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Abstract. We study the dynamics of density fluctuations in the steady state of a

non-equilibrium system, the Zero-Range Process on a ring lattice. Measuring the

time series of the total number of particles in a segment of the lattice, we find

remarkable structures in the associated power spectra, namely, two distinct components

of damped-oscillations. The essential origin of both components is shown in a simple

pedagogical model. Using a more sophisticated theory, with an effective drift-diffusion

equation governing the stochastic evolution of the local particle density, we provide

reasonably good fits to the simulation results. The effects of altering various parameters

are explored in detail. Avenues for improving this theory and deeper understanding of

the role of particle interactions are indicated.
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1. Introduction

For systems in thermal equilibrium, Boltzmann and Gibbs provided a sound framework

which forms part of text-book material nowadays. Specifically, the probability

distribution (for finding the system in any configuration) is given simply by the

Boltzmann factor. In contrast, little is known in general about systems driven into

non-equilibrium steady states, specified via, say, a set of transition rates that violate

detailed balance. To explore this vast unknown, it is natural to focus on simple solvable

models, with the hope of gaining insight for formulating a general framework for non-

equilibrium statistical mechanics. One paradigmatic model is the Zero-Range Process

(ZRP) [1, 2], in which particles hop from one site to the next on a one-dimensional

periodic lattice (i.e., a ring of L sites), with a rate that depends solely on n, the number

of particles in the originating site.

The ZRP distinguishes itself in at least two ways. Its steady-state probability

distribution not only takes a factorised form, which can be expressed succinctly in terms

of the hopping rate u (n) (often easing the computation of various averages). It also

exhibits condensation transitions, even in low dimensions which would not be expected

in an equilibrium system without long-range interactions. In addition to its utility in

the fundamental study of non-equilibrium processes, where it has been employed to

develop a general criterion for phase separation in one-dimensional driven systems [3]

among other things, the ZRP has also found success as a minimal model for various

real systems including vehicular traffic [4], compartmentalised granular gases [5] and gel

electrophoresis [6].

Though much is known about the ZRP, there is a simple and natural, but so far

unknown, question we may ask. While the total number of particles on the (finite,

periodic) lattice is fixed as the system evolves, the number in a subsection of, say, ℓ

sites – denoted by Nℓ (t) here – is a quantity that fluctuates in time t. In the steady

state, its time average 〈Nℓ (t)〉 is of course a constant. Nevertheless, its average power

spectrum, I (ω) ≡
〈

∣

∣

∫

e−iωtNℓ (t)
∣

∣

2
〉

, is non-trivial and provides information on the

autocorrelation 〈Nℓ (t)Nℓ (t
′)〉. A recent study [7] reported the presence of interesting

oscillations in the power spectra for another simple paradigmatic non-equilibrium model,

the open Totally Asymmetric Simple Exclusion Process (TASEP) [1, 8, 9]. In this work,

we carry out an extensive investigation of the ZRP, with a variety of rates and a range

of ring and subsection sizes (L and ℓ). In addition to the oscillations discovered in

TASEP on an open lattice [7], we found two, “complementary” sets of oscillations, one

controlled by L and the other, by ℓ. If we keep the subsection length fixed and let the

ring size go to infinity, we would have the equivalent of an open lattice (with appropriate

input and outflux rates to ensure a finite and non-vanishing 〈Nℓ (t)〉). In this sense, our

considerations for a closed, periodic lattice can be regarded as inclusive of open lattices

as well.

The dynamics of density fluctuations in the ZRP has been investigated recently by

Gupta, et. al. [10], who focused on the variance of the integrated current through a single
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site as a function of time. This quantity also displays damped oscillations, but in the time

domain. The period is proportional to L/v, with v being the velocity associated with

a fluctuation. Being in the frequency domain, our study complements the earlier work.

One of the components of our I (ω) oscillates with period v/L, and undoubtedly can be

traced to the same origin. However, in [10], the damping of the oscillations is not the

main focus and so, diffusive/dispersive properties in the system were not considered. By

contrast, we will analyse such behaviour and find that they pose the most challenge for

theoretical understanding. Further, by considering a quantity associated with multiple

sites (ℓ > 1), we hope to extract more information about the dynamics of fluctuations.

The presence of v/L may lead some to dismiss these phenomena as “nothing but

finite size effects.” However, to understand these effects is very important, since many

such models of non-equilibrium transport are believed to applicable to physical systems

of relatively small Ls. Thus, in the examples given above, L . 10, 000 for vehicular

traffic and gel electrophoresis. The other popular model of non-equilibrium transport,

TASEP, was first introduced as a possible model for protein synthesis [11], where L

rarely exceeds 1000. By contrast, in traditional macroscopic systems (e.g., in solid

state physics), we generally have in mind L3 ∼ (108)
3
. Consequently, the phenomena

discussed here are not merely of theoretical interest, but should be physically observable.

