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Abstract—As large language models continue to scale in size
rapidly, so too does the computational power required to run
them. Event-based networks on neuromorphic devices offer a
potential way to reduce energy consumption for inference signif-
icantly. However, to date, most event-based networks that can run
on neuromorphic hardware, including spiking neural networks
(SNNs), have not achieved task performance even on par with
LSTM models for language modeling. As a result, language
modeling on neuromorphic devices has seemed a distant prospect.
In this work, we demonstrate the first-ever implementation of a
language model on a neuromorphic device – specifically the SpiN-
Naker2 chip – based on a recently published event-based architec-
ture called the EGRU. SpiNNaker2 is a many-core neuromorphic
chip designed for large-scale asynchronous processing, and the
EGRU is architected to leverage such hardware efficiently while
maintaining competitive task performance. This implementation
marks the first time a neuromorphic language model matches
LSTMs, setting the stage for taking task performance to the
level of large language models. We also demonstrate results on
a gesture recognition task based on inputs from a DVS camera.
Overall, our results showcase the feasibility of this neuro-inspired
neural network in hardware, highlighting significant gains versus
conventional hardware in energy efficiency for the common use
case of single batch inference.

Index Terms—Neuromorphic, Language model, Energy effi-
cient, Sparse activity, Sparse weights

I. INTRODUCTION

Most deep learning systems, from edge to cloud, rely on
highly regular SIMD processing. The tremendous success of
this processing paradigm has encouraged further convergence
of hardware accelerators and algorithms to high throughput
SIMD systems [1]. At the same time, deep learning algorithms
exhibit a surprisingly high degree of inherent sparsity, which
SIMD accelerators are unable to exploit. Experimental and the-
oretical studies have shown that a large fraction of connections
can be removed entirely without sacrificing learning accuracy
[2], [3]. Furthermore, deep learning models can operate on
highly sparse representations without sacrificing precision [4]–
[7]. These findings challenge the design principles of today’s
SIMD-based deep learning systems from an energy efficiency
perspective. Communication is the central energy and latency
cost factor in contemporary computer architectures [8]. Dense

matrix operations are omnipresent in deep learning and re-
quire O(n2) messages for n-dimensional representations. This
unfavorable behavior is under growing pressure as the annual
growth rate of density of computational operations in hardware
is about twice as fast as the growth rate of memory and
interconnect bandwidth.

In this work, we present an implementation of a sparsely
connected and sparsely activated architecture implemented on
an processor that can take advantage of this unstructured
sparsity for energy efficiency. More specifically, we present an
implementation of a sparse network based on the EGRU [6]
architecture on a SpiNNaker2 chip. The EGRU [6] is a recently
proposed event-based network that naturally exhibits high
levels of activity sparsity and was shown to have high levels
of task performance on language modeling and gesture recog-
nition tasks among others. To make full use of its potential,
we implement it on the SpiNNaker2 chip, which is a digital
neuromorphic system optimized for sparse communication and
event-based processing [9]. Our implementation operates on
unstructured sparsely connected units that communicate sparse
in time. Both operations can be accelerated on SpiNNaker2,
but not on conventional SIMD architectures. We choose lan-
guage modeling as our demonstrator. Since the EGRU is a
recurrent network, it is able to exploit the temporal inductive
bias of sequence modeling tasks such as language modeling for
computationally efficient processing. While transformers [10]
are the dominant architecture for language modeling, they
are computationally very expensive, which makes it even
more urgent to find an energy efficient alternative. This first
demonstration of the energy gains achievable using a recurrent
architecture on neuromorphic hardware will set the stage for
neuromorphic language modeling using even more powerful
recurrent architectures [11], [12].

