENSSSAG000000585838 Salmo salar Interferon-induced transmembrane protein 5 (ifm5), mRNA IFITM3 1.77 4.09 -4.99 DOWN-REGULATED roquois-class homeodomain protein irx-3 IRX3 -1.29 -2.49 2.31 ENSSSAG00000075896 iroquois-class homeodomain protein irx-3 SK11 -2.11 -1.08 -2.04	ENSSSAG0000088069	Salmo salar interferon alpha 2 (ifna2), mRNA	IFNA2	4.31	5.51	-2.30
ENSSSAG0000069384 T-cell immunoglobulin and mucin domain-containing protein 4 TIMD4 1.76 3.08 -2.49 ENSSSAG00000121489 E3 ISG15—protein ligase HERC5 HECT 4.98 6.45 -2.77 ENSSSAG00000032651 leucine-rich repeat-containing protein 4 LRRC4 2.33 3.87 -2.91 ENSSSAG00000009355 leucine-rich repeat-containing protein FLRT3 FLRT3 1.48 3.23 -3.36 ENSSSAG00000009542 neuritin neuritin NRN1 6.39 8.37 -3.95 ENSSSAG00000005646 E3 ISG15—protein ligase HERC5 HERC3 4.86 7.00 -4.39 ENSSSAG00000005838 Salmo salar Interferon-induced transmembrane protein 5 (ifm5), mRNA IFITM3 1.77 4.09 -4.99 DOWN-REGULATED	ENSSSAG00000048752	RUN domain-containing protein 3B	RUNDC3B	1.49	2.73	-2.36
ENSSSAG00000121489 E3 ISG15—protein ligase HERC5 HECT 4.98 6.45 -2.77 ENSSSAG00000032651 leucine-rich repeat-containing protein 4 LRRC4 2.33 3.87 -2.91 ENSSSAG0000000935 leucine-rich repeat transmembrane protein FLRT3 FLRT3 1.48 3.23 -3.36 ENSSSAG0000009542 neuritin repeat containing protein 4 LRRC4 2.48 4.36 -3.66 ENSSSAG0000005420 neuritin neuritin 6.39 8.37 -3.95 ENSSSAG00000065686 E3 ISG15—protein ligase HERC5 HERC3 4.86 7.00 -4.39 ENSSSAG000000123265 short stature homeobox 2 IFITM3 1.77 4.09 -4.99 ENSSSAG00000075896 iroquois-class homeodomain protein irx-3 SHOX2 -1.41 -3.00 3.00 ENSSSAG00000079738 protein phosphatase Slingshot homolog 1 SH1 -2.11 -1.08 -2.04 ENSSSAG00000006498 interleukin 8 KXCL6 1.52 -1.65 9.00	ENSSSAG0000069384	T-cell immunoglobulin and mucin domain-containing protein 4	TIMD4	1.76	3.08	-2.49
ENSSSAG00000032651 leucine-rich repeat-containing protein 4 LRRC4 2.33 3.87 -2.91 ENSSSAG0000000935 leucine-rich repeat transmembrane protein FLRT3 FLRT3 1.48 3.23 -3.36 ENSSSAG00000109065 leucine-rich repeat-containing protein 4 LRRC4 2.48 4.36 -3.66 ENSSSAG0000095442 neuritin neuritin 6.39 8.37 -3.95 ENSSSAG00000053668 E3 ISG15—protein ligase HERC5 HERC3 4.86 7.00 -4.39 ENSSSAG0000012326 salmo salar Interferon-induced transmembrane protein 5 (ifm5), mRNA IFITM3 1.77 4.09 -4.99 DOWN-REGULATED short stature homeobox 2 SHOX2 -1.41 -3.00 3.00 ENSSSAG00000075896 iroquois-class homeodomain protein irx-3 IRX3 -1.29 -2.49 2.31 ENSSSAG00000079738 protein phosphatase Slingshot homolog 1 SSH1 -2.11 -1.08 -2.04 ENSSSAG0000006498 interleukin 8 CXCL6 1.52 -1.65 9.00 -1.45	ENSSSAG00000121489	E3 ISG15—protein ligase HERC5	HECT	4.98	6.45	-2.77
ENSSSAG0000000935 leucine-rich repeat transmembrane protein FLRT3 FLRT3 1.48 3.23 -3.36 ENSSSAG00000109065 leucine-rich repeat-containing protein 4 LRRC4 2.48 4.36 -3.66 ENSSSAG0000095442 neuritin neuritin 6.39 8.37 -3.95 ENSSSAG00000095442 E3 ISG15—protein ligase HERC5 HERC3 4.86 7.00 -4.39 ENSSSAG00000012326 Salmo salar Interferon-induced transmembrane protein 5 (ifm5), mRNA IFITM3 1.77 4.09 -4.99 DOWN-REGULATED	ENSSSAG00000032651	leucine-rich repeat-containing protein 4	LRRC4	2.33	3.87	-2.91
ENSSSAG0000109065 leucine-rich repeat-containing protein 4 LRRC4 2.48 4.36 -3.66 ENSSSAG0000095442 neuritin neuritin 6.39 8.37 -3.95 ENSSSAG00000063668 E3 ISG15—protein ligase HERC5 HERC3 4.86 7.00 -4.39 ENSSSAG00000058838 Salmo salar Interferon-induced transmembrane protein 5 (ifm5), mRNA IFTM3 1.77 4.09 -4.99 DOWN-REGULATED Short stature homeobox 2 SHOX2 -1.41 -3.00 3.00 ENSSSAG00000075896 iroquois-class homeodomain protein irx-3 IRX3 -1.29 -2.49 2.31 ENSSSAG00000079738 protein phosphatase Slingshot homolog 1 SSH1 -2.11 -1.08 -2.04 OPPOSITE DIRECTIONS interleukin 8 interleukin 8 CXCL6 1.52 -1.65 9.00	ENSSSAG0000000935	leucine-rich repeat transmembrane protein FLRT3	FLRT3	1.48	3.23	-3.36
ENSSSAG0000095442 neuritin NRN1 6.39 8.37 -3.95 ENSSSAG0000063668 E3 ISG15—protein ligase HERC5 HERC3 4.86 7.00 -4.39 ENSSSAG00000085838 Salmo salar Interferon-induced transmembrane protein 5 (ifm5), mRNA ITTM3 1.77 4.09 -4.99 DOWN-REGULATED ENSSSAG00000112326 short stature homeobox 2 SHOX2 -1.41 -3.00 3.00 ENSSSAG00000075896 iroquois-class homeodomain protein irx-3 IRX3 -1.29 -2.49 2.31 ENSSSAG00000079738 protein phosphatase Slingshot homolog 1 SSH1 -2.11 -1.08 -2.04 OPPOSITE DIRECTIONS interleukin 8 CXCL6 1.52 -1.65 9.00	ENSSSAG00000109065	leucine-rich repeat-containing protein 4	LRRC4	2.48	4.36	-3.66
ENSSSAG0000063668 ENSSSAG0000085838E3 ISG15—protein ligase HERC5 Salmo salar Interferon-induced transmembrane protein 5 (ifm5), mRNAHERC3 IFITM34.86 1.777.00 4.09-4.99DOWN-REGULATEDENSSSAG0000012326 iroquois-class homeodomain protein irx-3 protein phosphatase Slingshot homolog 1SHOX2 IRX3-1.41 -1.29-3.00 	ENSSSAG00000095442	neuritin	NRN1	6.39	8.37	-3.95
ENSSSAG00000085838 Salmo salar Interferon-induced transmembrane protein 5 (ifm5), mRNA IFITM3 1.77 4.09 -4.99 DOWN-REGULATED ENSSSAG0000012326 short stature homeobox 2 SHOX2 -1.41 -3.00 3.00 ENSSSAG00000075896 iroquois-class homeodomain protein irx-3 IRX3 -1.29 -2.49 2.31 ENSSSAG00000079738 protein phosphatase Slingshot homolog 1 SSH1 -2.11 -1.08 -2.04 OPPOSITE DIRECTIONS interleukin 8 CXCL6 1.52 -1.65 9.00	ENSSSAG0000063668	E3 ISG15—protein ligase HERC5	HERC3	4.86	7.00	-4.39
DOWN-REGULATED ENSSSAG00000112326 short stature homeobox 2 SHOX2 -1.41 -3.00 3.00 ENSSSAG00000075896 iroquois-class homeodomain protein irx-3 IRX3 -1.29 -2.49 2.31 ENSSSAG00000079738 protein phosphatase Slingshot homolog 1 SSH1 -2.11 -1.08 -2.04 OPPOSITE DIRECTIONS interleukin 8 CXCL6 1.52 -1.65 9.00	ENSSSAG00000085838	Salmo salar Interferon-induced transmembrane protein 5 (ifm5), mRNA	IFITM3	1.77	4.09	-4.99
ENSSSAG00000112326 short stature homeobox 2 SHOX2 -1.41 -3.00 3.00 ENSSSAG0000075896 iroquois-class homeodomain protein irx-3 IRX3 -1.29 -2.49 2.31 ENSSSAG0000079738 protein phosphatase Slingshot homolog 1 SSH1 -2.11 -1.08 -2.04 OPPOSITE DIRECTIONS interleukin 8 interleukin 8 CXCL6 1.52 -1.65 9.00	DOWN-REGULATED					
ENSSSAG0000075896 iroquois-class homeodomain protein irx-3 IRX3 -1.29 -2.49 2.31 ENSSSAG0000079738 protein phosphatase Slingshot homolog 1 SSH1 -2.11 -1.08 -2.04 OPPOSITE DIRECTIONS interleukin 8 CXCL6 1.52 -1.65 9.00	ENSSSAG00000112326	short stature homeobox 2	SHOX2	-1.41	-3.00	3.00
ENSSSAG00000079738 protein phosphatase Slingshot homolog 1 SSH1 -2.11 -1.08 -2.04 OPPOSITE DIRECTIONS interleukin 8 CXCL6 1.52 -1.65 9.00	ENSSSAG00000075896	iroquois-class homeodomain protein irx-3	IRX3	-1.29	-2.49	2.31
OPPOSITE DIRECTIONS CXCL6 1.52 -1.65 9.00	ENSSSAG00000079738	protein phosphatase Slingshot homolog 1	SSH1	-2.11	-1.08	-2.04
ENSSSAG0000006498 interleukin 8 CXCL6 1.52 -1.65 9.00	OPPOSITE DIRECTIONS					
	ENSSSAG0000006498	interleukin 8	CXCL6	1.52	-1.65	9.00