The paper is organised as follows. Details of the model and its dynamics will be the

focus of the next section. Results of simulations, theoretical analysis and comparisons

are the themes of the following three sections. We end with a summary and outlook for

future research.

2. Model specification and simulation details

The ZRP studied here comprises a one-dimensional lattice of L sites with periodic

boundary conditions. A total number of N particles is placed on the lattice, with

no restrictions on the occupation of each site, so that a configuration of the system

is completely specified by the set {n (x)}, i.e., n (x) particles being on site x (with

x = 0, ..., L − 1). This system evolves through particles hopping from site to site.

Particles hop to the rightmost adjacent site with a rate that depends only on n: u(n).

That this hopping rate is independent of the occupation in any other site in the system

gives rise to the ZR part of ZRP. A basic diagram of the system is shown in Figure 1.

Ours is perhaps the simplest ZRP, with the particle landing only in the nearest

neighbouring site. Many more complex cases exist, e.g., having more than one particle

move, landing them in various sites, and inhomogeneous hopping rates: u(n, x). For a

recent review see [2].

Obviously,
∑

x n (x) = N is a constant in time. The most naive expectation of our

simple ZRP is that, after the system settled into a (non-equilibrium) stationary state,

the average occupation is homogeneous: 〈n (x)〉 = ρ̄ ≡ N/L. Part of the general interest

in the ZRP arises in the existence of a phase transition, when ρ̄ exceeds a critical value ρc,

from such a homogeneous state to an inhomogeneous “condensed” state. In the latter,
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Figure 1. General diagram of the system. Particles on a lattice hop to the rightmost

adjacent site with a rate that depends on the number of particles at the departure

site, u(n). The lattice has L sites and periodic boundary conditions. The quantity of

interest is the total number of particles in a segment of ℓ sites of the lattice.

all but one site is occupied by an average of ρc particles, with the excess (N − ρcL) in

just a single site. Reminiscent of Bose-Einstein condensation, this macroscopic fraction

is referred to as the condensate. Unlike the Bose-Einstein case, translational invariance

is spontaneously broken and the condensate can reside in any site. Indeed, in a finite

system, it does disappear from one site and reappear in another on some interesting

time scale [12].

Of the infinitely many functions we can choose for u (n), it is the n → ∞ asymptotic

properties that control the existence of a transition. A typical rate is u(n) = 1 + b/n,

which allows a condensation transition provided b > 2 [13]. In this paper, we consider

several rate functions, including this one, a constant hop rate, and u(n) ∝ n (which

corresponds to having noninteracting particles in the lattice). Despite the interest in

condensation and phase transitions, here we will focus on the homogeneous phase of the

system, in which many remarkable features already appear. In future studies, we plan

to further investigate the power spectra of systems with a condensate, as well as lattices

with more interesting topologies [14].

The system is studied using a simple Monte Carlo algorithm. In each Monte-Carlo

Step (MCS), we make L attempts to move a particle. In an attempt, a site is selected at

random. Provided it contains n (> 0) particles, one is moved to the rightmost adjacent

site with probability γ u(n), where γ is a normalisation factor, 0 < γ ≤ 1/maxu(n). Of

course, a particle leaving site L − 1 is moved to site 0. Simulations were typically run

for 8× 107 MCS.

Starting from random initial conditions, we discard the first 107 MCS for the system

to come to the steady state. Subsequently, we focus on a fixed segment of length ℓ sites

and record its total occupation,

Nℓ(t) =

ℓ−1
∑

x=0

n (x, t) , (1)

every 10 MCS. Thus, each of our time series consists of 7 × 106 data points, which we

regard as 53 samples of 131072 points, i.e., t = 0, . . . , T − 1 with T = 217. We choose a
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power of 2 so that fast Fourier transform routines can be exploited to compute

Ñℓ(ω) =
∑

t

e−iωtNℓ(t) ; ω = 2πm/T. (2)

Finally, we average over the 53 samples to arrive at the power spectrum:

I(ω) =

〈

∣

∣

∣
Ñℓ(ω)

∣

∣

∣

2
〉

. (3)

A typical system size of L = 10000 sites was used with varying segment sizes, but

most frequently ℓ = 1000. Mostly, we use the Mersenne Twister [15] random number

generator. To rule out systematic errors from these sources, we have also used other

generators (e.g., drand48, ran2, /dev/urandom), as well as various data segment sizings

and output intervals.

