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Abstract— Objective: Freezing of Gait (FOG) often described as 

the sensation of “the feet being glued to the ground” is prevalent 

in people with Parkinson’s disease (PD) and severely disturbs 

mobility. In addition to tracking disease progression, precise 

detection of the exact boundaries for each FOG episode may 

enable new technologies capable of “breaking” FOG in real time. 

This study investigates the limits of sensitivity and performance 

for automatic device-based FOG detection. 

Methods: Eight machine-learning classifiers (including Neural 

Networks, Ensemble & Support Vector Machine) were developed 

using (i) accelerometer and (ii) accelerometer and gyroscope data 

from a waist-worn device. While wearing the device, 107 people 

with PD completed a walking and mobility task designed to elicit 

FOG. Two clinicians independently annotated the precise FOG 

episodes using synchronized video according to international 

guidelines, which were incorporated into a flowchart algorithm 

developed for this study. Device-detected FOG episodes were 

compared to the annotated FOG episodes using 10-fold cross-

validation to determine accuracy and with Interclass Correlation 

Coefficients (ICC) to assess level of agreement. 

Results: Development used 50,962 windows of data representing 

over 10 hours of data and annotated activities. Very strong 

agreement between clinicians for precise FOG episodes was 

observed (90% sensitivity, 92% specificity and ICC1,1 = 0.97 for 

total FOG duration). Device-based performance varied by 

method, complexity and cost matrix. The Neural Network that 

used only 67 accelerometer features provided a good balance 

between high sensitivity to FOG (89% sensitivity, 81% specificity 

and ICC1,1 = 0.83) and solution stability (validation loss ≤ 5%). 

Conclusion: The waist-worn device consistently reported 

accurate detection of precise FOG episodes and compared well to 

more complex systems. The superior agreement between clinicians 

indicates there is room to improve future device-based FOG 

detection by using larger and more varied data sets. 

Significance: This study has clinical implications with regard to 

improving PD care by reducing reliance on clinical FOG 

assessments and time-consuming visual inspection. It shows high 

sensitivity to automatically detect FOG is possible. 

Index Terms— Freezing, gait, Parkinson’s, device, detection. 

I. INTRODUCTION 

arkinson’s disease (PD) is the second most prevalent 

neurodegenerative disease, characterized by neuronal loss 

in the substantia nigra, intracellular deposition of α-synuclein 

and subsequent dopamine deficiency [1]. Its cardinal 

presentations include tremors, rigidity, bradykinesia, and 

postural instability [1]. Freezing of gait (FOG) is a common and 

severe gait disturbance [2] that presents as an episodic inability 

to initiate and continue walking [3]. People with PD often 

describe FOG as the sensation of having “their feet being glued 

to the ground”, and it can be characterized into three forms: 

moving with very small steps; trembling legs; and total akinesia 

[4]. By impairing mobility [5] and increasing fall risk [6], FOG 

significantly reduces quality of life. 

Accurate gait disturbance assessments are important for 

disease management. While dopaminergic medication 

generally decreases the frequency of FOG, prolonged treatment 

may increase FOG [7]. Such divergent effects indicate accurate 

FOG assessments are required to improve the titration of 

levodopa dosage for optimal control of motor symptoms. 

Furthermore, accurate FOG assessments might also be used to 

improve the precision of PD staging, which could help target 

device-aided therapies such as deep brain stimulation to be 

delivered at the most appropriate juncture during the clinical 

course of the condition [8]. 

Presently, the assessment of FOG is primarily based on 

clinical assessment [9] or self-report [10]. Annotation of video 

recordings is considered the gold standard [11, 12], but 

variations in assessments of FOG, time-consuming annotation 

and the need for skilled assessors limit its widespread use. 

Furthermore, FOG occurs most frequently during daily 

activities making it difficult to quantify the frequency and 

severity during assessment in an ambulatory care clinic 

[13, 14]. Self-report questionnaires provide estimates of FOG 

during daily activities but are subject to recall bias and have low 

resolution [15]. 

Recently, wearable devices have been used to detect FOG 

[16] with moderate-to-good agreement achieved between visual 

inspection and sensor-based methods in quantifying the total 

number of FOG episodes [17] with the aim of providing 

continuous low-cost FOG assessments. For example, a 

sensitivity of 74.7% and a specificity of 79.0% for detecting 

FOG has been reported using a Support Vector Machine (SVM) 

embedded into a device worn on the side of the waist in the 

home environment.[18]. These findings support the potential of 

continuous FOG monitoring as deployed in a currently 

available commercial device (Holter, SENSE4CARE) [19]. 