regulated in RAS, but did not reach the $\log_2 FC$ of < -1 to be defined as a DEG. The genes with up-regulation of mRNA expression unique to RAS fish were widely immune related.

To examine the transcriptome response in terms of gene set enrichment and functional processes (gene ontology using DAVID) following poly I:C stimulation in the gill, DEGs revealed 94 and 66 GO terms in RAS and LOCH fish, respectively. Of these, 58 GO terms were shared between fish from the two rearing histories while 36 were unique to RAS and 8 unique to LOCH fish. In fish from both FW rearing backgrounds, there was a clear association with immune response pathways (Fig. 5). RAS and LOCH fish shared eight of their top 10 pathways and the remaining two in each case were also significant in the other rearing group. Fold enrichment of top GO terms were similar between fish from different rearing histories with the exception of 'response to cytokine' (GO:0034097; 8.9 fold enriched (FE) in RAS/7.2 FE in LOCH). Of the 36 significant GO terms unique to RAS reared fish, one third were related to immunity or defence including 'positive regulation of interleukin-2 production' and 'tumor necrosis factor-mediated signalling pathway', while in the 8 terms unique to LOCH reared fish, only two were related to immunity – 'cellular response to interleukin-6' and 'positive regulation of chemokine production' (Tables S11 and S12).

Using the HGNC identifiers associated with the DAVID GO term 'defence response to virus' (RAS n = 46/LOCH n = 49; 45 overlapping/1 RAS unique/4 LOCH unique) and using these to extract all genes with differential mRNA expression in RAS and LOCH systems in response to poly I:C stimulation, a total of 170 gene IDs were extracted. Of these 156 had differential mRNA expression in response to poly I:C stimulation in RAS and 152 in LOCH (n = 138 overlapping/18 RAS unique/14 LOCH unique). The difference in log₂FCs were calculated; 44 DEGs showed a greater magnitude of response to poly I:C in LOCH reared fish than in RAS reared fish while the opposite was true for the remaining 126 DEGs. Genes with a log₂ fold change difference in magnitude of transcriptomic response to poly I:C between systems of at least 1 are shown in Table 7.

