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Tensor algebra is essential for data-intensive workloads in various computational domains. Computational

scientists face a trade-off between the specialization degree provided by dense tensor algebra and the algorith-

mic efficiency that leverages the structure provided by sparse tensors. This paper presents StructTensor, a

framework that symbolically computes structure at compilation time. This is enabled by Structured Tensor

Unified Representation (STUR), an intermediate language that can capture tensor computations as well as

their sparsity and redundancy structures. Through a mathematical view of lossless tensor computations, we

show that our symbolic structure computation and the related optimizations are sound. Finally, for different

tensor computation workloads and structures, we experimentally show how capturing the symbolic structure

can result in outperforming state-of-the-art frameworks for both dense and sparse tensor algebra.
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1 INTRODUCTION

Linear and tensor algebra are the key drivers of data-intensive computations in many domains,

such as physics simulations [Martín-García 2008; Ran et al. 2020], computational chemistry [Hirata

2006; Titov et al. 2013], bioinformatics [Cichocki et al. 2009], and deep learning [Hirata 2003; Smith

and Gray 2018]. Due to their importance, many specialization attempts have been made throughout

the entire system stack from hardware to software layers. The tensor accelerators [Hegde et al.

2019] and TPUs [Jouppi et al. 2017] provide efficient tensor processing at the hardware level. On

the software level, there have been advances in providing highly-tuned kernels [Dongarra et al.

1990], and compilation frameworks that globally optimize tensor computations [Gareev et al. 2018].

There is a trade-off for using tensor algebra frameworks between the specialization degree and

the flexibility of the structure such as sparsity (Figure 1). On one side of the spectrum, extensive

research has been done on dense tensors without leveraging any structure. Such tensors appear in

deep neural networks and computational physics. As all the memory access patterns are known at

compilation time, one can provide heavily-tuned implementations without any knowledge about
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Fig. 1. Comparison of different linear and tensor algebra frameworks.

the content of tensors. As a result, a high-performance engineer or compiler has enough reasoning

power to make decisions on parallelization, vectorization, and tiling.

However, many real-world applications involve tensors that exhibit specific structures (e.g.,

symmetry, lower/upper triangular, Toeplitz-like) which can be exploited to significantly reduce

computational costs. Sparse tensor algebra, for instance, only captures the pattern of zero/non-zero

elements in tensors at runtime, and has been at the centre of recent interest [Kjolstad et al. 2017;

Strout et al. 2018]. However, postponing decisions about memory access patterns to runtime hinders

the specialization power of compilers [Augustine et al. 2019].

Moreover, many real-world cases, such as using covariance matrices for training in machine

learning (ML), convolutions computed with Toeplitz-like matrices [Hansen 2002], population

growth modeled with Leslie matrices [Hansen 1989], pruned neural networks [Blalock et al. 2020],

and immutable graphs, have statically known structures. As a partial remedy, there have been

efforts [Spampinato and Püschel 2016; Tang et al. 2020a] to statically determine the structure of

matrices during the compilation time. However, these are limited to fixed-size matrices. In practice,

especially when dealing with machine learning problems, datasets often have varying dimensions.

Using fixed sizes during compilation has two major drawbacks. Firstly, any change in the data size

necessitates recompilation. Secondly, capturing intricate structures is challenging since structure

patterns are defined globally over the matrix. It is not possible to capture global patterns using a

divide-and-conquer approach and locally determined patterns using fixed-size windows. Therefore,

a new system capable of capturing structure for variable-size tensors is required.

To resolve the dilemma between using tensor algebra frameworks focusing on either dense or

sparse tensors (Figure 1), and also overcoming the fixed-size analysis limitations, this paper intro-

duces StructTensor. StructTensor provides compile-time tracking of sparsity and redundancy

structure in a symbolic way through various tensor operations on variable-sized tensors. On the one

hand, the underlying compiler can use this symbolic information to specialize the code at the level

of dense computations. On the other hand, the compiler can leverage this symbolic information

to eliminate unnecessary and redundant computation. StructTensor enables high-performance

computation for ML training over large volumes of data using structure propagation capabilities.

In StructTensor, all tensor computations and structure information are translated to a single in-

termediate language called Structured Tensor Unified Representation (STUR). STUR propagates the

structure throughout the computation at compile time, followed by efficient C++ code generation.

Specifically, we make the following contributions:

• We present StructTensor, the first framework that supports structured computation for

tensor algebra on variable-sized tensors (Section 3). For a tensor ) , the structure handled by

StructTensor comes as a pair ()* ,)'), where
– )* tracks the symbolic sparsity structure of the tensor,

– )' tracks the redundancy structure, which captures repetition patterns (e.g., symmetric).

• We propose STUR, a unified intermediate representation (IR) that can express structured and

non-structured tensor computations. It allows capturing non-optimized tensors as well as

their symbolic structures )* ,)' in a single IR (Section 4).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 229. Publication date: October 2023.
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4 ::= 4 · 4 | 4 ⊙ 4 | 4 ⊗ 4 | 4 + 4 | 4 ⊕ 4 | 4)

G General dense matrix

S Symmetric matrix

D Diagonal matrix

R= Matrix of non-zeros only at =Cℎ row

C= Matrix of non-zeros only at =Cℎ column

H=,< Matrix of non-zeros only at element [=] [<]
Z All zeros matrix

4: C=
4 · 4) : S

41: C= 42: R< = ≠<

41 · 42:Z
41: C= 42: R=
41 · 42: G

41: R= 42: C<
41·42:H=,<

41: R= 42: R<
41 · 42: R=

41: C= 42: C<
41 · 42: C<

41: D 42: D
41 ⊙ 42: D

41: D 42: D
41 ⊗ 42: D

41: D 42: D
41 · 42: D

41: D 42: D
41 ⊕ 42: D

Fig. 2. The grammar for structured linear algebra operations and a subset of structure inference rules.

• We show how StructTensor uses the structure information in its compilation process

(Section 5). It leverages STUR and rewrites tensors in 3 steps (also see Figure 4):

(1) StructTensor propagates the structure on the AST of the tensor computation (Section 5.1)

(2) Several optimizations are applied to the unified representation for tensor computations

and their structure leading to computations over a compressed tensor (Section 5.2)

(3) StructTensor generates C++ code for the tensor computation over the compressed form,

as well as reconstructing the uncompressed tensor (Section 5.5)

• We give a mathematical view on the problem of lossless tensor computations that we study

in this paper, and show the soundness of our rewrites and structure inference in Section 6.

• We experimentally evaluate StructTensor for different tensor workloads and structures

(Section 7).We show that StructTensor leverages the structure to generate computation over

compressed tensors and outperforms state-of-the-art dense and sparse tensor frameworks.

2 BACKGROUND

Structured LinearAlgebra. There are several well-known structures for matrices, such as diagonal,

symmetric, and lower/upper triangular. Incorporating these structures into matrix calculations can

significantly decrease computational time. Figure 2 represents a set of linear algebra operations

and well-known matrix structures.