However, sample sizes utilized in most previous 

investigations, have been small (ranging in size from one to 

forty participants), which may limit the drawing of 

representative inferences [16-18]. Paired with machine learning 

(ML) approaches, a small sample size may lead to overfitting 

and difficulties accounting for individual variability, which 
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may limit accuracy when used in other cohorts.  

In the one larger study with 71 participants, a sensitivity of 

80.0% ± 19.2% and specificity of 82.5% ± 11.2% was reported 

for longer (>1s) FOG episodes using an SVM classifier [20] and 

independent validation set. The study used three devices placed 

above both ankles and on the lower back to improve 

performance, which demonstrates the advantage of combining 

data from multiple devices to detect FOG. However, 

methodological variances in general, make direct comparisons 

between study outcomes ambiguous. For example, in the above 

study, sensitivity was determined for each individual 

separately. For participants with no annotated FOG episodes, 

sensitivity was then considered to be 100% before the mean and 

standard deviation for sensitivity were calculated. 

The use of multiple sensors or multiple devices [17, 20, 23-

24] also has a disadvantage in that they may increase power 

consumption and the inconvenience of daily charging if used in 

a home environment. In comparison, a small user-friendly 

single device with fewer sensors could improve compliance by 

improving comfort, convenience and battery life for long-term 

remote applications. Regarding single device location, waist-

worn sensors are acceptable to people with PD (Dynaport, 

McRoberts) [26], and have demonstrated lower false detection 

rates than wrist-worn sensors, potentially due to their more 

stable orientations [25].  

Sensor-based FOG detection could assist in improving the 

usability of many emerging technologies, including laser-

generated visual-cueing systems [21] and rhythmic auditory or 

sensory stimulation systems [21, 22]. However, several hurdles 

to seamless implementation remain. Currently, the practical 

upper limits of device-based FOG detection remain unknown 

and methodological designs have often focused on general 

remote monitoring applications rather than the precise detection 

of the exact boundaries of each FOG episode. For example, 

some studies have merged multiple data windows into single 

episodes of FOG or non-FOG [16-18] or excluded shorter FOG 

episodes (<1s) [20] or non-FOG episodes (<5s) [18].  

Consequently, this may limit the efficacy of current FOG 

detection classifiers for use in new assistive devices [21-22] 

capable of “breaking” shorter or intermitted FOG episodes in 

real time regardless of FOG duration. If detection of the exact 

boundaries of each FOG episode were possible, then 

stimulation could be delivered more precisely at the onset of 

FOG. This would avoid the burden of people with PD needing 

to manually activate a device while experiencing FOG. 

Considering the above complex issues, we first developed a 

flowchart algorithm based on consensus guidelines [2, 3, 27] to 

minimise the variances between the annotation of FOG episode 

onsets and endings [Fig 1B]. This gold standard was considered 

to provide an upper limit for subsequent device-based FOG 

detection. We then developed eight different FOG detection 

classifiers using (a) the accelerometer plus gyroscope data and 

(b) accelerometer data only from a single waist-worn device in 

107 people with PD. To increase sensitivity to FOG we further 

investigated increased costs for missed FOG data windows. 

Algorithm performance was assessed regarding its ability to (1) 

identify precise FOG episodes (defined as the exact start and 

stop times of each FOG episode), and (2) quantify total FOG 

duration while participants completed a complex walking and 

mobility task designed to induce FOG. 

II. METHODS 

A. Participants 

One hundred and thirty people with moderate Parkinson's 

disease (Hoehn and Yahr stage 2-3) were recruited from a single 

center in South-West England to participate in the ReSPonD 

trial [28]. Data from the 107 participants who completed a 

walking task designed to induce FOG [Fig 1A] without the use 

of walking aids were extracted. Participants were aged between 

46 to 90 years and had a disease duration of 5 to 13 years. 

Detailed participant characteristics are presented in Table 1. 

Ethics approval was granted from the South West Research 

Ethics Committee, UK in September 2011 and the Medicines 

and Healthcare Regulatory Agency (MHRA) in June 2012. 