The same process was carried out for the term 'response to cytokine'. 14 HGNCs were common to RAS and LOCH while 4 were unique to RAS (none unique to LOCH). HGNCs mapped to 36 RAS genes and 26 LOCH

Fig. 5. Gene ontology analysis of genes with up-regulated mRNA expression in response to poly I:C stimulation. Top 15 GO BP terms differing between stimulated and control groups in RAS and LOCH reared fish. The number of input DEGs involved in each pathway is displayed at the end of each column. Asterix indicates not in the top 10 of both systems, but significantly enriched in both. For lists of genes involved in each term see Tables S11 and S12.

Table 7

Genes associated with the GO term 'defence response to virus' with mRNA response to poly I:C stimulation differing by more than $log_2FC = \pm 1$ between RAS and LOCH reared fish. Only genes with a log_2 fold change (FC) difference >1 or < -1 between fish reared in FW RAS and LOCH systems are presented. Cells in grey were not significantly differentially expressed in response to poly I:C stimulation in that system.

Gene ID	Salmo salar description	HGNC	RAS poly I:C log ₂ FC	LOCH poly I:C log ₂ FC	FC difference
ENSSSAG00000031095	aconitate decarboxylase 1	ACOD1	4.12	1.43	6.46
ENSSSAG00000089765	0	TRIM25	2.77	0.78	3.97
ENSSSAG0000083879	E3 ubiquitin/ISG15 ligase TRIM25	TRIM25	4.02	2.15	3.67
ENSSSAG00000086219	tripartite motif-containing protein 47	TRIM25	4.39	2.52	3.67
ENSSSAG00000118289	tripartite motif-containing protein 16	TRIM22	2.03	0.42	3.06
ENSSSAG00000108840	radical S-adenosyl methionine domain containing 2	RSAD2	5.68	4.11	2.97
ENSSSAG00000015795	DNA damage-inducible transcript 4 protein	DDIT4	1.31	-0.18	2.81
ENSSSAG0000007225	tripartite motif-containing protein 16	TRIM25	3.52	2.07	2.72
ENSSSAG0000005439	perforin-1	PRF1	1.34	-0.05	2.62
ENSSSAG00000115299	tripartite motif-containing protein 47	TRIM25	3.30	2.01	2.44
ENSSSAG00000119033	tripartite motif-containing protein 47	TRIM25	2.53	1.27	2.38
ENSSSAG00000122227	tripartite motif-containing protein 47	TRIM25	3.42	2.24	2.27
ENSSSAG0000037858	probable ATP-dependent RNA helicase DHX58	DHX58	5.86	4.71	2.21
ENSSSAG00000099596	0	TRIM25	2.73	1.58	2.21
ENSSSAG00000113770	tripartite motif-containing protein 16	TRIM25	3.46	2.35	2.16
ENSSSAG00000107978	0	TRIM25	2.32	1.28	2.06
ENSSSAG00000038498	interferon-induced protein 44	IFI44L	3.18	2.17	2.02
ENSSSAG00000095160	0	TRIM25	0.55	1.55	-2.00
ENSSSAG00000087907	tripartite motif-containing protein 16	TRIM25	1.02	2.16	-2.20
ENSSSAG00000088069	Salmo salar interferon alpha 2 (ifna2), mRNA	IFNA2	4.31	5.51	-2.30
ENSSSAG00000108853	0	TRIM25	1.52	3.34	-3.52
ENSSSAG00000085838	Salmo salar Interferon-induced transmembrane protein 5 (ifm5), mRNA	IFITM3	1.77	4.09	-4.99

genes (n = 26 overlapping/n = 10 unique to RAS). Genes with a \log_2 fold change difference in magnitude of mRNA response to poly I:C between systems of at least 1 are shown in Table 8. In this case, all DEGs showed a greater magnitude of response to poly I:C in fish reared in RAS compared to LOCH.

For the term 'inflammatory response', 47 HGNCs overlapped between RAS and LOCH while 14 were RAS specific and 9 LOCH specific. HGNCs mapped to a total of 112 genes (96 RAS/86 LOCH). Of these, 70 genes had differential mRNA expression in both RAS and LOCH reared fish while 26 were unique to RAS and 16 unique to LOCH. Genes with a log_2 fold change difference in magnitude of mRNA response to poly I:C between systems of at least 1 are shown in Table 9.

Genes associated with the GO term 'response to cytokine' with mRNA response to poly I:C stimulation differing by more than $log_2FC = \pm 1$ between RAS and LOCH reared fish. Only genes with a log_2 fold change (FC) difference >1 or < -1 between fish reared in FW RAS and LOCH systems are presented. Cells in grey were not significantly differentially expressed in response to poly I:C stimulation in that system.

Gene ID	Salmo salar description	HGNC	RAS poly I:C log ₂ FC	LOCH poly I:C log ₂ FC	FC difference
ENSSSAG00000067000	P-selectin	SELE	1.51	-0.27	3.44
ENSSSAG00000046644	proto-oncogene c-Fos	FOS	1.38	-0.08	2.75
ENSSSAG00000045082	Programmed cell death 1 ligand 1	CD274	3.47	2.25	2.33
ENSSSAG0000004552	retinal dehydrogenase 2	ALDH1A2	2.23	1.02	2.32
ENSSSAG0000085238	tumor necrosis factor receptor superfamily member 9-like	TNFRSF11A	4.13	2.96	2.25
ENSSSAG0000068892	nuclear factor of kappa light polypeptide gene enhancer in B-cells 2, p49/p100	NFKB2	2.27	1.13	2.21
ENSSSAG00000054260	transcription factor AP-1	JUN	1.77	0.70	2.11
ENSSSAG00000102030	proto-oncogene c-Rel	REL	1.81	0.80	2.01

Table 9

Genes associated with the GO term 'inflammatory response' with mRNA response to poly I:C stimulation differing by more than $\log_2 FC = \pm 1$ between RAS and LOCH reared fish. Only genes with a \log_2 fold change (FC) difference >1 or < -1 between fish reared in FW RAS and LOCH systems are presented. Cells in grey were not significantly differentially expressed in response to poly I:C stimulation in that system.