II. RELATED WORK

Recent advances in machine learning have led to increased
interest in energy-efficient hardware accelerators. Hardware-
software co-design for machine learning accelerators have
been used to target scaling to extremely large models [13],
[14]. More recently, there has been an increased focus on mak-



ing transformer-based neural networks more efficient using
accelerators for conventional hardware (see [15] for a review).
A 4-bit quantized accelerator in 5 nm presented recently [16]
demonstrated high energy efficiency and throughput. Spik-
ing variants of popular transformer architectures have also
recently been introduced [17]–[19], but no advantage on
custom hardware has been reported yet. Neuromorphic LSTM
accelerators have been developed using FPGAs [20], systolic
arrays [21], and memristors [22]. A hybrid LSTM/spiking
neuron architecture was implemented on Intel’s Loihi chip,
demonstrating energy gains [23]. None of these LSTM-based
approaches have been scaled to standard NLP benchmark
tasks yet. Spiking LSTM [24] and EGRU [6] are two at-
tempts at bringing event-based properties to the respective
base architectures and allow for full precision gates and graded
spike communication between units. Other related approaches
include Sigma-delta quantised networks that communicate
only quantised changes in activations to the next layer in
a feed-forward network [25] and its extension to recurrent
networks [4]. An FPGA accelerator for sparsely connected
and sparsely communicating Delta Networks greatly reducing
required memory access, was presented in [26].

III. BACKGROUND

A. The SpiNNaker2 System

SpiNNaker2 is an accelerator for large-scale event-based
and asynchronous processing [9]. The chip consists of 152
processing elements (PEs) connected via a network-on-chip
(NoC). Each processing element is composed of an Arm M4f
core, 128 kB SRAM, and a set of accelerators for exponential
functions, random number generation and multiply-accumulate
(MAC) operations. The total of 19MB on-chip SRAM is
accompanied by 2GB LPDDR4 memory. Communication
between the PEs in a single chip can be implemented by direct
memory access (DMA) to other PEs’ local memory. The local
SRAM is organized into 4 memory banks of 32 kB each. One
is usually reserved for program memory, and three banks for
values such as RNN weights and intermediate variables. See
Table I for details of memory footprint of EGRU Language
model.

B. Event-based Gated Recurrent Unit

The Gated Recurrent Unit (GRU) is an effective recurrent
neural network that has been widely adopted for sequence
modeling [27]. To reduce the communication between logical
neurons, [6] apply a biologically inspired thresholding mech-
anism to the GRU. In this model, called Event-based Gated
Recurrent Unit (EGRU), a layer consists of n neurons with
output y and state c. A sparse output y = (y1, . . . , yn) is
generated from the GRU cell state c = (c1, . . . , cn) via the
following mechanism

y
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i H
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Only the sparse output y is communicated between neurons
to compute the update gate u and the reset gate r of the GRU
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As outlined in [28], the sparse state y and the gates u and r
compute a proposed state z and the new cell state c

z⟨t⟩ = g
(
Wz

[
x⟨t⟩, r⟨t⟩ ⊙ y⟨t−1⟩

]
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)
(4)

c⟨t⟩ = u⟨t⟩ ⊙ z⟨t⟩ + (1− u⟨t⟩) ⊙ c⟨t−1⟩ − s⟨t⟩ . (5)

Similar to biologically plausible spiking neural networks, [6]
subtract already communicated signals y from the cell state
via the reset term s⟨t⟩ = ϑH

(
c⟨t⟩ − ϑ

)
. During training, the

surrogate function dH
dc = λ max (1− |c|/ϵ) provides gradients

below the threshold.

C. Language Modeling with EGRU

Word-level language modeling is a popular benchmark task
to measure the performance of sequence models, including
RNNs. A language model processes a sequence of words
w1, . . . , wt ∈ D from a dictionary D, and predicts the
conditional distribution p(wt+1|w1, . . . , wt). Its training ob-
jective is minimizing the cross entropy H(p, q) between this
prediction p and a one-hot encoding q of the actual next
word in the sequence. The standard metric for measuring
performance is perplexity (PPL), the exponential cross entropy
eH(p,q). Artificial texts can be generated by a trained language
model by iterative sampling from the next-word distribution p
predicted by the model.

We trained three EGRU layers without skip connections to
processes word embedding vectors drawn from a learned look-
up table similar to [29]. The model estimates the likelihood
of the next word in a sequence by computing the dot-product
similarity between the output vector of the final EGRU layer
and all word embedding vectors of the dictionary. Softmax
applied to this set of values serves as an estimate of the
conditional distribution p. The dimension of word embedding
vectors and the final layer cell state was 750. The dimension
of intermediate layers’ cell state was 1350. We used a model
from Mukherji et al. [28] trained on the WikiText-2 dataset
[30] with a parameter sparsity of 95% per weight matrix. The
model weights were stored on SRAM in a Sparse CSR format.
The three EGRU layers were implemented on 150 PEs.