3. Simulation results

A typical trace of Nℓ(t) is presented in Figure 2, showing both an entire sample and

a magnified view of a section of this sample. It appears that there is some oscillatory

behaviour, but it is difficult to distinguish from random fluctuations; taking averaged

power-spectra measurements reveals much more in terms of structure. A typical power-

spectra measurement is shown in Figure 3 for a system with L = 32000, ℓ = 1000 and

hop rate u(n) = 1 + 4/n. It is a log-log plot and the power-spectrum is plotted against

the index, m, which is related to the frequency, ω, through the relation ω = 2πm/T . The

averaged spectrum displays several prominent features. Two distinct damped-oscillation

components can clearly be seen: one at low m and the other at higher m. The former

consists of a series of sharp peaks, with the first peak at m = 14. Note the positive

curvature at low m, a feature notably absent from previously observed power spectra in

open systems [7]. The higher-m oscillations are more subtle, being obscured partly by

the other component. Their character is different, resembling those observed in [7], i.e.,

“dips” over a smooth background. The first “dip” can be seen at m ≈ 330, where the

low-m oscillations are effectively damped out. For large m the spectrum tends to m−2,

characteristic of white noise that might be expected for frequencies associated with a

microscopic time-scale.

The effects of various parameter variations on the structure shown in the power

spectra were studied numerically. These results are discussed in some detail below.

Density — Examining the changes elicited in the power spectrum when varying

the density in the system it becomes clear that increasing the overall density lessens and

eventually the low-m damped oscillating component, Figure 4. However, the same effect

is not conclusively observed for the higher-m damped oscillations. In fact, simulations

at higher values of b indicate that this structure remains well into the condensed region,

but at high enough density the oscillations will no longer be apparent. It is also notable

that the removal of the low-m oscillations coincides with the onset of condensation in the

system. For the finite systems studied here condensation does not occur with a sharp

transition at the theoretical critical density (in this case ρc = 0.5) but rather a region
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Figure 2. A typical trace of the measurement of Nℓ(t), the total number of particles

in a section of 1000 sites in a lattice of 10000, from a simulation of a system with b = 4

at a density of ρ = 0.25. (a) One sample set of 131072 data points. (b) A portion of

10000 of this set.
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Figure 3. A typical result of a power-spectra measurement. Taken from a system

of L = 32000 sites with a segment of ℓ = 1000, a density of ρ = 0.25 and hop rate

u(n) = 1 + 4/n. The two damped-oscillation components in the power spectrum can

clearly be discerned. The first peak of the low-m component is at m = 14 and while

the location of the first peak of the higher-m component is obscured by the oscillation

of the other, the second peak is at m ≈ 650.
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Figure 4. Results displaying the effect of varying the density with the standard hop

rate. Data shown are for a system of L = 10000 sites with a segment of ℓ = 1000 and

hop rate 1 + 4/n. The density varies from ρ = 0.25 to ρ = 0.55 in increments of 0.1.

Note that the data have been scaled on the y-axis for comparison and so the units of

this axis are arbitrary and it is a log-log plot.

of unstable wandering condensates which become more and more stable as the density

is increased. In the data shown in Figure 4 there is a moderately-stable wandering

condensate for the overall density ρ = 0.55.

Segment Size — In Figure 5, results are shown for variation in the size of the

segment (ℓ) in the system, keeping the total number of sites (L) and particles (N)

fixed. Here it can be seen that increasing the size of the segment causes the higher-m

oscillation component to move to lower and lower m where its interference with the other

component is increasingly apparent. Thus, it is clear that the structure of the spectrum

at high m is due to the size of the segment. Note that for a segment of 5000 sites in the

ring of 10000, the higher-m component interferes constructively and destructively with

alternating peaks of the low-m component.

Lattice Size — The effect of changing L, the lattice size, was also investigated

and results are shown in Figure 6. It is clear that at fixed segment size and particle

density, increasing the lattice size changes the low-m damped oscillating component

but has little effect on the higher-m component. In conjunction with the results for

segment size, this leads to the conclusion that the higher-m component is controlled by

the segment size and that the low-m component is controlled by the size of the lattice.

Parameter b — Remaining with the standard hop rate, the effect of varying the

parameter b (which can be thought of as controlling the strength of the interaction)

was investigated. Results for this are shown in Figure 7. It is clear that changing this

has an effect on the location of the peaks in both the low-m and higher-m components.
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Figure 5. Results displaying the effect of varying the segment size with the standard

hop rate. Data shown are for a system with L = 10000 sites, a density of ρ = 0.25 and

hop rate 1 + 4/n. The segment size varies from 1000 to 5000 in increments of 1000.