Gene ID	Salmo salar description	HGNC	RAS poly I:C log ₂ FC	LOCH poly I:C log ₂ FC	FC difference
ENSSSAG0000006498	interleukin 8	CXCL6	1.52	-1.65	9.00
ENSSSAG00000065312	NA	TNF	2.22	-0.57	6.87
ENSSSAG00000031095	aconitate decarboxylase 1	ACOD1	4.12	1.43	6.46
ENSSSAG0000039686	0	C3	3.69	1.30	5.25
ENSSSAG00000045448	interleukin-1 beta	IL1B	5.30	3.34	3.90
ENSSSAG0000006380	probable polyketide synthase 1	FASN	3.40	1.44	3.89
ENSSSAG0000067000	P-selectin	SELE	1.51	-0.27	3.44
ENSSSAG00000108438	C-X-C chemokine receptor type 3	CXCR3	2.29	0.75	2.92
ENSSSAG00000090282	putative inactive phenolphthiocerol synthesis polyketide synthase type I Pks15	FASN	3.20	1.66	2.91
ENSSSAG00000046644	proto-oncogene c-Fos	FOS	1.38	-0.08	2.75
ENSSSAG00000051405	C–C motif chemokine 4	CCL4	3.55	2.24	2.48
ENSSSAG0000007227	prostaglandin E2 receptor EP1 subtype	PTGER1	1.14	-0.10	2.36
ENSSSAG00000072775	TNF alpha induced protein 3	TNFAIP3	2.45	1.34	2.16
ENSSSAG00000071823	C–C motif chemokine 19	XCL2	2.98	1.93	2.06
ENSSSAG00000102030	proto-oncogene c-Rel	REL	1.81	0.80	2.01
ENSSSAG0000000454	stromal cell-derived factor 1	CXCL5	1.33	2.45	-2.18
ENSSSAG00000088069	Salmo salar interferon alpha 2 (ifna2), mRNA	IFNA2	4.31	5.51	-2.30
ENSSSAG00000040467	calcium/calmodulin-dependent protein kinase type IV	CAMK4	-0.91	1.97	-7.38

3.5. RAS reared fish mount a relatively stronger transcriptomic immune response to poly I:C stimulation than LOCH reared fish

A total of 119 genes displayed differential mRNA expression in response to poly I:C stimulation in the gills of both RAS and LOCH fish, but differed in magnitude of mRNA induction by $\log_2 FC > 1$ or < -1 (Table S8). Of these, 34 genes also showed significant differential mRNA expression between RAS and LOCH fish prior to stimulation (Table S13). Only 19 of these genes were annotated against the *S. salar* genome and are presented in Table 10. With the exception of neuritin (ENSS-SAG00000095442), all mRNAs were expressed at a lower level in RAS reared fish compared to LOCH prior to stimulation but had a higher magnitude of response to poly I:C stimulation in RAS fish compared to LOCH post-stimulation. The opposite was true for neuritin. There was no correlation between the differential expression in the two comparisons.

4. Discussion

In this study we assessed the impact of freshwater rearing history on the transcriptomic response in the Atlantic salmon gill to stimulation with the viral mimic poly I:C, two weeks post-transfer to seawater. In unstimulated fish several immune-related genes displayed differential mRNA expression between fish reared in RAS or LOCH environments and functional prediction indicated immune suppression in those fish reared in RAS compared to those reared in the open LOCH environment. Fish from both systems mounted a strong transcriptomic immune response following stimulation with poly I:C as expected, highlighting no serious immune disfunction due to the rearing environment. However, the intensity of the response to stimulation at the measured timepoint was stronger in RAS reared fish compared to those from the LOCH. A subset of genes which had a greater magnitude of induction of mRNA expression by poly I:C in RAS fish were inversely transcribed at a lower level prior to stimulation in RAS fish compared to those reared in the LOCH. Most of these genes are involved in aspects of immune function. It may be that fish reared in RAS have a reduced (or suppressed) immune system in terms of baseline mRNA expression, but that they are able to compensate by essentially 'catching up' to their LOCH reared counterparts by mounting a larger response when faced with a pathogen. Alternatively, those in the LOCH environment have higher steady state immune function and are more prepared for immunological insult. However, such amplification of the immune response as seen in the RAS reared fish could also be an over-reaction to viral stimulation and would be energetically costly, likely to divert resources away from other important physiological processes at this vital life history stage such as osmoregulation and growth. Due to the single sampling point nature of this study, further work is required to monitor any temporal patterns of suppression or induction.

4.1. Rearing history impacts immune gene transcription post-SWT

At two-weeks post-transfer to SW, we identified a large differentially expressed gene set in smolts reared in RAS or LOCH systems in FW. Gene set enrichment by gene ontology revealed these DEGs to be related to both innate and adaptive immune response pathways including the

Genes with significant differential mRNA expression between RAS and LOCH reared fish and also with a significant response to poly I:C stimulation differing by more than log_2 fold change (FC) > ± 1 between RAS and LOCH reared fish. Control system log_2 FC < -1 indicates lower mRNA expression in RAS than in LOCH reared fish. Only genes with annotation against the *S. salar* genome are presented. For the full list see Table S13.