Example - Diagonal Matrices Kronecker Product. Consider the example of the Kronecker

product between two diagonal matrices �=×= and �<×< :

(� ⊗ �) [<A + E] [<B +F] = �[A ] [B] · � [E] [F] (1)

where the resulting matrix has dimension =< × =<. Therefore, the computational cost would

be $ (=2<2). However, if the computation is structure-aware, one can leverage the fact that all

non-zero elements are on the diagonal of matrices. Therefore, it is sufficient to only perform the

multiplication over the diagonal, which results in the following computation:

(� ⊗ �) [<A + E] [<A + E] = �[A ] [A ] · � [E] [E] (2)

where the result is diagonal as well. As a result, the computational complexity for this Kronecker

product reduces to $ (=<). Furthermore, since the structure of the result is known (diagonal), this

information can be used in further computations efficiently. Figure 2 shows a subset of inference

rules that can be used to determine the output structure based on input structures.

Sparsity and Redundancy Structures. Structures that distinguish zero and non-zero values are

referred to as sparsity structures, such as diagonal and lower/upper triangular. Other structures like

symmetric and circulant can capture redundancy patterns and are thus referred to as redundancy

structures. By knowing the structures, it is possible to reconstruct the whole matrix by storing only

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 229. Publication date: October 2023.
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0 1 2 3 10 11 12 13 11 14 15 16 12 15 17 18 13 16 18 19
1 4 5 6 11 14 15 16 14 20 21 22 15 21 23 24 16 22 24 25
2 5 7 8 12 15 17 18 15 21 23 24 17 23 26 27 18 24 27 28
3 6 8 9 13 16 18 19 16 22 24 25 18 24 27 28 19 25 28 29
10 11 12 13 30 31 32 33 31 34 35 36 32 35 37 38 33 36 38 39
11 14 15 16 31 34 35 36 34 40 41 42 35 41 43 44 36 42 44 45
12 15 17 18 32 35 37 38 35 41 43 44 37 43 46 47 38 44 47 48
13 16 18 19 33 36 38 39 36 42 44 45 38 44 47 48 39 45 48 49
11 14 15 16 31 34 35 36 34 40 41 42 35 41 43 44 36 42 44 45
14 20 21 22 34 40 41 42 40 50 51 52 41 51 53 54 42 52 54 55
15 21 23 24 35 41 43 44 41 51 53 54 43 53 56 57 44 54 57 58
16 22 24 25 36 42 44 45 42 52 54 55 44 54 57 58 45 55 58 59
12 15 17 18 32 35 37 38 35 41 43 44 37 43 46 47 38 44 47 48
15 21 23 24 35 41 43 44 41 51 53 54 43 53 56 57 44 54 57 58
17 23 26 27 37 43 46 47 43 53 56 57 46 56 60 61 47 57 61 62
18 24 27 28 38 44 47 48 44 54 57 58 47 57 61 62 48 58 62 63
13 16 18 19 33 36 38 39 36 42 44 45 38 44 47 48 39 45 48 49
16 22 24 25 36 42 44 45 42 52 54 55 44 54 57 58 45 55 58 59
18 24 27 28 38 44 47 48 44 54 57 58 47 57 61 62 48 58 62 63
19 25 28 29 39 45 48 49 45 55 58 59 48 58 62 63 49 59 63 64

Fig. 3. The covariance matrix of Polynomial Regression degree-2. Its redundancy pa�ern is shown on the le�

and its unique elements in compressed format are on the right.

non-zero unique elements. The lower triangular part of a symmetric matrix, and the first column of

a circulant matrix are the unique elements of those matrices. Knowing and propagating structures

in many cases helps reduce computational costs [Spampinato and Püschel 2016].

Intricate Structures. The aforementioned well-known structures cannot cover more complicated

patterns. Consider the example of creating the covariance matrix for the polynomial regression

degree two model. Figure 3 shows the covariance matrix created for a polynomial regression

degree-two model on a vector of length 4. Various colors in this figure are used for visualization

purposes; elements with the same color/number have the same unique value. As it is represented

in Figure 3, there are only 65 distinct elements even though the covariance matrix dimension is

20 × 20. The redundancy pattern in this matrix is sophisticated and cannot be captured using the

existing well-known structures (e.g., symmetric). Utilizing such structure information enhances

the performance of machine learning tasks that require covariance matrix creation such as training

polynomial regression, PCA, and factorization machine models.1

Tensor Structures. The complicated structure of the mentioned covariance matrix can be captured

in the form of a higher-order tensor structure. StructTensor decomposes the covariance matrix

computation for higher-degree machine learning models into basic tensor operations. Then, it

captures the global structure across these basic operations by composing them non-trivially. For

example, the covariance matrix used for training a polynomial regression degree two contains

all degree-2, degree-3, and degree-4 interactions between features in itself. Redundancy occurs

because these interactions are calculated multiple times. For example, degree-2 interactions inside

the matrix form a symmetric structure. Degree-3 and degree-4 interactions have some complex

forms of redundancy as well as being symmetric. These interactions cover all the elements inside

the covariance matrix. By representing degree 8 interactions as a tensor of order-8 , the computation

can be done more efficiently. This way, the only unique elements in degree two, three, and four

tensors ) 2(8, 9),) 3(8, 9, :),) 4(8, 9, :, ;) reside in {) 2(8, 9) | 1 ≤ 8 ≤ 9 ≤ =}, {) 3(8, 9, :) | 1 ≤ 8 ≤ 9 ≤
: ≤ =}, {)4(8, 9, :, ;) | 1 ≤ 8 ≤ 9 ≤ : ≤ ; ≤ =}, respectively. This structure in the new data format

forms a generalized symmetric pattern that is easy to capture and leads to efficient computation. In

1We consider factorization-related optimizations, techniques that aim to improve the performance by leveraging low ranks

of tensors, orthogonal to structured tensors; our technique appears after such transformations, as can be seen in Section 7.5.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 229. Publication date: October 2023.
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Tensor 
Algebra

Input 
Structure

STUR STUR

(M 

C++STUR

C! Cm Rm 

for(int i=0; i<N1; i++)

  for(int j=0; j<N2; j++)

    int k = n;

    int l = m;

    double tmp = M[i][k]*

       U[k][l];

    T[i][j] += tmp *

       V[l][j];

return T;

Structure
Inference

(Section 5.1)

Optimization
(Section 5.2)

Code 
Generation

(Section 5.5)

Translation
(Section 4.2)

Tensor Algebra & Structure

in a unified IR 

Inferred Structures Optimized Program Generated C++ Code· U) · V  

Fig. 4. StructTensor architecture overview.

the following sections, it is explained how StructTensor handles sophisticated structures and

generates efficient C++ code for the computations.

3 OVERVIEW

In this section, the overall architecture of StructTensor is described (cf. Figure 4).

Input. StructTensor gets linear algebra and tensor algebra expressions, as well as the structure

of their tensor parameters as input. These operations and structures subsume the ones that are

mentioned in Figure 2. All tensor expressions, as well as their structures, are represented in

the StructTensor unified representation, called STUR. Sparsity and redundancy structures are

captured in a unique set and redundancy map, respectively. The unique set only contains non-zero

elements, and must contain each distinct value appearing in the original tensor. The redundancy

map represents the mapping from redundant and non-zero elements outside the unique set to their

corresponding value in the unique set. These two subsume polyhedral set and map data structures

that maintain the fixed-size and static structure information of matrices in LGen [Spampinato and

Püschel 2016] (SInfo and AInfo).

Structure Inference. Afterwards, we infer the structure of the intermediate and output tensor

expressions by propagating the structure through STUR. A predefined set of inference rules for

operations and structures is provided in STUR. We apply these rules to infer the output structure,

which is represented by a unique set and a redundancy map. The inference rules set is extensible to

cover arbitrary operations and structures as well.