Note that the data have been scaled for the purposes of comparison, so the units of

the y-axis are arbitrary and it is a log-log plot.
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Figure 6. Results displaying the effect of varying the lattice size with the standard

hop rate. Data shown are for a system with a segment of ℓ = 1000 sites, a density of

ρ = 0.25 and the hop rate 1 + 4/n. The lattice sizes shown are 6000, 7000 and 8000.
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Figure 7. Results displaying the effect of varying the parameter b in the standard hop

rate u(n) = 1 + b/n. Data shown are for a system with a lattice of L = 10000 sites, a

segment size of ℓ = 1000 and density ρ = 0.25, with b values 2, 3 and 4. The units of

the y-axis are arbitrary as the data have been scaled so that they may be compared

on the same graph and it is a log-log plot.

Also, although not immediately apparent from the data presented, it has an effect on

the height of the peaks and the number of clearly resolved peaks.

Hop Rate Form — Moving on from the standard hop rate, a comparison of this

with constant and non-interacting hop rates is shown in Figure 8. From these results it

appears that the two damped oscillation components are most clearly seen in the case

of the non-interacting hop rate and least clearly seen in the standard hop rate.

The effect of varying the segment and lattice sizes has much the same effect on

the constant hop rate and noninteracting cases as it did with the standard hop rate.

However, changing the density continues to affect the power spectra in the case of the

constant hop rate, but not for the noninteracting case. In the latter, changing the density

merely changes magnitude of the power-spectrum, as shown in Figure 9. This suggests

that damped oscillations are universal phenomena in particle-transport systems, though

inter-particle interactions will affect the detailed properties. Indeed, we will show in the

next section that a drift-diffusion type interpretation is quite successful in describing

this phenomenon and that the interaction of the particles controls the values of the drift

and the diffusion.

4. Theoretical understanding

Before we present a theory based on the Langevin equation, let us consider a simple toy

model, from which we can gain some insight into the origins of both types of oscillations.

In this toy model, a single particle moves on a ring of length L with uniform velocity
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Figure 8. Results comparing power spectra from three different hop rates, from top

to bottom: standard u(n) = 1+4/n; constant u(n) = 1; and non-interacting u(n) ∝ n.

The units on the y-axis are arbitrary as the data have been scaled for easy comparison

and it is a log-log plot. The data were taken from a system with L = 1000 sites, a

segment size of ℓ = 100, a density of ρ = 0.1 and the simulations were all run with the

same normalisation, γ.

10
1

10
2

10
3

10
4

10
6

10
9

10
12

m

I(
m

)

 

 

density = 4.0
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Figure 9. Results displaying the effect of varying the density in the system with the

noninteracting hop rate: u(n) ∝ n. Data shown are for a system of size L = 500 sites

with a segment of ℓ = 50 and densities 0.1, 1.0 and 4.0.



Power Spectra in a ZRP . . . 11

v0, and we seek the power spectrum of Nℓ (t), the number of particles in a segment of

length ℓ. (For simplicity, assume continuous space-time.) Of course, Nℓ (t) is trivially a

series of step functions, such that

∂tNℓ (t) =
∑

µ∈Z

[δ (t− µτL)− δ (t− µτL − τℓ)] (4)

where

τL ≡ L/v0 and τℓ ≡ ℓ/v0 (5)

is the time it takes to traverse the ring and the segment, respectively. Taken over a

period of M traversals (t ∈ [0,MτL), to be precise), Ñℓ (ω) ≡
∫

e−iωtNℓ (t) is given by

iωÑℓ (ω) =

M−1
∑

µ=0

e−iωµτL
[

1− e−iωτℓ
]

=
1− e−iωτLM

1− e−iωτL

[

1− e−iωτℓ
]

. (6)

Thus,

Itoy (ω) =

[

sin (ωτLM/2)

sin (ωτL/2)

]2 [
sin (ωτℓ/2)

ω/2

]2

(7)

For M sufficiently large, the first of these factors gives a series of “spikes” when ω is

an integer multiple of 2πv0/L. Thus, these peaks are controlled by the ring size L.

By contrast the second factor displays an oscillation over a smooth background (ω−2),

noticeably with zeros at integer multiples of 2πv0/ℓ. We see that these are governed by

the segment size ℓ. As a toy model, it also serves as a pedagogical tool. What we have

here is the temporal version of the diffraction pattern from a large (M) array of slits of

width ℓ, spaced a distance L apart. Of course, once we add dispersion (velocity here;

wavelength in diffraction), we will see both smoothing of the peaks and in-filling of the

zeros.