Gene ID	Salmo salar description	HGNC	control system log ₂ FC	RAS poly I:C log ₂ FC	LOCH poly I:C log ₂ FC	FC difference
ENSSSAG00000045029	MARCKS-related protein	MARCKSL1	-1.40	5.25	3.08	4.48
ENSSSAG00000046729	basic leucine zipper transcriptional factor ATF	BATF	-1.76	3.81	1.74	4.19
ENSSSAG0000006380	probable polyketide synthase 1	FASN	-2.13	3.40	1.44	3.89
ENSSSAG0000009083	interferon regulatory factor 4	IRF4	-1.40	2.95	1.36	3.03
ENSSSAG00000108840	radical S-adenosyl methionine domain containing 2	RSAD2	-1.95	5.68	4.11	2.97
ENSSSAG00000120145	tripartite motif-containing protein 16	TRIM47	-1.27	2.63	1.09	2.90
ENSSSAG00000056094	interleukin-17F	0	-2.56	2.60	1.21	2.62
ENSSSAG00000082955	calcium binding and coiled-coil domain 2	calcoco2	-2.49	4.16	2.92	2.36
ENSSSAG0000005181	sterile alpha motif domain-containing protein 9	SAMD9L	-1.85	3.62	2.45	2.25
ENSSSAG00000105945	TYRO protein tyrosine kinase-binding protein	TYROBP	-1.56	3.07	1.97	2.15
ENSSSAG00000073138	uncharacterized LOC106578729	EIF4G1	-1.64	3.48	2.40	2.12
ENSSSAG00000097252	poly [ADP-ribose] polymerase 11	PARP11	-1.55	4.98	3.92	2.09
ENSSSAG0000007886	cytidine/uridine monophosphate kinase 2	CMPK2	-1.15	5.10	4.04	2.08
ENSSSAG00000121778	polyubiquitin	UBB	-2.02	4.56	3.51	2.08
ENSSSAG0000062001	sterile alpha motif domain-containing protein 9	SAMD9	-1.75	3.96	2.91	2.08
ENSSSAG00000071823	C–C motif chemokine 19	XCL2	-2.12	2.98	1.93	2.06
ENSSSAG00000075036	galectin-3-binding protein A	LGALS3BP	-1.93	3.29	2.24	2.06
ENSSSAG00000073361	stathmin-3	STMN3	-1.23	2.85	1.80	2.06
ENSSSAG00000038498	interferon-induced protein 44	IFI44L	-2.21	3.18	2.17	2.02
ENSSSAG00000095442	neuritin	NRN1	1.84	6.39	8.37	-3.95

inflammatory response and T-cell activation. The unstimulated status of transcriptional activity of the fish two weeks following SWT indicate inherent differences in baseline levels of immunity in fish from the two rearing backgrounds following transfer to sea. This is in agreement with other studies on basal immune transcriptional activity following seawater transfer in immune tissues [20] and single cell sequencing of gill where a clear decrease in immune cell types was observed a short time post transfer [23].

Immune suppression occurs during the smoltification process in FW, but becomes further pronounced post-transfer to seawater [20,23,28]. The phenomenon has been shown independently, but only in cultured populations and not in the wild, so could potentially be a result of culture methods. It may seem counter-intuitive that immune function is suppressed post-transfer to the marine environment which is rich in potential pathogens. It has been suggested that the dampening of the immune response could function to avoid immune shock when transferring between environments with distinct pathogen profiles [23]. For the fish to prevent excessive undesired inflammation it may be that tolerance mechanisms are at play during this life history event, although this experimental set up is unable to address this hypothesis. One of the key hormones known to increase during smolting is cortisol which can act as an immune suppressor and is associated with stress. The hormone is also believed to play roles in controlling genes such as Na⁺K⁺-ATPase involved in osmoregulation [20]. Chronic stress is associated with elevated cortisol and can impact susceptibility to disease by suppression of the innate immune system [29]. Additionally, acute stress during embryogenesis enhanced the transcriptomic immune response to bacterial stimulation in Atlantic salmon fry while chronic stress suppressed it [30].

Two pro-inflammatory genes which differed in mRNA expression levels between unstimulated smolts from RAS and LOCH systems two weeks post-SWT, C–C motif chemokine 19-like (CCL19) and CCL4, were also suppressed in the gill of Atlantic salmon post-smolts 3-weeks after SWT in an independent study [20]. Ingenuity pathway analysis also identified immune genes as potential upstream regulators of the differentially expressed gene sets in unstimulated LOCH and RAS fish, for example, interferons and interleukins, as well as MAMPs such as lipopolysaccharide (a strong immunostimulant) and dexamethasone, an anti-inflammatory agent with the same function as cortisol. Breeding for rapid growth has been suggested to suppress immunity in Atlantic salmon [28] where energy allocation has been selected for somatic growth and not immune system. Accordingly, the artificial constant light regimes often used in RAS to stimulate smoltification could drive abnormal immunosuppression [23]. Constant light is known to have a distinct impact on mammalian immune defences [31], however, in smolts produced in RAS under either constant light or given a traditional signal and transferred to sea at different weights, no significant differences were identified in a panel of immune genes [32].

Despite the apparent gap in steady-state gill transcriptome-level immune status following SWT, no visible differences in smolt health were determined in this study. A study comparing performance and welfare indicators of smolts produced in RAS or FTS also found comparable survival rates post-SWT in fish reared in the two different systems [33]. The critical level of suppression of immune genes is not well understood in terms of influencing disease resistance or susceptibility. In a study in which expression from an immune multigene expression assay (MGE) was compared to a gill reference data set in an attempt to detect deviation from a 'normal' immune status, good immune status was determined in fish reared in both flow-through and RAS [24].

4.2. Stimulation with a viral PAMP induced transcriptomic immune responses in RAS and LOCH reared fish

To assess immune capacity in smolts reared in FW RAS or LOCH, fish were stimulated for 24 h with a viral mimic two-weeks after transfer to SW. In the gills of fish from both FW backgrounds, functional analysis revealed robust antiviral responses with similar gene set enrichment of functional pathways including defence response to virus, inflammatory response and innate immune response. The interferon response is considered as the primary antiviral defence system in fish and in other vertebrates [34]. mRNA expression levels of key interferon and interferon-stimulated genes including interferon inducible Mx protein (Mx), ISG15 ubiquitin-like modifier (ISG15), viperin (vip-2 or RSAD2), interferon alpha 2 (IFNa2), interferon regulatory factor 4-like (IRF4), interferon-inducible protein gig2 (gig2) and CCL19 were up-regulated in response to poly I:C smolts reared in both FW systems. A similar suite of antiviral genes (also termed Interferon Stimulated Genes (ISGs) [27]) varied between susceptible and resistant fish challenged with infectious pancreatic necrosis virus (IPNV), with the up-regulation of interferon-response genes more pronounced in susceptible fish [35]. Proinflammatory cytokines also play a role in antiviral defences [36] and interleukin-1 beta-like (IL-1 β) was strongly induced in the gills of

fish reared in RAS and LOCH in response to poly I:C stimulation.