D. DVS gesture recognition

We also evaluated our model on gesture prediction, using the
DVS128 Gesture Dataset [31]. This dataset contains 11 ges-
tures from 29 subjects recorded with a DVS128 event camera
[32]. Each event encodes a relative change of illumination and
is given as spatio-temporal coordinates of X/Y position on the
128×128-pixel sensor and time stamp.

Our model consisted of a CNN feature extraction head and
2 EGRU layers of 256 units each. The dimension of features
extracted from the CNN was 512. Finally a linear layer was



used to predict the class of the gesture. For this task we used
only dense weights and stored them directly on SRAM since
the model is small enough to fit in local memory. The two
EGRU layers were implemented on 128 PEs.

IV. SPINNAKER2 IMPLEMENTATION

A. Implementation of EGRU on a single processing element

We were able to fit the simplest EGRU model on a single
PE of SpiNNaker2. There are three operations that need
to performed as part of EGRU algorithm: 1) input matrix
multiplication 2) recurrent matrix multiplication and 3) point-
wise operations. For a single PE implementation, we can
simply execute these operations sequentially. There is no data
transfer needed as all the results are available in local memory.
Although there is a Multiply-accumulate (MAC) accelerator on
SpiNNaker2, we do not use it in this application to take full
advantage of EGRU’s dynamic sparsity.

B. Parallelization approaches

Since any realistic model, including our larger EGRU
models, will not be small enough to fit onto a single PE,
we need to split the network over multiple PEs. To do this,
we split the network and place the neurons on different PEs.
This approach reduces the communication and synchronization
required within the network. The output generated by the units
placed on a single PE determined the output of that PE. This
output y⟨t⟩, at time t, needed to be broadcast to the rest of the
units in the EGRU layer. On receiving such a broadcast each
PE concatenated the outputs from all other PEs together with
the output of the units stored locally to form the next recurrent
input. This broadcast was implemented by sending internal
NoC packets between PEs. This operation is demonstrated in
Fig. 1 and the algorithm is presented in Algorithm. 1

With this parallelization, we only split one dimension of
the R weight matrix. Since the second dimension was as
large as the number of units in a layer, the recurrent weight
matrix was still too large to fit in individual PE memory.
To mitigate this, we used a 95% pruned EGRU model for
language modeling. The pruned weights were stored in com-
pressed sparse row (CSR) format. In this format the non-zero
(NZ) elements of the matrix were represented using three
one-dimensional arrays. These contained NZ values, column
indices of the NZ elements and the extents of rows, which
required 2 ∗NZ +N rows+ 1 memory.

C. Dataset and pre-processing

1) Language Modeling: The model was trained and val-
idated on WikiText-2 dataset. The text was tokenised and
split into sequence of length 70. The embeddings were pre-
computed and transferred to the LPDDR4 memory.

2) DVS: We combined the DVS raw event times into
‘frames’ by binning them over time windows of 25 ms, and
then downscaled them to 32×32 pixels using a maxpool layer.
The dataset was pre-processed and the features extracted using
the CNN head. The extracted features were stored in the
LPDDR4 memory.

Algorithm 1 EGRU algorithm for multi PE implementation
procedure EGRU

Input:
- Network Configuration Parameters
- Input Data
- Output Data Destination
Output: Processed output data
Initialization:
- Initialize temporary variables.
while run is true do

- Check for input data availability.
- Process input data and prepare it for computation.
for each time step t do

- Wx← Matrix Multiplication: Wx × xt.
- Rh← Matrix Multiplication: Wr × yt−1.
- Point-wise operation on Wx and Rh.
- Store output data.

- Wait for host to read output data.
if run is false then

- Stop.

×

=

×

=

xt W yt+1 R

t+ 1

f{·}

yt

Fig. 1. EGRU operations and distribution strategy: This figure shows
computation performed on a single PE as part of a multi-core implementation,
the grayed out portions are computed on other PEs, W and R are kernels
processing current input xt and previous output yt−1 respectively. f{·}
represents point-wise operations.