Optimizations. Various optimizations are applied to STUR expressions. Throughout the struc-

ture inference process, several intermediate unique sets and redundancy maps are created. The

tensor inlining optimization removes intermediate sets and maps. Moreover, input structures and

previous optimizations by STUR can produce repetitive, trivial, or contradictory conditions over

iterators. Through logical simplifications, only distinct and relevant conditions are kept for the

code generation step.

CodeGeneration. Finally, the optimized STUR is fed to the C++ code generator. The code generator

assumes an order for iterators, calculates loop nest boundaries, and generates an efficient structure-

aware C++ code. The generated code performs the computations over compressed format with

lower computational cost thanks to the unique set. By utilizing the redundancy map, the final

output tensor can be reconstructed for the user.

Example - Polynomial Regression Degree-2.We consider the covariance matrix creation for

polynomial regression degree two. The covariance matrix for a vector of length = is defined as:

Σ(x) = x · x) = x ⊗ x

The multiplication of x with its transpose is equivalent to the outer product of x with itself, and

thus can be represented using the vector outer product operation ⊗. The vector x is formed by

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 229. Publication date: October 2023.
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concatenating the feature vector f with the vector obtained from the interaction of the features. In

terms of linear algebra, this is expressed as:

x = f ⊕ E42 (f ⊗ f)

Here, ⊕ is the vector concatenation, ⊗ is the vector outer product, and E42 (") flattens the matrix

" of size = ×< into a vector of size = ·<. By inlining the definition of x and using the distributive

property of vector concatenation over vector outer product, we have:

Σ(x) = (f ⊕ E42 (f ⊗ f)) ⊗ (f ⊕ E42 (f ⊗ f))
=

(

(f ⊗ f) | | (f ⊗ E42 (f ⊗ f))
)

//
(

(E42 (f ⊗ f) ⊗ f) | | (E42 (f ⊗ f) ⊗ E42 (f ⊗ f))
)

The operations | | and // correspond to matrix horizontal and vertical concatenation, respectively.

StructTensor improves the performance for this computation in two levels of granularity. At

the coarse-level, it applies common sub-expression elimination at the addition level and detects

that (f ⊗ E42 (f ⊗ f)) and (E42 (f ⊗ f) ⊗ f) are computing the same elements but in a different layout.

Thus, it only performs one of the computations, and it is sufficient to compute the following vector

outer product terms:

"1 = f ⊗ f

"2 = f ⊗ E42 (f ⊗ f)
"3 = E42 (f ⊗ f) ⊗ E42 (f ⊗ f)

At a finer-level, for each of the terms"1, "2, "3, StructTensor detects a generalized symmetric

structure. For"1, it detects a standard symmetric structure where it is sufficient to only keep the

upper half of the matrix. For"2 and"3, there are ∼ 5× and ∼ 23× redundant elements, the patterns

of which can be seen in Figure 3. To be more specific, StructTensor reduces the total number

of elements from =4 + 2=3 + =2 to =4+10=3+35=2+26=
24

. After inferring such structures, StructTensor

generates the following C++ code for each of these terms:

/ / Computa t i on f o r M1

for ( in t i = 0 ; i <n ; ++ i ) {

for ( in t j = i ; j <n ; ++ j ) {

M1[ i ] [ j ]= f [ i ] ∗ f [ j ] ;

} }

/ / Computa t i on f o r M2

for ( in t i = 0 ; i <n ; ++ i ) {

for ( in t j = i ; j <n ; ++ j ) {

for ( in t k= j ; k<n ; ++k ) {

in t c o l = j ∗n+k ;

M2[ i ] [ c o l ]= f [ i ] ∗ f [ j ] ∗ f [ k ] ;

} } }

/ / Computa t i on f o r M3

for ( in t i = 0 ; i <n ; ++ i ) {

for ( in t j = i ; j <n ; ++ j ) {

for ( in t k= j ; k<n ; ++k ) {

for ( in t l =k ; l <n ; ++ l ) {

in t r = i ∗n+ j ;

in t c=k ∗n+ l ;

M3[ r ] [ c ]= f [ i ] ∗ f [ j ] ∗ f [ k ] ∗ f [ l ] ;

} } } }

Note that the nested iterations only cover a subset of the full range, which is when all iterators are

from 0 to =. The generated loop bounds are computed based on the unique sets. We will elaborate

on this in Section 5.

In the next sections, we will thoroughly elaborate on how StructTensor works.

4 STUR: STRUCTURED TENSOR UNIFIED LANGUAGE

In this section, we present the syntax of the unified intermediate representation, STUR. We detail

the grammar for unique sets, redundancy maps, and compressed tensor computations in this section.

Moreover, we elaborate on the representation of linear algebra in STUR in this section.

4.1 The Syntax of STUR

Grammar. Figure 5 shows the grammar of STUR, which covers the grammar for tensors, unique

sets, and redundancy maps computations. Each program (% ) is made of several rules ('). Each rule

is in the form of an assignment from a body (�) to access to a collection (�). The collection can be

a tensor () ), compressed tensor ()� ), unique set ()* ), or redundancy map ()'), whereas the access

index can be multiple index variables (- ), an index variable, or a constant value. The assignment

body is represented as a sum of factor products (� ). Each factor restricts the domain of values that

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 229. Publication date: October 2023.
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Program ? ::= A | A ; ? List of rules.

Rule A ::= � := � Head (access) and body (Sum of Products).

Body � ::= 5 | 5 + � Sum of factor products.

Factor 5 ::= 4 | 4 ∗ 5 Product of expressions.

Expression 4 ::= G \ 8 | 8 \ G | � Comparison (\ ∈ {<, ≤,=, ≥, >}) or access.
Index 8 ::= G | 2 | 8 ⋄ 8 Variable, constant, or arithmetic (⋄) over indices.
Access � ::= ) (G ) | )� (G ) | Tensor, compressed tensor,

)* (G ) | )'(G ) unique set, and redundancy map access.

Fig. 5. Grammar of STUR. The meta variables G and) range over the name of indices and tensors, respectively.

) (G1, . . . , G=) := 4
�+ () (G1, . . . , G=)) ⊆ �+ (4)

�+ () (G1, . . . , G=)) = {G1, . . . , G=}

�+ (41 + 42) = �+ (41) ∩ �+ (42)
�+ (41 ∗ 42) = �+ (41) ∪ �+ (42)
�+ (C1 ⋄ C2) = �+ (C1) ∪ �+ (C2)

�+ (G\C) = {G} ∪ �+ (C)
�+ (G) = {G}
�+ (2) = ∅

Fig. 6. Free variable rules.

an index variable can have. This is achieved through a collection access or a comparison term. STUR

treats tensors and compressed tensors as multi-dimensional arrays. Unique sets and redundancy

maps are considered as sets in STUR. When a computation involves multiplying a set by a tensor,

only the values in that tensor corresponding to the specified set will be used in computations.

Example - Simple Tensor Operation. Consider the following STUR program:

)3 (G,~) := )1 (G,~) ∗)2 (G,~)
)4 (G) := )3 (G,~) ∗ (G = ~)

This program consists of two rules, with two input tensors )1 and )2. The first rule constructs an

order-2 tensor )3, i.e. a matrix, which is computed by performing an element-wise multiplication

of the two input matrices. The second rule constructs an order-1 tensor, i.e. a vector, that contains

the elements of the diagonal of the matrix )3. This is achieved by (1) restricting the range of G and

~ by the comparison term G = ~, and (2) existentially quantifying over ~ by not including it in the

head of the rule. The second step sums over the second dimension after the range is restricted.