4.3. Immune system 'catch-up' in RAS-reared fish?

Despite strong immune responses being mounted in fish from both rearing backgrounds, many of the genes with up-regulated mRNA expression were more strongly induced in the gills of fish from one background or another and the functional pathway 'response to cytokine' showed a greater fold enrichment in smolts reared in RAS. A total of 115 genes had increased mRNA expression in response to viral stimulation in smolts from both systems showed a difference in induction of at least 2-fold between RAS and LOCH smolts with the majority (78.3%) showing a greater magnitude of response in RAS fish compared to LOCH. This included antiviral and pro-inflammatory makers (for example, ISG15, RSAD2, IRF4, CCL4, CCL19, IL1^β and IL17F). A subset of 34 mRNAs that differed in extent of viral induction were also differentially expressed between unstimulated fish reared in RAS and LOCH post-SWT. In all but one case, these genes had lower mRNA expression in fish reared in RAS compared to LOCH prior to viral stimulation, but following stimulation, a larger magnitude of response was identified in RAS-reared smolts compared to their LOCH counterparts.

The stronger response may be a result of excessive up-regulation of the immune response in RAS-reared smolts in response to a viral challenge. Induction of antiviral genes does not always result in successful eradication of a viral infection. In an infection with pilchard orthomyxovirus (POMV), strong up-regulation of IFNa, IFN-induced genes (Mx1-3, ISG15) and multiple pro-inflammatory cytokines and chemokines was not sufficient to suppress viral replication and mortality [37] and similar outcomes were found in ISAV-infected fish [38]. A comparison of smolts with low and high mortality determined a panel of inflammatory genes associated with high mortality [39]. An excessive inflammatory response, in combination with lack of control of the anti-inflammatory response, can result in so-called 'cytokine storm' which can amplify pathology during viral infections [40,41]. High cortisol levels are known to suppress innate immunity in salmonids [29]. In the gills of salmon injected with hydrocortisone to induced the stress- and smoltification-related hormone cortisol, antiviral Mx and ISG15 induction was delayed in comparison to non-hydrocortisone injected fish during infection with salmon gill poxvirus (SGPV), but then surged along with the viral peak, reaching far higher levels than in control fish [42].

Alternatively, it may be the case that the greater magnitude of transcriptional response during viral stimulation acts to compensate for the lowered baseline expression, effectively allowing RAS fish to 'catchup' to their 'more natural environment' LOCH counterparts in terms of immune competence. This may be costly at a sensitive life history stage, potentially diverting resources away from other physiological processes including growth, metabolism or osmoregulation. The number of genes with down-regulated mRNA expression in the two systems mapped to HGNCs did not allow for a coherent functional analysis to be conducted, but a gene coding for fatty acid amide hydrolase-1-like (FAAH) had down-regulated mRNA expression in viral stimulation smolts reared in RAS. The immune system of fish reared in RAS compared to a cohort in FTS was described as having higher reactivity of the immune system three-weeks post-SWT, but this became comparable between cohort by three months in SW [24]. Fish that appear to perform equally and do not have visible health problems can have varying degrees of immune system competence [39]. Understanding the molecular pathways behind immune system competence could help to evaluate and mitigate risks, for example, higher susceptibility to opportunistic infection. The single timepoint nature of this study did not allow examination of any temporal patterns of gill transcriptome or immune status and we cannot be certain that we have captured the peak magnitude and/or intensity of response to viral stimulation in fish from differing rearing backgrounds. Temporal analysis would shed more light on the potential for rearing systems to shape immune competence both prior to and following transfer to sea.

5. Conclusions

Fish reared in RAS had lower steady state transcription of immunerelated genes in the gill at two weeks post-SWT compared to fish reared in a LOCH system. When stimulated with a viral PAMP, RASreared fish mounted a stronger immune response at 24 h postchallenge relative to those reared in the LOCH at a transcriptional level. We hypothesise that in the first weeks following transfer to SW an early immune response develops in the gills of LOCH-reared fish, stimulated by the transition to a new environment, which is absent or suppressed in RAS reared fish. RAS fish mounted a stronger gill-based immune response, in terms of viral PAMP-induced changes related to increased magnitude and intensity of transcriptomic responses, than LOCH fish and thus appear to be able to 'catch up' with LOCH counterparts. Further work is needed to ascertain if mounting a larger immune response negatively impacts other aspects of RAS fish physiology, and studies with multiple sampling points are required to elucidate the temporal succession of such responses.

Availability of data and materials

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found below: https://www.ncbi.nlm.nih.gov/biopro ject/PRJNA852873.

Funding

This work was supported by the UKRI project ROBUSTSMOLT [grant numbers BBSRC BB/S004270/1 and BB/S004432/1]. There was also co-funding from the Scottish Aquaculture Innovation Centre.

Declaration of competing interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Data availability

The datasets presented in this study can be found in online repositories. The names of the repository and accession number(s) can be found below: https://www.ncbi.nlm.nih.gov/bioproject/PRJNA8528 73.

Acknowledgements

The authors would like to thank John Richmond and staff at MOWI. Special thanks also to the staff at Machrihanish for their assistance in sample collection during a challenging time.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.fsi.2024.109653.

References

- FAO, The State of World Fisheries and Aquaculture: Sustainability in Action, Food and Agriculture Organization of the United Nations, Rome, 2020, https://doi.org/ 10.4060/ca9229en (2020).
- [2] S.D. McCormick, 5 smolt physiology and endocrinology, in: S.D. McCormick, A. P. Farrell, C.J. Brauner (Eds.), Fish Physiology, Academic Press, 2012, pp. 199–251, https://doi.org/10.1016/B978-0-12-396951-4.00005-0.
- [3] M. Lorgen, E. Casadei, E. Król, A. Douglas, M.J. Birnie, L.O.E. Ebbesson, S.A. M. Martin, Functional divergence of type 2 deiodinase paralogs in the Atlantic salmon, Curr. Biol. 25 (2015) 936–941, https://doi.org/10.1016/j. cub.2015.01.074.