With this insight, we turn to the power spectra here, which can be reasonably

well understood through a Langevin equation for the local particle density (continuous

variable) on discrete space-time: ρ (x, t). To connect with the above section, we may

think of ρ(x, t) as a kind of coarse-grain average of n(x, t). The starting point is a

discrete continuity equation

ρ (x, t+ 1)− ρ (x, t) = J(x− 1, t)− J(x, t) , (8)

with J(x, t) being the net local current from site x to x + 1 at time t. Clearly, it is

controlled by the hop rate u(x, t). Now, as we are considering power spectra for ω > 0,

we need only account for the deviations of this density from the mean, i.e.,

ϕ ≡ ρ (x, t)− ρ̄; x = 0, 1, . . . , L− 1; t = 0, 1, . . . , T − 1 . (9)

Except for the condensed phase, ρ̄ is just the global density of particles, N/L; otherwise,

it is ρc (apart from the site with the condensate). The strategy is, for systems far from

criticality, these deviations should be small and their essentials can be understood via

an approximate Langevin equation that is linear in ϕ (x, t).
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Following the standard route, we recognise the deterministic part of J as a function

of ρ and expand that to first order in ϕ :

Jdet(x, t) = Jdet(ρ̄+ ϕ(x, t)) = Jdet(ρ̄) + J ′

det(ρ̄)ϕ(x, t) + ... . (10)

Defining

v ≡ J ′

det(ρ̄) (11)

and adding the noisy part of the current, η (x, t), we have

ϕ(x, t+ 1)− ϕ(x, t) = v [ϕ(x− 1, t)− ϕ(x, t)] + η(x− 1, t)− η(x, t) . (12)

The noise is assumed to be uncorrelated Gaussians, so that

〈η〉 = 0; 〈η(x, t)η(x′, t′)〉 = Aδx,x′δt,t′ . (13)

Here, A is a measure of the strength of the noise, which we regard as a phenomenological

parameter. Before proceeding to the solution, let us emphasise that this somewhat

unusual form of the drift-diffusion equation is a signature of the ZRP. In many other

driven diffusive systems [16], the current from x to x+ 1 would depend on both ρ (x, t)

and ρ (x+ 1, t), so that an additional term involving ϕ(x+1, t) will appear on the right

hand side of equation (12). By contrast, in the ZRP, the jump rates (from x to x+ 1)

depend only on the occupation at x.

In this linear approximation, our Langevin equation (12) can be easily solved by

Fourier methods. Defining

ϕ̃(k, ω) =
1

LT

∑

x,t

e−i(kx+ωt)ϕ(x, t) , (14)

where k = 2πj/L, ω = 2πm/T (j = 0, 1, 2, . . . , L − 1 and m = 0, 1, 2, . . . , T − 1), we

find the solution easily:

ϕ̃(k, ω) =
e−ik − 1

eiω − 1− v [e−ik − 1]
η̃(k, ω) . (15)

Note that, if we keep terms to lowest (relevant) order in k and ω, the propagator assumes

the familiar form,

−ik

iω + ivk +Dk2
, (16)

of a drift-diffusion equation with conserved noise: ∂tρ = D∇2ρ− v∇ρ−∇η. For us, the

zero-range aspect of the ZRP imposes a relation between v and the diffusion “constant”

D.

Now, our focus here is the number of particles in a segment and so we consider

Nℓ(t) = ρ̄ℓ +

ℓ−1
∑

x=0

ϕ(x, t) . (17)

Carrying out the sum over x of eikx, we find (for ω > 0)

Ñℓ(ω) =
∑

k

1− eikℓ

1− eik
e−ik − 1

eiω − 1− v [e−ik − 1]
η̃(k, ω) , (18)
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from which we can compute the power spectrum via equation (3). Before comparing such

a result to data, we recall that, in the previous study [7], the diffusion coefficient seems

to be seriously renormalised by interactions. Anticipating the same behaviour here, we

relabel the coefficient of our [1− cos(k)] term (i.e., terms even in k) in the propagator as

Deff — the effective diffusion constant — and regard it as a phenomenological parameter.

The resulting power spectrum, after performing the average over the noise (equation 13),

is

I(ω) ≡

〈

∣

∣

∣
Ñℓ(ω)

∣

∣

∣

2
〉

=
2A

LT

∑

k

1− cos(kℓ)

{cos(ω)− 1−Deff(cos(k)− 1)}2 + {sin(ω) + v sin(k)}2
(19)

As we will discuss below, to fit the data well, we must choose values of both A and Deff

to be far from those naively derived above. By contrast, we will see that the “bare”

value of v (i.e., J ′

det(ρ̄), with Jdet(ρ) being the known current density relationship of the

ZRP [13, 2]) fits the data quite well. At this stage, there is no good explanation for

why A and Deff are significantly “renormalised,” while v seems to be “unscathed.” Our

conjecture is that Galilean invariance imposes a Ward identity, as in the case of the

driven lattice gas [17]. This is an avenue which we plan to pursue in the future.