Sum-of-Product Semantics. The addition and multiplication in STUR are defined based on the

underlying collection; when the domains of two collections overlap, for unique sets and redundancy

maps, the addition and multiplication are defined as set union and intersection, whereas, for tensors

and compressed tensors, they are defined as real number addition and multiplication. When the

domain of two collections is disjoint, addition is impossible, and multiplication will act as an outer

product; tensor outer product for tensors and cartesian product for sets. Each rule can existentially

quantify the free variables of the body by not including them in the rule head. This is done by

summing over the dimensions corresponding to the free variables. This is known asmarginalization

in the AI community. All the free variables in the head must be defined in the body (cf. Figure 6).

Example - Problematic Addition. To better illustrate the free variable rules, consider:

) 1(8) := ) 2(8, 9) +) 3(8, :)

where) 2(8, 9) := "2(8, 9) ∗ (0 ≤ 8 < =) ∗ ( 9 = 8) and) 3(8, :) := "3(8, :) ∗ (= ≤ 8 < 2 ∗ =) ∗ (: = 8).
In this computation, : is unbounded for )2, and 9 is unbounded for )3. Therefore, if we do not

sum over : in ) 2 and 9 in ) 3, it is impossible to perform the computation.

Syntactic Sugar. To simplify the presentation, we consider the following syntactic sugar, where x

corresponds to a list of arguments G1, . . . , G: :

(0 ≤ G < 2) ≡ (0 ≤ G) ∗ (G < 2)
(G = ~ = I) ≡ (G = ~) ∗ (~ = I)

x\b ≡ (G1\11) ∗ . . . ∗ (G:\1: )
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Unique Sets. The sparsity structure of all the distinct elements of a tensor is encoded in a unique

set. The grammar of STUR already captures the definition of unique sets (cf. Figure 5); a unique

set is provided as a sum of products of comparison factors or access to other unique sets (and

redundancy maps). Unique sets enhance performance by restricting index boundaries for structured

tensors. For unstructured tensors, the whole tensor is stored in its unique set, and the dimensions

of the tensor are then given as input to its unique set.

Example - Chess Pattern Unique Set. We elaborate on the aforementioned definitions through

an example. Consider the case of a matrix ) of size< × = with a chess-board sparsity pattern. The

set comprehension representation of a unique set for this matrix is:

*=8@D4(4C := {(8, 9) | (0 ≤ 8′ < (</2)) ∧ (0 ≤ 9 ′ < (=/2)) ∧ (8 = 8′ ∗ 2) ∧ ( 9 = 9 ′ ∗ 2 + 1)}∪
{(8, 9) | (0 ≤ 8′ < (</2)) ∧ (0 ≤ 9 ′ < (=/2)) ∧ (8 = 8′ ∗ 2 + 1) ∧ ( 9 = 9 ′ ∗ 2)}

The first set specifies the elements of the even rows (with an odd column index), and the second one

specifies the ones for odd rows (with an even column index). In STUR, the ∧/∩ and ∪/∨ operators

are translated to ∗ and +, respectively. Therefore the described unique set is translated to:

)* (8, 9) := (0 ≤ 8′ < (</2)) ∗ (0 ≤ 9 ′ < (=/2)) ∗ (8 = 8′ ∗ 2) ∗ ( 9 = 9 ′ ∗ 2 + 1) +
(0 ≤ 8′ < (</2)) ∗ (0 ≤ 9 ′ < (=/2)) ∗ (8 = 8′ ∗ 2 + 1) ∗ ( 9 = 9 ′ ∗ 2)

Here, 8′ and 9 ′ are free variables that appear on the right-hand side but do not appear on the head.

Thus, we existentially quantify over 8′ and 9 ′, which is achieved by summing over them in STUR.

Redundancy Maps. The remaining non-zero elements that do not appear in the unique set domain

are covered by the redundancy map. A redundancy map keeps the association between these

repetitive elements’ indices and their corresponding indices in the unique set. Similar to the unique

set, it is represented as a sum of products of comparison factors or access to other unique sets

and redundancy maps. For a tensor of order-: , the redundancy map has 2: index variables. The

first : index variables correspond to the indices of the redundant elements, whereas the second :

ones correspond to the indices from the unique set. The redundancy map enables the capability of

reconstructing the full matrix from the compressed version that only contains unique elements.

Restricting the computations to the elements of the unique set and reconstructing the uncompressed

final result once, when all the calculation is over, can significantly improve the performance.

Example - Identical Row Matrix Redundancy Map. Consider a matrix ) of size< × =, where
all rows are the same. The unique set and redundancy maps for this matrix are defined as follows:

)* (8, 9) := (8 = 0) ∗ (0 ≤ 9 < =)
)' (8, 9, 8

′, 9 ′) := (0 < 8 < <) ∗ (0 ≤ 9 < =) ∗ (8′ = 0) ∗ ( 9 ′ = 9)

The first rule specifies that the unique elements are only in the first row (8 = 0). The first factor of

the second rule (0 < 8 < <) restricts the range of redundant elements to the ones from all the rows

except the first one. The last two terms specify the index of the element from the unique set by

specifying the first row (8′ = 0) and the same column as the redundant element ( 9 ′ = 9 ).

Compressed Tensor. StructTensor leverages the structure for better performance by represent-

ing the tensor in a lossless compressed format. This is achieved by combining the original tensor

with the unique set to extract only the unique elements. The compressed tensor )� for the original

tensor ) is defined as:

)� (x) := ) (x) ∗)* (x)

Naïvely executing the computation using this formula can even make the performance worse.

After performing simplifications, the code generator produces code that iterates over the domain

provided by the unique set for operations and excludes all the other elements of that tensor. This

way, no extra computational cost is imposed while computing the result. When the computation is

done, the uncompressed tensor ) is retrievable by using )' .
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⟦4)⟧(8, 9) := ⟦4⟧( 9, 8)
⟦41 + 42⟧(8, 9) := ⟦41⟧(8, 9) + ⟦42⟧(8, 9)
⟦41 · 42⟧(8, 9) := ⟦41⟧(8, :) ∗ ⟦42⟧(:, 9)
⟦41 ⊙ 42⟧(8, 9) := ⟦41⟧(8, 9) ∗ ⟦42⟧(8, 9)
⟦41 ⊗ 42⟧(8, 9) := ⟦41⟧

(

8′, 9 ′
)

∗ ⟦42⟧
(

8′′, 9 ′′
)

where (<,=) = 38<B (42),
8′ =

⌊

8/<
⌋

, 9 ′ =
⌊

9/=
⌋

8′′ = 8%<, 9 ′′ = 9%=

⟦41 ⊕ 42⟧(8, 9) := ⟦41⟧(8, 9) + ⟦42⟧
(

8′, 9 ′
)

where (<,=) = 38<B (41)
8′ = 8 −< , 9 ′ = 9 − =

⟦41 · 42⟧() := ⟦41⟧(8) ∗ ⟦42⟧(8)
⟦41 + 42⟧(8) := ⟦41⟧(8) + ⟦42⟧(8)
⟦41 ⊕ 42⟧(8) := ⟦41⟧(8) + ⟦42⟧

(

8′
)

where (=) = 38<B (41), 8
′
= 8 − =

⟦41 ⊗ 42⟧(8, 9) := ⟦41⟧(8) ∗ ⟦42⟧( 9)

Fig. 7. Representation of linear algebra operations in STUR. Here, · and ⊗ are overloaded; they correspond to

matrix multiplication/Kronecker product for matrices and inner/outer product for vectors, respectively.