Informed consent was obtained from all participants before 

participation. 
 

B. Data collection 

Participants first completed a series of questionnaires, 

including the Montreal Cognitive Assessment (MoCA), 

Geriatric Depression Scale (GDS), Frontal Assessment Battery 

 
Fig. 1.  [A] Walking task designed to elicit FOG. Participants stood up from a 

chair, walked through two chairs placed 50 centimeters apart, turned 360° to 

the right, 540° to the left, and then returned. [B] Flowchart developed for the 
video annotation and based on international consensus guidelines [2, 3, 27]. 

For this study we adopted and implemented the definition for FOG described 

as follows: “Brief, episodic absence or marked reduction of forward 

progression of the feet despite the intention to walk.” 
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(FAB), the Cognitive Failures Questionnaire (CFQ), the 

Unified Parkinson’s Disease Scale (UPDRS), the New Freezing 

of Gait Questionnaire (NFOGQ) and questions regarding falls 

in the past twelve months. Gait assessments were subsequently 

conducted while participants were in the ‘on’ medication state. 

Wearing their usual shoes, participants were instructed to 

undertake a 36-meter complex walking and mobility task twice, 

designed to induce FOG [Fig 1A]. Recording started with 

participants sitting for 3 seconds. Participants then stood up 

from a chair, walked through two chairs placed 50 centimeters 

apart, turned 360° to the right, turned 540° to the left, and then 

walked back to the chair and sat down. The recording was 

stopped after three seconds of sitting. Participants were video 

recorded and wore a small waist-worn device (106.6 x 58 x 

11.5mm, 55 grams) attached to a belt that recorded triaxial 

accelerations and gyroscopic data at 100Hz (Dynaport Hybrid, 

McRoberts, Netherlands).  

Annotation of FOG as the gold standard was undertaken by 

a physiotherapist and an exercise physiologist, both with 

substantial experience in PD. Both clinicians watched video 

recordings of the participants’ progress through the walking 

task and annotated the start and end of each FOG episode. To 

facilitate accurate and consistent annotation of FOG, a 

flowchart algorithm [Fig 1B] based on scientific literature and 

consensus outcomes from an international workshop [2, 3, 27] 

was developed. We considered that agreement between the two 

independent clinicians provided a practical upper limit for our 

subsequent sensor-based FOG detection. 

Four annotated movement patterns, including (1) walking 

with very small steps, (2) trembling in place, (3) complete 

akinesia and (4) festinating gait were grouped into the single 

activity class of FOG. This ensured an adequate number of 

windows in each activity class and improved the clinical 

relevance of data by capturing a broad spectrum of FOG 

manifestations. Videos of 64 participants were assigned to each 

assessor, of which 20 were assigned to both assessors allowing 

examination of interrater reliability. Disagreements between 

assessors were resolved by a third reviewer.  

C. Data processing 

Linear acceleration and angular velocity (gyroscope) data 

from the waist-worn device were allocated into non-

overlapping windows of adaptive length defined by heel strikes 

and impact events, which were identified by peaks in the 

vertical acceleration data with a method described previously 

[29]. Our adaptive window approach was developed to capture 

the characteristics of each step, attempted step or movement. 

The adaptive window duration was set to range between 0.3 

(shortest anticipated festinating step) to 3 seconds (longest 

anticipated slow step) to ensure the relevance and consistency 

of the data within each window.  

For each data window, a pool comprising 118 features was 

extracted using a combination of signal processing techniques 

from both the triaxial gyroscope and triaxial accelerometer. 

This included single-step features extracted from step times, 

autocorrelation coefficients, acceleration amplitudes, and 

wavelet coefficients, and 8-step features used to provide context 

in the form of the preceding movement patterns for the machine 

learning classifiers. MATLAB’s feature ranking tool (The Math 

Works Inc., Version 2018b) was used to calculate and rank 

feature importance [Supplementary Table 1].  

Data extraction was repeated using the first 67 features 

derived from the single triaxial accelerometer only to assess 

potential for low-power remote FOG detection with limited 

sensor data. Wavelet coefficients featured strongly in both 

feature sets, which included frequency information about linear 

accelerations (from the accelerometer) using the Daubechies 5 

wavelet and angular velocities (from the gyroscope) using the 

Morlet wavelet. It was evident wavelet-transformed 

anteroposterior acceleration signals had increased power at 

lower scales (high frequencies) during FOG, increased power 

in mid scales during walking, and increased power at higher 

scales (lower frequencies) during turning and transitions [Fig 

2A]. Discrete wavelet coefficients were calculated prior to data 

windowing, which meant all features could be extracted 

regardless of window duration. 