Returning our attention to equation (19), we see that it predicts the locations of

the first set of peaks (low ω ones resulting from the sojourn time of a fluctuation around

the entire lattice, L) of the power spectra measured from simulation. For example, if we

consider small (positive) ω, we find peaks in I (ω) whenever sin(ω) + v sin(k) vanishes,

i.e., ω ≃ 2πjv/L (j = 1, 2, 3, . . . associated with the k = L − j terms). In a similar

way, cos(kℓ) introduces oscillations on the scale controlled by the segment length, ℓ. In

particular, the factor 1− cos(kℓ) suppresses the jth peak if ℓ is a unit fraction of L, i.e.,

ℓ = L/j. This behaviour, which is reminiscent of interference, is most pronounced in

the case of j = 2 (top curve L = 10000; ℓ = 5000) in Figure 5, where the second peak

in the other curves is clearly “missing.” A less prominent “interference” can be seen

for the third peak in the middle curve (L = 10000; ℓ = 3000; j ≈ 3). If ℓ ≪ L, then

such effects will be noticeable only at ω’s that are large compared to those among the

peaks. In this regime, the damping is so severe that the peaks dissolve into a smooth

background and the effects of this factor appear as “dips.”

Turning to the specifics of the ZRP, the current (in the thermodynamic limit) is

equal to the fugacity z [13, 2], so that v will be given by ∂z/∂ρ. In the case of the

standard hop rate, u (n) = 1 + b/n, the ρ-z relation is

ρ =
z

1 + b
2F1(2, 2; 2 + b; z)

2F1(1, 1; 1 + b; z)
. (20)

so that the velocity is

v = (1 + b) 2F1(1, 1; 1 + b; z)/
[

2F1(2, 2; 2 + b; z) +
4z

2 + b
2F1(3, 3; 3 + b; z)−

z

1 + b
2F

2
1 (2, 2; 2 + b; z)

2F1(1, 1; 1 + b; z)

]

.(21)
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Similarly, it is easy to show that, in the other cases,

v =

{

1 for u ∝ n, i.e., non-interacting particles

(1 + ρ)−2 for u = const.
(22)

With these analytic results, we are in a position to examine how well this theory fits

the simulation data.

5. Comparison between analytic and simulation results

There is generally good agreement between the simple theory presented above and

results from simulation, i.e., appropriate choices of the parameters A and Deff produce

reasonable fits. Not surprisingly, the agreement is best for the noninteracting case. In

fact, using Deff = v as predicted by the theory, the match with simulation results over

the entire range of m is quite good — see Figure 10. For systems with interacting

particles, reasonable fits result only if the effective diffusion constant, Deff , is drastically

changed from the naively expected value. Moreover, the quality of the the fit is not

uniformly good over all m. As an example, in Figure 11, where simulation data (for

L = 104, ℓ = 103, u(n) = 1 + 4/n, and ρ = 0.25, below the condensation threshold) are

compared with theory plots with three values of Deff , we see that a value of 120 matches

the data reasonably well. To put this result in context, the naive (“bare”) value of the

diffusion constant is 3.33, so that we would need to invoke “renormalisation effects” at

the level of a factor of ∼ 35. Such a sizable “renormalisation” is comparable to that

observed in the totally asymmetric simple exclusion process (TASEP) [7]. We believe

the origin is universal – inter-particle interactions – and that the resolution of this issue

can be applied to both models. Even treating Deff as a phenomenological parameter,

the theory fits well only in the midrange, with some discrepancies in the low and high m

regimes. In the low-m regime the peaks and troughs are not ideally fitted by the theory;

changing Deff to match this region typically destroys the agreement in the mid-range.

For m & 1500 (not shown here), the lack of agreement is also qualitatively similar, with

the addition of occasional extra peaks due to a cancellation in the first term in the

denominator of 19.

Since Deff is seriously modified by interactions, we investigated systematically the

effects of varying various parameters in the ZRP. In contrast, changing the parameters

of the non-interacting system leaves the Deff = v relation completely intact.

Parameter b — The parameter b in the hop rate u = 1 + b/n can be thought of

as a measure of the strength of the interaction: increasing b first makes a condensation

transition possible and then reduces ρc, the density at which the transition occurs. With

the density, system size, segment size and normalisation (γ) kept constant, the effects

of varying b are investigated. Now, neither v nor Deff varies linearly with b, so that

we find it more meaningful to plot Deff against v (Figure 12), especially to highlight

the contrast with Deff = v for a non-interacting system. From the figure, Deff seems to

change with v mostly in a linear way, although the intercept of this linear component
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D = 0.2