4:Z
)* (8, 9) := ∅

4: G
)* (8, 9) := (0 ≤ 8 < <) ∗ (0 ≤ 9 < =)

4:H=1,=2 0 ≤ =1 < < 0 ≤ =2 < =

)* (8, 9) := (8 = =1) ∗ ( 9 = =2)
4: D < = =

)* (8, 9) := (0 ≤ 8 < =) ∗ (8 = 9)

4: RA 0 ≤ A < <
)* (8, 9) := (8 = A ) ∗ (0 ≤ 9 < =)

4: C2 0 ≤ 2 < =
)* (8, 9) := (0 ≤ 8 < <) ∗ ( 9 = 2)

4: S < = =

)* (8, 9) := (0 ≤ 8 ≤ 9 < =)
)' (8, 9, 8

′, 9 ′) := (0 ≤ 9 < 8 < =) ∗
(8′ = 9) ∗ ( 9 ′ = 8)

Fig. 8. Representation of well-knownmatrix structures in STUR. In all cases, ⟦4⟧= ) and)* and)' correspond

to its unique set and redundancy map, respectively. Furthermore, we assume that (<,=) = 38<B (4) for all
cases and )' (8, 9, 8

′, 9 ′) := ∅ unless stated explicitly. For the definition of the different structures, cf. Figure 2.

Example - Upper Triangular Matrix Compressed Tensor. A = × = upper triangular matrix

compressed tensor is calculated as follows:

)* (8, 9) := (0 ≤ 8 ≤ 9 < =)
)� (8, 9) := ) (8, 9) ∗ (0 ≤ 8 ≤ 9 < =)

When ) (8, 9) appears in a computation, the optimizer converts it to )� (8, 9) and only uses elements

with 0 ≤ 8 ≤ 9 < =. Therefore, only half of the elements are used in the computation, which leads

to a ∼ 2× speed up.

4.2 Translating Structured Linear Algebra to STUR

Operations. The representation of linear algebra operations is shown in Figure 7. Imagine the

matrices "1 and "2 with dimensions<1 × =1 and<2 × =2 are represented in STUR as ⟦41⟧ and
⟦42⟧, respectively. ⟦41 • 42⟧(8, 9) represents the element at row 8 column 9 of"1 •"2, where • is an

operator. Each operation is translated to a sum of product format in STUR. For instance, if • = ⊕,
then the direct sum of"1 and"2 is translated by the top-right rule in Figure 7. This rule specifies

that an element at the position (8, 9) in the output is taken from ⟦41⟧ when 8 < < and 9 < = and

from ⟦42⟧ when 8 ≥ < and 9 ≥ =.
Structures. Figure 8 shows the representation of well-known matrix structures in STUR. Structures

are translated to a combination of a unique set and a redundancy map. For example, if a matrix

" has a symmetric structure, the upper triangular section of that is counted as the unique set.

Therefore, the lower triangular region is considered as the redundant section; the redundancy map

keeps the transformations from the lower triangular region to the corresponding upper region.

Hence, if the representation of" in STUR is ) , the unique set and redundancy map are provided

by the last rule of Figure 8. When 9 < 8 , according to )' (8, 9, 8
′, 9 ′), the values of ) (8, 9) will be

retrieved from values in ) ( 9, 8).
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Algorithm 1 Overview of Compilation and Code Generation Algorithm

1: function compile(8=?DCB* , 8=?DCB' , 4G?A , 5 ;06B)

2: 4G?A ← normalize(4G?A )

3: 4G?A* , 4G?A' ← structure_inference(4G?A )

4: 4G?A� ← compress(4G?A, 4G?A* , 4G?A')

5: 4G?A� , 4G?A' ← inline(4G?A� , 4G?A', 8=?DCB* , 8=?DCB')

6: 4G?A ′
�
← reconstruct(4G?A� , 4G?A')

7: 4G?A� , 4G?A
′
�
← logical_simplification(4G?A� , 4G?A

′
�
)

8: return code_gen(4G?A� , 5 ;06B) + code_gen(4G?A ′
�
, 5 ;06B)

9: end function

) (x) := " (~) ∗+ (z) x = ~ ∪ z
)* (x) := "* (~) ∗+* (z)

) (x) := " (x) ++ (x)
)* (x) := "* (x) ++* (x)

) (x) := " (~) x ⊆ ~

)* (x) := "* (~)

Fig. 9. Inference rules for unique sets. The redundancy maps of the inputs are empty. x ,~, and z represent the

sequence of variables for tensor accesses ) ," , and + and their corresponding unique sets, )* ,"* , and +* .

5 COMPILATION

In this section, we show how StructTensor symbolically computes and propagates the structure.

Optimizing the tensor computation using the inferred structure leads to structure-aware code

generation. A pseudocode for the compilation algorithm is provided in Algorithm 1.

5.1 Structure Inference

Inference for Unique Sets. Figure 9 shows the inference rules for the output structure. These

rules follow the assumption that input redundancy maps are empty and only capture sparsity

patterns. Since all operations are translated to multiplication, addition, or projection in STUR,

providing inference rules only for these operations is sufficient. Moreover, having more than two

operands is handled by breaking them into sub-expressions with two operands and storing the

results in intermediate sets. This procedure is called normalization (cf. Algorithm 1, line 2).

In the case of multiplication, the result is non-zero only if both inputs are non-zero values. Having

a zero operand in multiplication makes the final result zero. Therefore, the unique set of output

is calculated from the intersection of non-zero elements in both operands. Addition on the other

hand is non-zero even if one of the operands is non-zero. Hence, any element in the unique set of

operands can lead to a non-zero element in the output. Consequently, the unique set of output is

the union over the unique set of its operands. Since projection is defined by summing up all values,

it follows the same rule as addition. Any non-zero element in the unique set of the input can create

a non-zero element in the output. So the output unique set for projection is computed by the union

over all unique set values in that dimension (cf. Algorithm 1, line 3).

Example - Unique Set Computation. Consider the following tensor computation:

�(8, 9) := �(8, :) ∗� (:, 9) + � (8, 9)

where all the inputs are = × = diagonal matrices. Therefore, input unique sets are:
�* (8, :) := (0 ≤ 8 < =) ∗ (0 ≤ : < =) ∗ (8 = :)
�* (:, 9) := (0 ≤ : < =) ∗ (0 ≤ 9 < =) ∗ (: = 9)
�* (8, 9) := (0 ≤ 8 < =) ∗ (0 ≤ 9 < =) ∗ (8 = 9)

StructTensor will normalize the computation and infers the unique set as follows:
(1) � (8, 9, :) := �(8, :) ∗� (:, 9) �* (8, 9, :) := �* (8, :) ∗�* (:, 9)
(2) � (8, 9) := � (8, 9, :) �* (8, 9) := �* (8, 9, :)
(3) �(8, 9) := � (8, 9) + � (8, 9) �* (8, 9) := �* (8, 9) + �* (8, 9)
By applying inlining and logical simplifications, the unique sets can be computed as follows:
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Special Cases:

) (x) := " (~) ∗" (z) x = ~ ∪ z ~ ∩ z = ∅ x′
= ~′ ∪ z′ ~′ ∩ z′ = ∅

)* (x) := "* (~) ∗"* (z) ∗ (~ ≤ z)
)' (x, x

′) := "' (~,~
′) ∗"' (z, z

′) +"* (~) ∗ (~ = ~′) ∗"' (z, z
′)+

"' (~,~
′) ∗"* (z) ∗ (z = z′) +"* (~) ∗ (~ = ~′) ∗"* (z) ∗ (z = z′) ∗ (~ > z)

) (x) := " (~) ∗+ (z) x = ~ ∪ z ~ ∩ z = ∅ x′
= ~′ ∪ z′ ~′ ∩ z′ = ∅

)* (x) := "* (~) ∗+* (z)
)' (x, x

′) := "' (~,~
′) ∗+' (z, z

′) +"* (~) ∗ (~ = ~′) ∗+' (z, z
′) +"' (~,~

′) ∗+* (z) ∗ (z = z′)

) (x) := " (x) ++ (x) "* (x) = +* (x) "' (x, x
′) = +' (x, x

′)
)* (x) := "* (x)

)' (x, x
′) := "' (x, x

′)

) (x) := " (x) ++ (x) "* (x) ∩+* (x) = ∅ "' (x, x
′) ∩+' (x, x

′) = ∅
)* (x) := "* (x) ++* (x)

)' (x, x
′) := "' (x, x

′) ++' (x, x
′)

) (x) := + (~) ∗ (~ = x − d)
)* (x) := +* (~) ∗ (~ = x − d)

)' (x, x
′) := +' (~,~

′) ∗ (~ = x − d) ∗ (~′
= x′ − d)

) (G) := 1 ≤ G < 2

)* (G) := G = 1

)' (G, G
′) := (1 < G < 2)∗G ′ = 1

General Cases:

) (x) := " (~) ∗+ (z) x = ~ ∪ z x′
= ~′ ∪ z′

)* (x) := "* (~) ∗+* (z) +"* (~) ∗+' (z, z
′) +"' (~,~

′) ∗+* (z)
)' (x, x

′) := "' (~,~
′) ∗+' (z, z

′)

) (x) := " (x) ++ (x)
)* (x) := "* (x) +"' (x, x

′) ++* (x) ++' (x, x
′)

)' (x, x
′) := ∅

) (x) := " (~) x ⊆ ~

)* (x) := "* (~) +"' (~,~
′)

)' (x, x
′) := ∅

Fig. 10. Inference rules for unique sets and redundancy maps. The priority for the rules is top-down. The

default case considers )' (x, x
′) := ∅ and )* (x) := ⌊) (G)⌋ (cf. Section 6). The last three rules subsume the

ones shown in Figure 9.

�* (8, 9, :) := (0 ≤ 8 < =) ∗ (0 ≤ : < =) ∗ (8 = :) ∗ (0 ≤ : < =) ∗ (0 ≤ 9 < =) ∗ (: = 9)
:= (0 ≤ 8 < =) ∗ (0 ≤ 9 < =) ∗ (0 ≤ : < =) ∗ (8 = 9 = :)

�* (8, 9) := (0 ≤ 8 < =) ∗ (0 ≤ 9 < =) ∗ (0 ≤ : < =) ∗ (8 = 9 = :)
:= (0 ≤ 8 < =) ∗ (0 ≤ 9 < =) ∗ (8 = 9)

�* (8, 9) := (0 ≤ 8 < =) ∗ (0 ≤ 9 < =) ∗ (8 = 9) + (0 ≤ 8 < =) ∗ (0 ≤ 9 < =) ∗ (8 = 9)
:= (0 ≤ 8 < =) ∗ (0 ≤ 9 < =) ∗ (8 = 9)

The final unique set specifies a diagonal structure, as expected.

Inference for Redundancy Maps. The redundancy map of the output is required to have access

to every element in the output tensor and reconstruct it. Figure 10 shows the rules to infer output

redundancy map and unique sets. The rules for the tensor outer product, addition, direct sum, and

repetition are provided. The cases where there is no rule in Figure 10 are handled as follows. First,

the redundancy maps of inputs are set to empty by combining all non-zero elements from the

unique set and the redundancy map into the unique set. Then, rules from Figure 9 are applied to

the computation to calculate their unique set (cf. Algorithm 1, line 3).
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) (x) := " (x) ++ (x)
"* (x) = +* (x) "' (x, x

′) = +' (x, x
′)

)� (x) := "� (x) ∗"* (x) ++� (x) ∗"* (x)

) (x) := " (~) x ⊆ ~

)� (x) := "* (~) ∗"� (~) +
"' (~,~

′) ∗"� (~
′)

Fig. 11. A subset of inference rules for compressed tensors. All compression rules (except the le� rule in this

figure) can be constructed from the unique set rules (cf. Figure 10). This is achieved by applying the following

modifications (as can be seen in the second rule of this figure): 1) replace"* (x) with"� (x) ∗"* (x) and 2)

replace"' (x, x
′) with"� (x

′) ∗"' (x, x
′). The default case considers )� (x) := )* (x) ∗) (x).

Tensor Compression. By using the inferred unique sets and redundancy maps, StructTensor

computes the compressed tensor (cf. Algorithm 1, line 4). Figure 11 shows a subset of inference

rules for compressed tensor computation. The compressed tensor for an input is simply computed

by multiplying it by its unique set. The expression corresponding to the reconstruction of tensor

) (x) from unique elements is created by multiplying ) (x′) by )' (x, x
′) (cf. Algorithm 1, line 6).

Example - Structure Inference. Assume the following definition:

) (G1, G2, G3, G4, G5) := " (G1, G2, G3) ∗+ (G4, G5)

Furthermore, consider the dimensions as (3,3, 3) = 38<B (") and (=, =) = 38<B (+ ). Imagine" and

+ have a diagonal and symmetric structures respectively. Therefore, the unique set, redundancy

map, and compressed tensor of inputs are:
"* (G1, G2, G3) := (0 ≤ G1 < 3) ∗ (0 ≤ G2 < 3) ∗ (0 ≤ G3 < 3) ∗ (G1 = G2 = G3)

+* (G4, G5) := (G4 ≤ G5) ∗ (0 ≤ G4 < =) ∗ (0 ≤ G5 < =)
"' (G1, G2, G3, G

′
1
, G ′

2
, G ′

3
) := ∅

+' (G4, G5, G
′
4
, G ′

5
) := (G4 > G5) ∗ (0 ≤ G4 < =) ∗ (0 ≤ G5 < =) ∗ (G

′
4
= G5) ∗ (G

′
5
= G4)

"� (G1, G2, G3) := " (G1, G2, G3) ∗ (0 ≤ G1 < 3) ∗ (0 ≤ G2 < 3) ∗
(0 ≤ G3 < 3) ∗ (G1 = G2 = G3)

+� (G4, G5) := + (G4, G5) ∗ (G4 ≤ G5) ∗ (0 ≤ G4 < =) ∗ (0 ≤ G5 < =)
By following the second rule in Figure 10, StructTensor infers the output unique set, redundancy

map, and compressed tensor as follows:
)* (G1, G2, G3, G4, G5) := "* (G1, G2, G3) ∗+* (G4, G5)
)' (G1, G2, G3, G4, G5, := "' (G1, G2, G3, G