TABLE I 

PARTICIPANT CHARACTERISTICS (N=107) 
 

 Non-freezers 
(N=10) 

Freezers 
(N=97) 

Total 
(N=107) 

P-value 

Female 5 (50.0%) 34 (35.1%) 39 (36.4%) 0.351 

Age(Years) 65.6 (5.88) 70.2 (8.32) 69.7 (8.21) 0.052 

Disease Duration (Years) 6.6 (5.63) 10.3 (6.64) 9.9 (6.62) 0.072 

Requires Walking Aid 5 (50.0%) 70 (72.2%) 75 (70.1%) 0.151 

MoCA Score 25.4 (3.95) 24.2 (3.50) 24.3 (3.54) 0.212 

GDS 3.8 (3.77) 4.4 (3.00) 4.3 (3.06) 0.252 

FAB 14.5 (2.72) 13.7 (2.56) 13.8 (2.57) 0.552 

CFQ 35.2 (11.70) 40.9 (14.77) 40.4 (14.56) 0.222 

Number of Falls in the past 12 months 2.5 (2.0, 4.0) 6.0 (2.0, 20.0) 6.0 (2.0, 20.0) 0.033 

UPDRS total 72.9 (24.03) 89.9 (24.73) 88.3 (25.05) 0.082 

UPDRS Part 3 31.6 (9.63) 41.5 (13.20) 40.6 (13.20) 0.042 

NFOGQ 12.0 (9.0, 20.5) 17.5 (13.0, 22.5) 17.0 (13.0, 22.5) 0.333 

BMI 32.3 (8.27) 27.2 (4.22) 27.7 (4.92) 0.032 
1 Chi-Square p-value; 2 Independent t-test p-value; 3 Mann-Whitney U-test p-value; BMI, body mass index CFQ, cognitive failure questionnaire; FAB, 
frontal assessment battery; GDS, geriatric depression scale; MoCA, Montreal cognitive assessment; NFOGQ, the new freezing of gait questionnaire; 

UPDRS, unified Parkinson’s disease rating scale. Freezers were defined as individuals who exhibited any episodes of FOG during the walking task. 

Conversely, non-freezers were participants who did not present any FOG while performing the same task. 
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D. FOG Classification and Analysis 

Data windows were classified into three activity classes: (1) 

Walking, (2) FOG (including festination), and (3) Transition or 

stationary for algorithm training using the referenced video 

annotations. Eight device-based FOG classification algorithms 

were then developed using an Ensemble of trees with adaptive 

boosting (Ensemble), Neural Networks (NNW) and Support 

Vector Machine second and third order (SVM 2 and SVM 3) to 

identify precise FOG episodes. The sensitivity to FOG episode 

onset was prioritized over specificity to non-FOG by increasing 

the cost of missed FOG windows [Table 2]. 

Because of the participant pool size, ten-fold cross-validation 

was selected as the most appropriate training and validation 

protocol to minimize overfitting and reduce risk of 

overestimating reported performance. For ten-fold validation, 

each participant’s data was randomly assigned to one of ten 

folds. Each fold comprises data from ten or eleven participants. 

Stratification by number of data windows annotated as FOG 

was used to ensure each fold included similar signal of interest 

(FOG window) relative to background signal (non-FOG 

windows, defined by the 'Walking' and 'Transition or 

Stationary’ activity classes). 

Classifier training was repeated 10 times using 10 different 

9-fold combinations of data followed by validation using the 

remaining unseen 1-fold for that training iteration. We 

combined the results from all data windows from the 10 unseen 

folds before calculating and reporting the outcomes. 

Participant characteristics between those who demonstrated 

at least one FOG episode and those who did not were compared 

with chi-square tests, independent t-tests, and Mann-Whitney U 

tests for categorical, parametric continuous, and non-parametric 

continuous variables, respectively. 

