

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Genomic estimation of dominance variance and inbreeding depression in a local sheep breed

Citation for published version:

Rochus, C, Špehar, M, Kasap, A, Barać, Z, Ramljak, J & Pocrnic, I 2024, 'Genomic estimation of dominance variance and inbreeding depression in a local sheep breed', 7th International Conference of Quantitative Genetics (ICQG), Vienna, Austria, 22/07/24 - 26/07/24.

Link: Link to publication record in Edinburgh Research Explorer

Document Version: Publisher's PDF, also known as Version of record

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Édinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Christina M Rochus¹, M Špehar², A Kasap³, Z Barać⁴, J Ramljak³, I Pocrnić¹

¹University of Edinburgh, Roslin Institute, ²Croatian Agency for Agriculture and Food, ³Faculty of Agriculture, University of Zagreb, ⁴Croatian Ministry of Agriculture

Genomic estimation of dominance variance and inbreeding depression in a local sheep breed

Pag (Island), Croatia

Overall aim is to conserve and implement genomic selection

Objectives

Estimate additive and dominance genetic variances and genomic inbreeding for milk traits

Materials and methods

50K SNP genotype data, 2134 Pag sheep

After quality control, 1744 ewes with test-day milk records (milk, fat and protein yields (g))

Imputation (AlphaPeel)

Results contribute to developing sustainable genomic selection programmes for small livestock populations

Results

Figure 1: Average number of runs of homozygosity per animal

Figure 2: Variance partitioning for milk, fat and protein test-day yields

Runs of homozygosity (ROH) with PLINK 1.9 and estimated inbreeding (F_{ROH})

Tested four single trait models (BLUPF90+)

REML

M1
$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}_{a}\mathbf{a} + \mathbf{Z}_{p}\mathbf{p}\mathbf{e} + \mathbf{e}$$

M2 $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{f}\mathbf{b} + \mathbf{Z}_{a}\mathbf{a} + \mathbf{Z}_{p}\mathbf{p}\mathbf{e} + \mathbf{e}$
M3 $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}_{a}\mathbf{a} + \mathbf{Z}_{d}\mathbf{d} + \mathbf{Z}_{p}\mathbf{p}\mathbf{e} + \mathbf{e}$
M4 $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{f}\mathbf{b} + \mathbf{Z}_{a}\mathbf{a} + \mathbf{Z}_{d}\mathbf{d} + \mathbf{Z}_{p}\mathbf{p}\mathbf{e} + \mathbf{e}$

 $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{f}\mathbf{b} + \mathbf{Z}_{a}\mathbf{a} + \mathbf{Z}_{d}\mathbf{d} + \mathbf{Z}_{p}\mathbf{p}\mathbf{e} + \mathbf{e}$

Milk records (milk, fat and protein yields in g)

Mean, parity, flock, DIM, year and season

Inbreeding (F_{ROH})

Additive (breeding) values

Dominance deviations

Permanent environment

 $a \sim N(0, G\sigma_a^2)$ VanRaden (2008)

 $d \sim N(\mathbf{0}, \mathbf{D}\sigma_d^2)$ Vitezica et al. (2013)

Table 2: Inbreeding depression estimates

	Model	For 1% inbreeding, test-day (1 day)	For 1% inbreeding, whole lactation (150 days)
Milk yield (g)	M2	-2.8	-420
	M4	-3.7	-555
Fat yield (g)	M2	-0.2	-30
	N/ /	0.2	15

Table 1: Phenotype and inbreeding means

	Mean	Standard error
Test-day milk yield (g)	818.5	4.2
Test-day fat yield (g)	58.6	0.3
Test-day protein yield (g)	47.7	0.2
F _{ROH} (%)	1.9	0.04

Acknowledgements

Biotechnology and Biological Sciences Research Council

THE UNIVERSITY of EDINBURGH The Royal (Dick) School of Veterinary Studies

	1 1-7	0.0	40
Protein yield (g)	M2	-0.2	-30
	M4	-0.2	-30

Work in progress

Understand the genomic landscape of inbreeding through genome-wide association analyses including dominance and ROH

Provide guidance for optimal contribution selection

Investigate impact of dominance on prediction accuracy