′
1
, G ′

2
, G ′

3
) ∗+' (G4, G5, G

′
4
, G ′

5
) +

G ′
1
, G ′

2
, G ′

3
, G ′

4
, G ′

5
) "* (G1, G2, G3) ∗+' (G4, G5, G

′
4
, G ′

5
)∗(G ′

1
= G1) ∗ (G

′
2
= G2) ∗ (G

′
3
= G3) +

"' (G1, G2, G3, G
′
1
, G ′

2
, G ′

3
) ∗+* (G4, G5)∗(G

′
4
= G4) ∗ (G

′
5
= G5)

)� (G1, G2, G3, G4, G5) := "� (G1, G2, G3) ∗"* (G1, G2, G3) ∗+� (G4, G5) ∗+* (G4, G5)
Sound Reasoning. We focused on our inference rules being sound rather than complete. This

means that our approach to the unique set and redundancy map is conservative; thus we consider

the elements that might be non-zero after computation as non-zero since we do not know the

actual values of tensors in compile time. For example, if tensor ) 1 and ) 2 include values −1 and 1

in their 0-th index, the zero values resulted by )1 +)2 in the 0-th index (and possibly, any other

index) will be treated as non-zero. Thus, StructTensor will perform computations using these

zero values to make sure the computation is correct.

Extensions. The set of rules provided in Figures 9-11 is minimal and meant to be extensible.

For example, the rule for self-multiplication can be easily extended to consider higher-degree

self-multiplications. The idea is that our rewriting system will always choose the most specialized

(and therefore optimizing) rule first.
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5.2 Optimizations

Rule Inlining. The intermediate compressed tensors, unique sets, and redundancy maps are

materialized. Inlining these definitions can improve performance in various ways. First, one can

avoid the materialization overhead. Second, inlining is a transformation enabling opportunities

for further optimizations such as common sub-expression elimination. During inlining, the tensor

index variable needs to be alpha renamed to avoid capturing free variables (cf. Algorithm 1, line 5).

Logical Simplifications. After inlining, the factors inside unique sets, redundancy maps, and

compressed tensors might be repetitive or result in ∅ or other simple rules. Logical simplification

removes repetitive conditions. For instance,� (G) ∗� (G) → � (G) where� (G) is a boolean. Further-
more, there could be contradicting conditions that will result in ∅ (e.g., (0 ≤ 1) ∗ (0 > 1) leads to
∅). ∅ acts as an absorbing element for multiplication (i.e., ∅ ∗ 4 = ∅), and it is the neutral element

for addition (i.e., ∅ + 4 = 4). We use a fixed-point bottom-up traversal strategy to detect and apply

them (cf. Algorithm 1, line 7).

Example - Structure Optimization. Continuing the previous example, after inlining, the unique

set, redundancy map, and compressed tensor are transformed as follows:
)* (G1, G2, G3, G4, G5) := (0 ≤ G1 < 3) ∗ (0 ≤ G2 < 3) ∗ (0 ≤ G3 < 3) ∗ (G1 = G2 = G3) ∗

(G4 ≤ G5) ∗ (0 ≤ G4 < =) ∗ (0 ≤ G5 < =)
)' (G1, G2, G3, G4, G5, := ∅ ∗ (G4 > G5) ∗ (0 ≤ G4 < =) ∗ (0 ≤ G5 < =) ∗ (G

′
4
= G5) ∗ (G

′
5
= G4) +

G ′
1
, G ′

2
, G ′

3
, G ′

4
, G ′

5
) (0 ≤ G1 < 3) ∗ (0 ≤ G2 < 3) ∗ (0 ≤ G3 < 3) ∗ (G1 = G2 = G3) ∗

(G4 > G5) ∗ (0 ≤ G4 < =) ∗ (0 ≤ G5 < =) ∗ (G
′
4
= G5) ∗ (G

′
5
= G4) ∗

(G ′
1
= G1) ∗ (G

′
2
= G2) ∗ (G

′
3
= G3) +

∅ ∗ (G4 ≤ G5) ∗ (0 ≤ G4 < =) ∗ (0 ≤ G5 < =) ∗ (G
′
4
= G4) ∗ (G

′
5
= G5)

)� (G1, G2, G3, G4, G5) := " (G1, G2, G3) ∗ (0 ≤ G1 < 3) ∗ (0 ≤ G2 < 3) ∗ (0 ≤ G3 < 3) ∗
(G1 = G2 = G3) ∗ (0 ≤ G1 < 3) ∗ (0 ≤ G2 < 3) ∗ (0 ≤ G3 < 3) ∗
(G1 = G2 = G3) ∗+ (G4, G5) ∗ (G4 ≤ G5) ∗ (0 ≤ G4 < =) ∗
(0 ≤ G5 < =) ∗ (G4 ≤ G5) ∗ (0 ≤ G4 < =) ∗ (0 ≤ G5 < =)

By further simplifying the redundancy map by propagating the rules for ∅, we obtain:
)' (G1, G2, G3, G4, G5, := (0 ≤ G1 < 3) ∗ (0 ≤ G2 < 3) ∗ (0 ≤ G3 < 3) ∗ (G1 = G2 = G3) ∗
G ′
1
, G ′

2
, G ′

3
, G ′

4
, G ′

5
) (G4 > G5) ∗ (0 ≤ G4 < =) ∗ (0 ≤ G5 < =) ∗ (G

′
4
= G5) ∗ (G

′
5
= G4) ∗

(G ′
1
= G1) ∗ (G

′
2
= G2) ∗ (G

′
3
= G3)

) is diagonal on the first three dimensions and symmetric on the last two of them, as expected.

Also, by further simplifying the compressed tensor by propagating� (G) ∗� (G) → � (- ), we obtain:
)� (G1, G2, G3, G4, G5) := " (G1, G2, G3) ∗ (0 ≤ G1 < 3) ∗ (0 ≤ G2 < 3) ∗ (0 ≤ G3 < 3) ∗

(G1 = G2 = G3) ∗+ (G4, G5) ∗ (G4 ≤ G5) ∗ (0 ≤ G4 < =) ∗ (0 ≤ G5 < =)

5.3 Use Case 1: Structured Linear Algebra

In this section, we show that StructTensor can recover the output structure of linear algebra

operations by using the inference and optimization rules presented earlier.

Example - Upper Triangular Hadamard Product by Symmetric (UHS). Assume two square

matrices " and # with dimension = × = and with upper triangular and symmetric structures,

respectively. The element-wise multiplication is represented in STUR as follows:

�(8, 9) := " (8, 9) ∗ # (8, 9)

The unique sets and redundancy maps of the input matrices are represented as follows:
"* (8, 9) := (0 ≤ 8 ≤ 9 < =)
#* (8, 9) := (0 ≤ 8 ≤ 9 < =)

"' (8, 9, 8
′, 9 ′) := ∅

#' (8, 9, 8
′, 9 ′) := (0 ≤ 9 < 8 < =) ∗ (8′ = 9) ∗ ( 9 ′ = 8)
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The output unique set will be:
�* (8, 9) := "* (8, 9) ∗ #* (8, 9) +"* (8, 9) ∗ #' (8, 9, 8

′, 9 ′) +"' (8, 9, 8
′, 9 ′) ∗ #* (8, 9)

(inlining) :=
(

(0 ≤ 8 ≤ 9 < =) ∗ (0 ≤ 8 ≤ 9 < =)
)

+
(

(0 ≤ 8 ≤ 9 < =) ∗ (0 ≤ 9 < 8 < =) ∗ (8′ = 9) ∗ ( 9 ′ = 8)
)

+
(

∅ ∗ (0 ≤ 8 ≤ 9 < =)
)

(simplification) := (0 ≤ 8 ≤ 9 < =) + ∅ + ∅
:= (0 ≤ 8 ≤ 9 < =)

Example - Row Matrix Multiplied by Diagonal (RMD). Consider an < × = row matrix " ,

which only has elements in its A -th row, that is being multiplied by an = × = diagonal matrix # .