Performance of the waist-worn device in identifying the 

precise FOG episodes was assessed using (1) sensitivity (FOG 

windows correctly identified / total FOG windows), (2) 

specificity (non-FOG windows correctly identified/ total non-

FOG windows), (3) accuracy (windows correctly identified / 

total windows), (4) precision (FOG windows correctly 

identified / total predicted FOG windows) and (5) the F1-score, 

a harmonic mean of precision and sensitivity. Non-FOG 

TABLE II 

MACHINE LEARNING PARAMETERS 
 

Method Parameters 

Ensemble of Trees (both 

67 and 118 features) 

Method bag; Learners 30; Max Num Splits 

50; Cost [0 2 1; 3 0 3; 1 2 0] (x3 missed 

FOG, x2 missed nonFOG) 

Neural Network (118 

features) 

Layer Sizes [236 118] for 118 features; 

Lamba 0.001; Initial Step Size 0.01;  

Cost [0 2 1; 8 0 8; 1 2 0] (x8 missed FOG, 
x2 missed nonFOG) 

Neural Network (67 

features) 

Layer Sizes [134 67] for 67 features;  

Lamba 0.001; Initial Step Size 0.01;  
Cost [0 2 1; 6 0 6; 1 2 0] (x6 missed FOG, 

x2 missed nonFOG) 

Support Vector Machine 2 

(both 67 and 118 features) 

Polynomial Order 2; Box Constraint 1; 

Standardise true; Cost [0 1 1; 1 0 1; 1 1 0] 
(default cost, all classes equal) 

Support Vector Machine 3 

(both 67 and 118 features) 

Polynomial Order 3; Box Constraint 1; 

Standardise true; Cost [0 2 1; 3 0 3; 1 2 0] 
(x3 missed FOG, x2 missed nonFOG) 

 

 
Figure 2. [A] Examples of continuous wavelet-transformed antero-posterior acceleration signals from a person with FOG (Freezer) and a Non-freezer. For 

illustrative purposes, the “Walking band” refers to mid frequency content (scales between 27 and 57) and the “Freezing band” refers to higher frequency content 
(scales between 4 and 22). [B] Example of the agreement between waist-worn device detection of FOG (green) and the annotated FOG reference (red) for the 

complex task. [C] Confusion matrix comparing true class (video annotation) vs predicted class (wearable device-based) assessment of FOG. 
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included normal walking, postural transitions and stationary 

periods. Validation loss, as a measure of solution stability and 

potential generalizability to other cohorts, was calculated by 

subtracting the above validated performance (using outcome 

data from the unseen folds) from the trained performance (using 

outcome data from the training folds). 

Performance for total FOG duration was assessed by 

combining data from the unseen folds and using the intra-class 

correlation coefficient, ICC1,1 (one-way random effects, 

absolute agreement and single measurement). Interrater 

reliability between the two clinicians was assessed and 

considered the benchmark for the practical upper limit for 

device-based FOG detection. Algorithm development and 

statistical analyses were performed in MATLAB Statistics and 

Machine Learning Toolbox (Math Works Inc., Version 2020a). 

III. RESULTS 

Of the 107 included participants, 97 had at least one FOG 

episode while completing the walking task (91%). Compared to 

people without FOG, those with FOG had a lower BMI, more 

severe motor-related PD symptoms and reported more falls in 

the past twelve months. Participant demographics are 

summarized in Table 1. The mean total FOG duration (all 

episodes combined) for people who experienced FOG was 93 

seconds with a standard deviation (SD) of 143 seconds. 

 

A. FOG detection accuracy 

The 10-fold cross-validation set for the device-based method 

development used 50,962 windows of data representing 37,809 

seconds (10 hours, 30 minutes and 9 seconds) of activities. For 

each complex walking task, true activity classes (video 

annotation) and predicted activity classes (wearable device-

based) were compared [Fig 2B] with overall performance 

calculated using a confusion matrix [Fig 2C]. The eight 

machine learning classifiers consistently reported good 

performances in distinguishing FOG windows from non-FOG 

windows [Table 3].  

Agreements between device-based and video annotation 

methods were consistently strong across methods, i.e. 