V. RESULTS

We measured the time required by the EGRU operations
using an internal timer. This timer ticks at 1 MHz rate
and decrements a counter. We logged the timer value at
various points in the algorithm to estimate the time spent
by the algorithm at each stage. The results of this profiling
are shown in Fig. 2. As can be seen, the most expensive
part was the recurrent matrix multiplication (egru internal).
Broadcasting of layer activations was a comparably cheap
operation, since the broadcast uses efficient NoC packets to
communicate. The bottleneck of the algorithm was therefore
found to be dominated by memory reading and writing rather
than communication, for the single chip case. However, this
might not be the case for multi-chip communication.



TABLE I
MEMORY FOOTPRINT OF 95% PRUNED EGRU MODEL. WEIGHT
MATRICES STORED IN SPARSE CSR FORMAT. TOTAL AVAILABLE

INSTRUCTION MEMORY IS 32 KB AND THE AVAILABLE DATA MEMORY IS
96 KB.

Instruction Debug Weights Variables

Memory (KB) 17.9 5 88.3 2.6

TABLE II
EGRU LM ON SPINNAKER2 COMPARISON WITH GPU

Measurement Nvidia A100 SpiNNaker2

Batch size 1 1
Power (W) 60 0.39
Time (mS) 19.9 170.25
Energy (J) 1.1935 0.0653
Test PPL 79.3 79.3

A. Power and energy consumption

The power consumption of the EGRU language model is
shown in Table. II. We show that for inference, our imple-
mentation on SpiNNaker2 consumes only a fraction of a Watt.
Whereas the time required on SpiNNaker2 scales linearly with
batch size, the GPU can process larger batch sizes in the
same time. Hence at larger batch sizes GPU tend to be more
efficient. This is only shown for the DVS task because the LM
task has a memory bottleneck that only allows a batch size of
one on a single chip. See Table. III for this energy comparison.
The test accuracy on the classification task was identical on
both GPU and SpiNNaker2 implementation, demonstrating
numerical equivalence, since we perform 32-bit floating point
operations on both architectures.

VI. OUTLOOK

The successful implementation of a language model on the
SpiNNaker2 chip using the EGRU event-based architecture
represents a significant milestone in the field of neuromorphic
computing. We compare our implementation with the one on
the Nvidia GPU and show a real energy advantage in the single
batch size setting, which we expect to be the most relevant for
inference, especially on edge devices. We also identified sev-
eral bottlenecks in our implementation that need improvement
for even further efficiency. In particular, quantizing the model
will allow us to work with even tighter memory constraints

TABLE III
EGRU DVS GESTURE PREDICTION ON SPINNAKER2 COMPARISON WITH
GPU. TIME AND ENERGY MEASUREMENTS NORMALIZED OVER BATCH

SIZE.

Measurement Nvidia A100 SpiNNaker2

Batch size 1 6 1 6
Power (W) 61.0 61.0 0.39 0.42
Time (mS) 1.09 0.19 60.19 56.20
Energy (J) 0.067 0.011 0.023 0.023
Accuracy (%) 96.83 96.83 96.83 96.83

Fig. 2. Profiling of internal EGRU operation for Language modeling. EGRU
model has 1350 units, 3 layers and 95% pruned. Weights stored in sparse
CSR format.

to fit larger models and further increase energy efficiency,
albeit with a slight reduction in task performance. Quantization
will also allow us to take advantage of the MAC accelerator
available on the SpiNNaker2 chip. We also plan to further
scale the deployed model to multiple chips, as SpiNNaker2 is
designed for efficient distributed computing.

Scaling up neuromorphic language models to more con-
temporary large sizes by harnessing very recent innovations
in recurrent architectures [33], [34] is the self-evident next
step. However, bringing the performance on par with standard
deep learning also suggests expanding the range of real-
world applications for neuromorphic hardware in future work,
including real-time applications, which they are well suited
for. Overall, our implementation has demonstrated, for the
first time, that challenging machine learning tasks are not
beyond the scope of neuromorphic computing and heralds the
beginning of more mainstream use of neuromorphic devices
as complementary to GPUs for appropriate use cases.
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