- [4] M. Lorgen, E.H. Jorgensen, W.C. Jordan, S.A.M. Martin, D.G. Hazlerigg, NFAT5 genes are part of the osmotic regulatory system in Atlantic salmon (*Salmo salar*), Mar. Genomics 31 (2017) 25–31, https://doi.org/10.1016/j.margen.2016.06.004.
- [5] M. Iversen, T. Mulugeta, A.C. West, E.H. Jørgensen, S.A.M. Martin, S.R. Sandve, D. G. Hazlerigg, Photoperiod-dependent developmental reprogramming of the transcriptional response to seawater entry in Atlantic salmon (*Salmo salar*). G3, 11 (4), jkab072, https://doi.org/10.1093/g3journal/jkab072, 2021.
- [6] H.L. Khaw, B. Gjerde, S.A. Boison, E. Hjelle, G.F. Difford, Quantitative genetics of smoltification status at the time of seawater transfer in Atlantic salmon (Salmo salar), Front. Genet. 12 (2021) 696893, https://doi.org/10.3389/ fgene.2021.696893.
- [7] A. Meriac, Smolt production and the potential for solid waste collection in Norway, Nofima Report, Nofima AS (2019). http://hdl.handle.net/11250/2612509.
- [8] C.I.M. Martins, E.H. Eding, M.C.J. Verdegem, L.T.N. Heinsbroek, O. Schneider, J. P. Blancheton, J.A.J. Verreth, New developments in recirculating aquaculture systems in Europe: a perspective on environmental sustainability, Aquacult. Eng. 43 (3) (2010) 83–93, https://doi.org/10.1016/j.aquaeng.2010.09.002.
- [9] I. Golfand, Economics of growing salmon in recirculating aquaculture systems, J. Aquacul. Mar. Biol. 12 (2) (2023) 99–102, https://doi.org/10.15406/ jamb.2023.12.00362.
- [10] K. Buchmann, C.J. Secombes, Principles of fish immunology : from cells and molecules to host protection. https://doi.org/10.1007/978-3-030-85420-1, 2022.
- [11] I. Salinas, Á. Fernández-Montero, Y. Ding, J.O. Sunyer, Mucosal immunoglobulins of teleost fish: a decade of advances, Biology 4 (3) (2021) 252–539, https://doi. org/10.1016/j.dci.2021.104079.
- [12] A.S. Dalum, A. Kraus, S. Khan, E. Dabydova, D. Rigaudeau, H. Bjørgen, J. Rességuier, High-resolution, 3D imaging of the zebrafish gill-associated lymphoid tissue (GIALT) reveals a novel lymphoid structure, the amphibranchial lymphoid tissue, Front. Immunol. 12 (2021) 769901, https://doi.org/10.3389/ fimmu.2021.769901.
- [13] D. Gomez, J.O. Sunyer, I. Salinas, The mucosal immune system of fish: the evolution of tolerating commensals while fighting pathogens, Fish Shellfish Immunol. 35 (6) (2013) 1729–1739, https://doi.org/10.1016/j.fsi.2013.09.032.
- [14] J.W. Bledsoe, M.R. Pietrak, G.S. Burr, B.C. Peterson, B.C. Small, Functional feeds marginally alter immune expression and microbiota of Atlantic salmon (Salmo salar) gut, gill, and skin mucosa though evidence of tissue-specific signatures and host-microbe coadaptation remain, Animal Microb. 4 (1) (2022) 20, https://doi. org/10.1186/s42523-022-00173-0, 20.
- [15] J.H.W.M. Rombout, G. Yang, V. Kiron, Adaptive immune responses at mucosal surfaces of teleost fish, Fish Shellfish Immunol. 40 (2) (2014) 634–643, https://doi. org/10.1016/j.fsi.2014.08.020.
- [16] D.H. Evans, P.M. Piermarini, K.P. Choe, The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste, Physiol. Rev. 85 (1) (2005) 97–177, https://doi.org/10.1152/ physrev.00050.2003.
- [17] E. Król, P. Noguera, S. Shaw, E. Costelloe, K. Gajardo, V. Valdenegro, S.A. M. Martin, Integration of transcriptome, gross morphology and histopathology in the gill of sea farmed Atlantic salmon (*Salmo salar*): lessons from multi-site sampling, Front. Genet. 11 (2020) 610, https://doi.org/10.3389/ forme_2020.00610
- [18] B.B. Jensen, L. Qviller, N. Toft, Spatio-temporal variations in mortality during the seawater production phase of Atlantic salmon (*Salmo salar*) in Norway, J. Fish. Dis. 43 (4) (2020) 445–457, https://doi.org/10.1111/jfd.13142.
 [19] V.H.S. Oliveira, K.R. Dean, L. Qviller, C. Kirkeby, B.B. Jensen, Factors associated
- [19] V.H.S. Oliveira, K.R. Dean, L. Qviller, C. Kirkeby, B.B. Jensen, Factors associated with baseline mortality in Norwegian Atlantic salmon farming, Sci. Rep. 11 (2021) 14702, https://doi.org/10.1038/s41598-021-93874-6.
- [20] L. Johansson, G. Timmerhaus, S. Afanasyev, S.M. Jørgensen, A. Krasnov, Smoltification and seawater transfer of Atlantic salmon (*Salmo salar L.*) is associated with systemic repression of the immune transcriptome, Fish Shellfish Immunol. 58 (2016) 33–41, https://doi.org/10.1016/j.fsi.2016.09.026.
- [21] C. Karlsen, E. Ytteborg, G. Timmerhaus, V. Høst, S. Handeland, S.M. Jørgensen, A. Krasnov, Atlantic salmon skin barrier functions gradually enhance after seawater transfer, Sci. Rep. 8 (1) (2018) 9510, https://doi.org/10.1038/s41598-018-27818-v.
- [22] J. Wang, T.M. Kortner, E.M. Chikwati, Y. Li, A. Jaramillo-Torres, J.V. Jakobsen, Å. Krogdahl, Gut immune functions and health in Atlantic salmon (*Salmo salar*) from late freshwater stage until one year in seawater and effects of functional ingredients: a case study from a commercial sized research site in the arctic region, Fish Shellfish Immunol. 106 (2020) 1106–1119, https://doi.org/10.1016/j. fsi.2020.09.019.
- [23] A.C. West, Y. Mizoro, S.H. Wood, L.M. Ince, M. Iversen, E.H. Jørgensen, D. G. Hazlerigg, Immunologic profiling of the Atlantic salmon gill by single nuclei

transcriptomics, Front. Immunol. 12 (2021) 669889, https://doi.org/10.3389/fimmu.2021.669889.