ICC1,1 0.83 to 0.88 for total FOG duration [Fig 3]. Regarding 

our goal to prioritise sensitivity to detect FOG events, the 

relatively simple Neural Network with 67 accelerometer 

features provided a good balance between performance (89% 

sensitivity and 81% Specificity) and solution stability 

(validation loss ≤ 5%). Regarding overall performance, the 

second order SVM 2 with a standard cost matrix and 118 

features reported the highest accuracy of 88%. Advantageously, 

limiting the Neural Network method to the 67 features derived 

from the accelerometer sensor resulted in only marginal 

performance changes while providing substantial reductions in 

validation loss (from loss ≤ 27% to loss ≤ 5%). Similarly, the 

second-order SVM 2 classifier performed better than the more 

complex third-order SVM 3 (from loss ≤ 22% to loss ≤ 14%) 

[Table 3]. 

The associated reduction in validation loss from using a less 

complicated classifier indicates increased solution stability and 

likely better generalisability when used in independent cohorts. 

 

B. Interrater reliability 

A total of 8,090 windows from the data of the 20 participants 

annotated by both assessors were included in the interrater 

reliability analysis. This revealed 92% accuracy in identifying 

precise FOG episodes (90% sensitivity and 92% specificity) 

and very strong agreement between assessors (ICC1,1 = 0.97 for 

total FOG duration) [Fig 4].  

 

Figure 3. Agreement between annotated videos and “unseen” automatic 

wearable device-based assessment of total FOG duration using the Support 

Vector Machine 2 classifier with 118 features (ICC1,1 = 0.85, p≤0.05). 

TABLE III 

WAIST-WORN DEVICE (USING ALL 118 FEATURES) PERFORMANCE AFTER 10-FOLD VALIDATION AND VIDEO ANNOTATION INTERRATER AGREEMENT. 
VALIDATION LOSS (LOSS) WAS CALCULATED BY SUBTRACTING THE REPORTED VALIDATED PERFORMANCE FROM THE TRAINED PERFORMANCE. 

 

 Sensitivity (Loss) Specificity (Loss) Accuracy (Loss) Precision (Loss) F1 Score (Loss) ICC1,1 of Total 

FOG Duration 

 FOG Episodes Interrater Agreement Between Clinicians 

Human 90% 92% 92% 84% 87% 0.97 

 Machine Learning FOG Detection (118 All Features) 

Ensemble 82% (5%) 86% (2%) 85% (3%) 65% (5%) 72% (5%) 0.84 

NNW 75% (24%) 86% (10%) 83% (14%) 63% (27%) 68% (26%) 0.88 

SVM 2 76% (11%) 91% (5%) 88% (6%) 74% (14%) 75% (13%) 0.85 

SVM 3 76% (20%) 90% (8%) 86% (11%) 70% (22%) 73% (21%) 0.87 

 Machine Learning Low Power Potential (67 Accelerometer Features) 

Ensemble 80% (5%) 85% (2%) 84% (3%) 64% (5%) 71% (5%) 0.83 

NNW  89% (5%) 81% (3%) 83% (3%) 59% (5%) 71% (5%) 0.83 

SVM 2 74% (10%) 91% (4%) 87% (6%) 72% (12%) 73% (11%) 0.87 

SVM 3 74% (19%) 89% (7%) 86% (10%) 72% (20%) 69% (20%) 0.86 

 

TABLE III 

WAIST-WORN DEVICE (USING ALL 118 FEATURES) PERFORMANCE AFTER 10-FOLD VALIDATION AND VIDEO ANNOTATION INTERRATER AGREEMENT. 
VALIDATION LOSS (LOSS) WAS CALCULATED BY SUBTRACTING THE REPORTED VALIDATED PERFORMANCE FROM THE TRAINED PERFORMANCE. 

 

 Sensitivity (Loss) Specificity (Loss) Accuracy (Loss) Precision (Loss) F1 Score (Loss) ICC1,1 of Total 

FOG Duration 

 FOG Episodes Interrater Agreement Between Clinicians (referenced standard) 

Human 90% 92% 92% 84% 87% 0.97 

 Machine Learning FOG Detection (118 All Features) 

Ensemble 82% (5%) 86% (2%) 85% (3%) 65% (5%) 72% (5%) 0.84 

NNW 75% (24%) 86% (10%) 83% (14%) 63% (27%) 68% (26%) 0.88 

SVM 2 76% (11%) 91% (5%) 88% (6%) 74% (14%) 75% (13%) 0.85 

SVM 3 76% (20%) 90% (8%) 86% (11%) 70% (22%) 73% (21%) 0.87 

 Machine Learning Low Power Potential (67 Accelerometer Features) 