Figure 10. Comparison of power spectra taken from simulation data and generated

by the simple theory for the noninteracting system. The system is a segment of ℓ = 500

sites in a lattice of L = 5000 with a global particle density of ρ = 0.1. Note that in

the noninteracting system the velocity is 1, but the timescale for the simulation (and

theory) has been changed such that its actual value is 0.2. For this system the fit is

apparently good over the entire range and Deff = v.
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Figure 11. Comparison of power spectra taken from simulation data and generated

by the simple theory for the interacting system with the standard hop rate. The system

is a segment of ℓ = 1000 sites in a lattice of L = 10000 with a global particle density

of 0.25 and hop rate u(n) = 1 + 4/n. The system has a velocity of 3.32653. Here it

is apparent that the effective diffusion constant is a long way removed from the naive

expected value but also that the fit is only really good in the midrange of plot, around

where the second peak due to the size of the segment lies. At the low end, the diffusion

seems to be too small to capture the rapid oscillations perfectly and at the high end,

although not shown here, there is an effect from a cancellation in the first term of the

denominator in (19).
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Figure 12. Effective diffusion constant plotted against velocity for a varying value of

the standard hop rate parameter, b. Data shown are fits between the simple theory

and simulations of a system of L = 10000 sites with a segment of ℓ = 1000 at a density

of ρ = 0.25 and b varying from 0.5 to 4.0 in increments of 0.5, with low b corresponding

to low velocity.

will not go through the origin. Of course, we should expect more serious non-linear

dependence outside the regime shown here.

Normalisation γ — When simulating systems such as the one under consideration

here, it is common to assign unit probability to the most likely event, in order to

reduce simulation time. This corresponds to choosing γ = 1/max {u (n)}. For the data

presented in Figure 12 above, this convention was not followed. Instead, a single γ was

used for all the systems (to ensure a conformity of time, t). To explore the effect of

varying γ, we also carried out simulations with the usual convention. The behaviour

of Deff with the velocity was found to change dramatically: the previously positive

trend of Deff with v was reversed. To investigate this further, the effect of changing

γ without other changes was studied. As shown in Figure 13, this gives an apparently

linear relationship between Deff and v. This is reassuring, since changing γ alone should

correspond to nothing more than changing the time scale, while both Deff and v are

linear in t. More puzzling is the value of the gradient in this plot: The line Deff = 20v

fits well inside the error bars. Note that a factor of 20 is comparable to the factor 35

shown earlier. We believe that, once the origin of the substantial renormalisation of Deff

is uncovered, the resolution of this puzzle will follow.

Density — With fixed L, ℓ, and b, increasing the overall density (ρ) lowers both

v and Deff dramatically. An example of Deff vs. ρ is shown in Figure 14 (a). Once we

take into account the v-ρ relationship and plot Deff against v (Figure 14 b), we again

recover the line Deff ∼ 20v, with possibly a small negative curvature.

Segment Size — Changing the segment size (ℓ) has no effect on the velocity,

but it does have a pronounced effect on the value of Deff , as shown in Figure 15. The
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Figure 13. Effective diffusion constant plotted against velocity for a varying value of

the normalisation, γ. Data shown are fits between the simple theory and simulations

of a system with L = 10000 sites, a segment ℓ = 1000 sites, at a density of ρ = 0.1, hop

rate 1 + 4/n, and γ values 100−1, 50−1, 25−1, 15−1, 13−1, 11−1, 9−1 and 7−1; smaller

values of γ correspond to smaller velocities.

relationship is sub-linear, a behaviour that could be traced to the conserved dynamics.

That is, the particle numbers in a segment (ℓ) plus those in the complementary segment

(L − ℓ) is a constant, so that the two averaged power spectra must be the same.

Unless Deff (ℓ) develops a singularity at the symmetry point, ℓ = L/2, we must have

∂ℓDeff (L/2) = 0. From this perspective, a sub-linear variation may have been expected

so as to give a flat profile around ℓ = L/2. However, it is not obvious why the relationship

should take this form in general.

System Size — It is also perhaps surprising that varying the system size does

not appear to change Deff . It is especially so when taken in conjunction with the fact

that changing the segment size does have an effect.

It is best to summarise our findings as follows: Although the observed power spectra

can be reasonably well fitted by the predictions of a linear theory, we must regard

the effective diffusion constant Deff and the noise amplitude A as phenomenological

parameters. By contrast, the data is entirely consistent with v, the velocity predicted

from the theory of ZRPs. It is clear that the simulation results do not support the

prediction of the “naive” theory: Deff = v. In addition, by altering the control

parameters in our study (system size, hopping rate, overall density, and segment size),

Deff is not only affected dramatically, but also in such a way that its relationship with

v changes. At this stage, none of these features are well understood.
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(a)

(b)

Figure 14. (a) Effective diffusion constant plotted against density for a varying value

of the density, ρ. A non-linear decrease of the effective diffusion constant is shown

with increasing density. (b) Effective diffusion constant plotted against velocity for a

varying value of the density, ρ. Densities are ρ = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4,

0.6, 0.8, 1.0, 1.6, 2.0, with increasing density corresponding to decreasing velocity. For

both, data shown are fits between the simple theory and simulations of a system with

L = 10000 sites, a segment of ℓ = 1000 and a hop rate of 1 + 1/n.