- [24] H. Lund, A. Bakke, P. Boysen, S. Afanasyev, A. Rebl, F. Manji, A. Krasnov, Evaluation of immune status in two cohorts of Atlantic salmon raised in different aquaculture systems (case study), Genes 13 (5) (2022) 736, https://doi.org/ 10.3390/genes13050736.
- [25] M.I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol. 15 (12) (2014) 550, https://doi.org/10.1186/s13059-014-0550-8.
- [26] Y. Liao, G.K. Smyth, W. Shi, The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads, Nucleic Acids Res. 47 (8) (2019) e47, https://doi.org/10.1093/nar/gkz114.
- [27] T.C. Clark, S. Naseer, M.K. Gundappa, A. Laurent, A. Perquis, B. Collet, P. Boudinot, Conserved and divergent arms of the antiviral response in the duplicated genomes of salmonid fishes, Genomics 115 (4) (2023) 110663, https:// doi.org/10.1016/j.ygeno.2023.110663.
- [28] A. Krasnov, S. Afanasyev, M. Baranski, M. Dahle, L. Johansson, S.M. Jørgensen, G. Timmerhaus, Smoltification and breeding for rapid growth may suppress immunity of Atlantic salmon: evidence from transcriptome analyses, Fish Shellf. Immunol. Spec. Issue: ISFSI 2016 (53) (2016) 79, https://doi.org/10.1016/j. fsi.2016.09.026.
- [29] K. Gadan, I.S. Marjara, H. Sundh, K. Sundell, Ø. Evensen, Slow release cortisol implants result in impaired innate immune responses and higher infection prevalence following experimental challenge with infectious pancreatic necrosis virus in Atlantic salmon (*Salmo salar*) part, Fish Shellfish Immunol. 32 (5) (2012) 637–644, https://doi.org/10.1016/j.fsi.2012.01.004.
- [30] T.M. Uren Webster, D. Rodriguez-Barreto, S.A.M. Martin, C. Van Oosterhout, P. Orozco-terWengel, J. Cable, S. Consuegra, Contrasting effects of acute and chronic stress on the transcriptome, epigenome, and immune response of Atlantic salmon, 13(12), 1191-1207, https://doi.org/10.1080/15592294.2018.1554520, 2018.
- [31] C. Scheiermann, J. Gibbs, L. Ince, A. Loudon, Clocking in to immunity, Nat. Rev. Immunol. 18 (7) (2018) 423–437, https://doi.org/10.1038/s41577-018-0008-4.
- [32] T. Ytrestøyl, E. Hjelle, J. Kolarevic, H. Takle, A. Rebl, S. Afanasyev, B.F. Terjesen, Photoperiod in recirculation aquaculture systems and timing of seawater transfer affect seawater growth performance of Atlantic salmon (*Salmo salar*), J. World Aquacult. Soc. (2022) 1–23, https://doi.org/10.1111/jwas.12880.
- [33] J. Kolarevic, G. Baeverfjord, H. Takle, E. Ytteborg, B.K.M. Reiten, S. Nergård, B. F. Terjesen, Performance and welfare of Atlantic salmon smolt reared in recirculating or flow through aquaculture systems, Aquaculture 432 (2014) 15–25, https://doi.org/10.1016/j.aquaculture.2014.03.033.
- [34] B. Robertsen, The interferon system of teleost fish, Fish Shellf. Immunol. Rev. Fish Immunol. 20 (2) (2006) 172–191, https://doi.org/10.1016/j.fsi.2005.01.010.
- [35] D. Robledo, J.B. Taggart, J.H. Ireland, B.J. McAndrew, W.G. Starkey, C.S. Haley, R. D. Houston, Gene expression comparison of resistant and susceptible Atlantic salmon fry challenged with infectious pancreatic necrosis virus reveals a marked contrast in immune response, BMC Genom. 17 (1) (2016) 279, https://doi.org/10.1186/s12864-016-2600-y.
- [36] M. Carty, C. Guy, A.G. Bowie, Detection of viral infections by innate immunity, Biochem. Pharmacol. 183 (2021) 114316, https://doi.org/10.1016/j. bcp.2020.114316.
- [37] F. Samsing, P. Alexandre, M. Rigby, R.S. Taylor, R. Chong, J.W. Wynne, Transcriptome response of Atlantic salmon (*Salmo salar*) to a new piscine orthomyxovirus, Pathogens 9 (10) (2020) 807, https://doi.org/10.3390/ pathogens9100807.
- [38] S.M. Jørgensen, S. Afanasyev, A. Krasnov, Gene expression analyses in Atlantic salmon challenged with infectious salmon anemia virus reveal differences between individuals with early, intermediate and late mortality, BMC Genom. 9 (1) (2008) 179, https://doi.org/10.1186/1471-2164-9-179.
- [39] A. Krasnov, S. Afanasyev, S. Nylund, A. Rebl, Multigene expression assay for assessment of the immune status of Atlantic salmon, Genes 11 (11) (2020) 1236, https://doi.org/10.3390/genes11111236.
- [40] Q. Liu, Y. Zhou, Z. Yang, The cytokine storm of severe influenza and development of immunomodulatory therapy, Cell. Mol. Immunol. 13 (1) (2016) 3–10, https:// doi.org/10.1038/cmi.2015.74.
- [41] R.Q. Cron, G. Goyal, W.W. Chatham, Cytokine storm syndrome, Annu. Rev. Med. 74 (2023) 321–337, https://doi.org/10.1146/annurev-med-042921-112837.
- [42] M.M. Amundsen, H. Tartor, K. Andersen, K. Sveinsson, E. Thoen, M.C. Gjessing, M. K. Dahle, Mucosal and systemic immune responses to salmon gill poxvirus infection in Atlantic salmon are modulated upon hydrocortisone injection, Front. Immunol. 12 (2021) 689302.