Ensemble 80% (5%) 85% (2%) 84% (3%) 64% (5%) 71% (5%) 0.83 

NNW  89% (5%) 81% (3%) 83% (3%) 59% (5%) 71% (5%) 0.83 

SVM 2 74% (10%) 91% (4%) 87% (6%) 72% (12%) 73% (11%) 0.87 

SVM 3 74% (19%) 89% (7%) 86% (10%) 72% (20%) 69% (20%) 0.86 
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IV. DISCUSSION 

In this study involving 107 people with PD, we investigated 

the performance of eight different machine learning classifiers 

to detect precise FOG episodes. The single waist-worn device 

consistently provided strong agreement with the reference 

video annotation (Accuracies between 83% and 88% for FOG 

windows and ICC1,1  between 0.83 and 0.88 for total FOG 

duration) [Table 3] regardless of classifier parameters. These 

findings suggest automated FOG detection has the potential to 

complement clinical FOG assessments and enable new assistive 

technologies to “break” FOG in real time. 

Regarding our focus on improving sensitivity to FOG, the 

Neural Network with 67 features provided a good balance 

between performance and solution stability (loss ≤ 5%). The 

sensitivity of 89% was achieved by increasing the cost of 

missed FOG at the expense of a lower 81% specificity. For 

context, the 2nd order SVM 2 with default cost settings had 

lower (75%) sensitivity but higher (91%) specificity. 

Our flowchart algorithm [Fig 2B] based on consensus 

guidelines [2, 3, 27] to guide precise annotation was successful. 

Very strong agreement between clinicians for FOG episodes 

was observed (90% sensitivity, 92% specificity and ICC1,1 = 

0.97 for total FOG duration) [Fig 4]. Compared to the 

performances of our eight device-based classifiers, we conclude 

that our skilled clinicians were better at identifying precise FOG 

episodes than our machine-learning classifiers. 

Small differences were also observed in how the device-

based methods identified FOG episodes [Fig 2B]. Where the 

clinical assessors typically annotated longer continuous FOG 

episodes [red line, Fig 2B], the device-based methods had the 

tendency to “tirelessly” consider each window of data 

according to the objectively trained criteria resulting in shorter 

FOG episodes [broken green line, Fig 2B]. 

Previous studies have shown good discrimination can be 

obtained between people with and without any freezing of gait 

using a validated questionnaire [10] or gait data derived from 

five inertial sensors attached to the feet, shins and lumbar region 

[17]. Identification of precise FOG episodes (defined as the 

exact boundaries of each FOG episode) may offer different 

opportunities for the clinical management of FOG. 

Putting aside methodological variances across studies, our 

Neural Network classifier with a sensitivity of 89% and 

specificity of 81% compares favourably to previous studies. 

This includes a sensitivity of 75% and specificity of 76% for a 

waist-worn device [30], a sensitivity of 75% and specificity of 

79% for a side waist-worn device [18], a sensitivity of 71%, a 

specificity of 82% for ankle-worn sensors [31] and a sensitivity 

of 80% and a specificity of 83% for a system comprising both 

waist-worn and ankle-worn sensors [20]. 

Automatic FOG detection could be used clinically in remote 

monitoring systems and incorporated into commercially 

available devices [19, 26]. The provision of remote FOG 

assessments may help inform and optimise intervention 

strategies including the timing and dose of medication. For this 

type of application, FOG frequency and time-of-day may be 

more important than the precise boundaries of each FOG 

episode and the cost matrix [Table 2] may be adjusted to 

achieve the optimum balance between the sensitivity and 

specificity of any classifier. 

In contrast to most previous studies, we prioritized the 

precise detection of the exact boundaries of each FOG episode 

and adjusted the cost matrix to increase sensitivity. In this way, 

any technologies capable of “breaking” FOG episodes may be 

tuned to respond earlier before FOG becomes a fall. The related 

increase in false positive rates may be acceptable to people with 

PD provided the intervention technology is unobtrusive and can 

help stabilise gait before the onset of FOG. 