6. Conclusion

In this paper, we studied the dynamics of fluctuations in the non-equilibrium steady state

of the zero-range process (ZRP). Specifically, we collected time series of the number of

particles in a contiguous segment of a ring lattice, and computed their average power

spectra, I (ω). We found interesting structures in I (ω), namely, two distinct damped-

oscillation components. The small ω component consists of narrow peaks over a smooth

background. The other component resembles broad dips, similar to those observed in

the power spectra of open TASEP [7]. The origins of these can be traced to, respectively,
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Figure 15. Effective diffusion constant plotted against segment size. Data shown are

fits between the simple theory and simulations of a system with L = 10000 sites, a

density of ρ = 0.25 and a hop rate of 1 + 4/n.

the time it takes a fluctuation to travel around the ring and the time for traversing the

segment.

We presented a simple toy model, to shed some light on these two types of

oscillations: a single particle moving ballistically around a ring in continuous space-

time. The time series of the “total particle occupation” in a segment is just a periodic

square wave, so that its Fourier transform is the product of a comb and a sinc function,

controlled respectively by the ring and segment lengths. Diffusion and noise would

broaden the peaks of the comb and fill in the zeros of the sinc function, so that the

oscillations will appear damped. Let us emphasise that these oscillations are controlled

by the system and segment sizes, so that they are absent from the usual autocorrelation

function (for particles at one site, in the thermodynamic limit). Based on the insight

from the toy model, we believe these features are universal for the power spectra of all

finite driven diffusive systems.

At the quantitative level, the observed I (ω) can be fitted quite well by a somewhat

more sophisticated approach, based on a Langevin equation for the local particle density.

Focusing on systems far from criticality, we were motivated to linearise this equation

about the average density. The solution of such an approximate equation, even if

we account for discrete space-time, is easy. However, except for the case with non-

interacting particles, not all the parameters of this simple theory fit the simulation

results. In particular, by identifying the even/odd parity (i.e., ∇ ⇔ ±∇) terms with

diffusion and drift, we assign the parameters Deff and v, respectively. Good fits can be

achieved only when Deff is chosen to be considerably larger than the naively predicted

value. By contrast, v from the simple theory appears to be adequate. At present, we can

only present the dependence of Deff on various control parameters as phenomenological

results from our extensive simulation studies. In the same vein, the relationship between
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Deff and v (for the range of systems we considered) was seen to deviate significantly

from the naive theoretical prediction of Deff = v. Such “anomalies” associated with Deff

were also observed in similar studies of another system [7]. Another puzzling aspect

here is that Deff appears to depend more strongly on the segment size (ℓ) than on the

system size (L). This feature may indicate that the introduction of an effective diffusion

constant to a linear Langevin theory is not an entirely satisfactory treatment. While

this approach is somewhat successful at fitting individual power spectra, it leaves much

room for improvement, as we seek better understanding and a comprehensive theory.

Although we have ruled out the possibility that these anomalies are due to a

systematic effect of our random number generator (by using different generators and

choosing parameters to be incommensurate with each other), we have not considered

alternative simulation methods. Two such alternatives come readily to mind. One is

kinetic Monte Carlo [18], where an appropriate event is chosen at each update and

the time advanced according to a Poisson distribution. Another alternative would

be to try a common method of reducing simulation times which is to pick a particle

at random and hop with an appropriate probability. Fundamentally, we believe that

inter-particle interactions are responsible for large deviations from the simple linearised

theory presented here, rather than some subtle effect due to the details of the particular

dynamics we chose.

It is interesting that similar structures in the power spectra have been observed

in two of the most simple models for non-equilibrium systems, namely TASEP and

ZRP. Oscillations seen in the variance of the integrated current at a single site in the

time domain [10] are also undoubtedly related. These suggest that damped-oscillatory

behaviour is universal for finite systems driven out of equilibrium. Further investigations

to place this notion on a sound foundation would be worthwhile. It is clear that

fluctuations in non-equilibrium steady states are non-trivial and their dynamics induce

interesting behaviour. This study has shown only a limited view in a small corner of

this vast area. Even within this corner, there is room for improvements, especially in

more complete analytic theory. We hope that a better understanding of this particular

problem will lead to deeper insights into the nature of fluctuations in physical systems

driven far from thermal equilibrium.
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