Diverging from previous studies with fixed-length data 

windows, we effectively combined adaptive-length windows 

with wavelet analyses. While shorter windows have fewer data 

points to assess low-frequency information, longer windows 

may cover two or more confounding activity classes. Based on 

heel-strikes [29], we implemented our adaptive windows to 

capture the characteristics of each step, attempted step or 

movement. The adaptive window duration was set to range 

between 0.3 (shortest anticipated festinating step) to 3 seconds 

(longest anticipated slow step) to avoid covering both FOG and 

non-FOG activity classes in any one data window.  

To balance the possibility that shorter data windows may 

provide insufficient information, we also used 8-step averages 

to provide preceding context. In our study, wavelet coefficients 

also ranked highly by importance [Supplementary Table 1], 

which agrees with previous studies that used frequencies 

attributed to trembling and walking to identify FOG [17, 32]. 

A previous study found FOG detection accuracy could be 

increased from 77% to 84% by personalization of a side-

mounted waist-device [18]. Our trained accuracy results 

[Table 3, Accuracy + Loss = 86% to 97%] corroborate that a 

waist device provides enough information to develop accurate 

classifiers. Classifier performance, however, is only as good as 

the data used to train it. Our systematic approach to video 

annotation [Fig 1B] may have reduced one developmental 

barrier by providing consistent reference data. The next step 

may be to collaboratively combine data from multiple sources 

to develop future FOG classifiers with higher accuracy and 

lower validation losses. Another priority may be to improve the 

performance of the ubiquitous wrist device, which may help 

lower barriers to widespread use in people with PD [33]. 

The present study has several strengths. Firstly, data from a 

relatively large sample of 107 participants were analyzed and 

 
Figure 4. Very strong agreement between clinicians for total FOG duration 
(ICC1,1 = 0.97, p≤0.05) was possible using the flowchart algorithm to guide 

video annotation. This provides a practical upper limit to compare the 

subsequent automatic device-based FOG detection performances against. 

A#1 duration (s) Mean A#1 duration & A#2 duration (s)

To
ta

l A
#2

 d
u

ra
ti

o
n

 –
A

#1
 d

u
ra

ti
o

n
 (

s)

A
#2

 d
u

ra
ti

o
n

 (
s)

This article has been accepted for publication in IEEE Transactions on Biomedical Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBME.2024.3407059

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on July 19,2024 at 09:18:19 UTC from IEEE Xplore.  Restrictions apply. 



TBME-02000-2023 

 

7 

an algorithmic approach to annotate FOG was developed 

[Fig 1B]. We compared eight different machine learning 

classifiers and after 10-fold cross-validation found the accuracy 

in detecting precise FOG episodes was relatively algorithm-

agnostic. Secondly, as anticipated, FOG episodes were less 

common than other activities and therefore to improve 

sensitivity we increased the misclassification cost for FOG. 

Thirdly, the potential for low-power FOG detection was 

demonstrated by using the 67 features from the single triaxial 

accelerometer. A small user-friendly device with an 

accelerometer would require less frequent charging and could 

help to improve compliance through better comfort and 

convenience. Finally, the use of 67 accelerometer features only 

resulted in lower validation loss suggesting generalizability to 

other cohorts. 

The current findings also need to be placed in the context of 

limitations. Firstly, our data were collected from a complex 

walking and mobility task designed to induce FOG, which may 

have reduced the variation of FOG recorded. Although it 

included sitting and transitions, it did not include all activities 

encountered in home-based environments. Secondly, despite 

our 10-fold validation, it is likely our method fits our sample 

better than others and will require further independent 

validation. Future work should aim to (i) collaboratively collect 

substantially more FOG data from more people with PD; (ii) 

establish a broad international consensus on the beginning and 

end of each annotated FOG episode; and (iii) include both 

FOG-inducing complex mobility tasks and daily activity FOG 

data for increased ecological validity. 

V. CONCLUSION AND SIGNIFICANCE 

Using adaptive data windows and wavelet analyses, we 

found that a waist-worn device using only accelerometer data 

provided a good balance between sensitivity to detect FOG and 

solution stability. The flowchart approach to FOG annotation 

also provided consistent reference data. Automatic FOG 

detection has clinical implications to improve PD care by 

reducing reliance on subjective in-person FOG reporting and 

time-consuming visual inspection. Remote objective FOG 

assessments could help inform and optimise intervention 

strategies. These findings may contribute to improved device-

based FOG detection and future assistive technologies capable 

of “breaking” FOG episodes in real time. 
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