The computation is expressed as:

�(8, 9) := " (8, :) ∗ # (:, 9)

The unique set and redundancy maps are as follows:
"* (8, :) := (8 = A ) ∗ (0 ≤ : < =), "' (8, :, 8

′, : ′) := ∅
#* (:, 9) := (: = 9) ∗ (0 ≤ 9 < =), #' (:, 9, :

′, 9 ′) := ∅
Since there is no redundancy map, the rules of Figure 9 are enough to infer the output unique set.

The output redundancy map is naturally ∅. Therefore, the output unique set is:
�* (8, 9) := "* (8, :) ∗ #* (:, 9)

(inlining) := (8 = A ) ∗ (0 ≤ : < =) ∗ (: = 9) ∗ (0 ≤ 9 < =)
(simplification) := (8 = A ) ∗ (0 ≤ 9 < =) ∗ (0 ≤ 9 < =)
(simplification) := (8 = A ) ∗ (0 ≤ 9 < =)

As it is shown in Figure 8, this unique set corresponds to a row matrix.

5.4 Use Case 2: Structured Tensor Algebra

StructTensor uses inference rules in STUR and produces an optimized code for tensor algebra.

Similar to the case of linear algebra, a programmer provides the tensor algebra program as input

alongside the structure for input tensors. As there are very many possibilities for the structure of

higher-order tensors, we expect the programmer to provide them in STUR.

Example - Diagonal Tensor Times Vector (DTTV). This example shows how the output

structure for TTV (Tensor Times Vector) is inferred in STUR. TTV is defined in STUR as follows:

�(8, 9) := " (8, 9, :) ∗ # (:)

Consider the unique set and redundancy map of the inputs to be as follows:
"* (8, 9, :) := (8 = 9) ∗ ( 9 = :) ∗ (0 ≤ 8 < <) ∗ (0 ≤ 9 < <) ∗ (0 ≤ : < <)

"' (8, 9, :, 8
′, 9 ′, : ′) := ∅, +* (:) := (0 ≤ : < <), +' (:, :

′) := ∅
where the dimensions are (<,<,<) = 38<B (") and (<) = 38<B (+ ). Computation is divided into

two steps, multiplication followed by reduction.
�(8, 9, :) := " (8, 9, :) ∗ # (:)
�(8, 9) := �(8, 9, :)

Therefore, the output unique set should be calculated in two steps as well.
�* (8, 9, :) := "* (8, 9, :) ∗ #* (:)
(inlining) := (8 = 9) ∗ ( 9 = :) ∗ (0 ≤ 8 < <) ∗ (0 ≤ 9 < <) ∗ (0 ≤ : < <) ∗ (0 ≤ : < <)

(simplification) := (8 = 9) ∗ ( 9 = :) ∗ (0 ≤ 8 < <)

�* (8, 9) := �* (8, 9, :)
(inlining) := (8 = 9) ∗ ( 9 = :) ∗ (0 ≤ 8 < <)

(simplification) := (8 = 9) ∗ (0 ≤ 8 < <)
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Algorithm 2 Code Generation Algorithm

1: function code_gen(4G?A, 5 ;06B)

2: 2>34 ← ””

3: for 5 02C>A in 4G?A .1>3~ do ⊲ 4G?A .1>3~ is a sum of products

4: E0AB ← E0A801;4B (5 02C>A )
5: for E0A in E0AB do ⊲ loop bounds generation

6: ;>F4A , D??4A ← get_bounds(5 02C>A, E0A )

7: if ;>F4A == D??4A then

8: gen_if_eqal(2>34, 5 02C>A, E0A, ;>F4A, 5 ;06B)

9: else

10: gen_loop(2>34, 5 02C>A, E0A, ;>F4A,D??4A, 5 ;06B)

11: end if

12: end for

13: C4_5 02C>A ← extract_computation(5 02C>A )

14: gen_addition(2>34, C4_5 02C>A, 5 ;06B)

15: end for

16: return code

17: end function

5.5 Code Generation

As the final step, StructTensor generates C++ code for the optimized STUR expression (cf.

Algorithm 1, line 8). Algorithm 2 provides the pseudocode for code generation. To generate loop

nests, first, the index variables are ordered following the same syntactic order as the input tensor

expression2 (cf. Algorithm 2, line 4). Afterwards, StructTensor computes the range of each index

variable based on the output compressed tensor. The range for each index variable is computed as

the maximum of all its lower bounds and the minimum of all its upper bounds provided as logical

expressions in the unique set (cf. Algorithm 2, line 6).

Knowing the lower and upper bound of variables is enough to generate the loop nests. If the

lower and upper bounds are the same, instead of a loop from lower to upper, only an if condition

will be generated. StructTensor expects the bounds for inputs; an expression without input

bounds is invalid in STUR. (cf. Algorithm 2, lines 7-11). The last step is the code generation for

the input tensor expression. The code generator iterates over the compressed tensor body, which

is a sum of product factors (named as 5 02C>A ). Each factor includes a series of tensors multiplied

together (named as C4_5 02C>A , line 13). In the deepest loop nest, the value of the result is updated

by the value of the tensor expression appearing in the C4_5 02C>A (cf. Algorithm 2, line 14).

Algorithm 2 focuses on generating code based on a tensor expression. Therefore, this algorithm

is useful for both tensor compression and reconstruction. To reconstruct the final result, we pass

the reconstruction tensor expression ) (x) := ) (x′) ∗ )' (x, x
′) (cf. Algorithm 1, line 6) to the

code generator. In order to avoid redundant computations, we do not inline the reconstruction

expression; we only inline the compressed tensor and redundancy map (cf. Algorithm 1, line 5).

StructTensor hoists loop-invariant expressions outside the loops whenever possible. Moreover,

input data layout can be passed as amapping from the dimension of the tensor to a lower dimensional

space to StructTensor to reduce memory consumption. This information is provided in 5 ;06B

to the code generation algorithm. However, there is no data-layout optimization applied on the

output [Chou et al. 2018; Kandemir et al. 1999; Schleich et al. 2023]; an = dimensional output

2The optimal variable ordering is an NP-complete problem that is beyond the scope of this work.
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for ( in t i = 0 ; i < n ; ++ i ) {

auto y_ i = y [ i ] ;

auto x_ i = x [ i ] ;

for ( in t j = i ; j < n ; ++ j ) {

y_ i [ j ] = x_ i ∗ x [ j ] ;

}

}

for ( in t i = 0 ; i < n ; ++ i ) {

in t i p = j ;

auto y_ i = y [ i ] ;

auto y_ ip = y [ i p ] ;

for ( in t j = 0 ; j < i ; ++ j ) {

in t j p = i ;

y_ i [ j ] = y_ ip [ j p ] ;

}

}

Fig. 12. Code snippets for linear regression covariance matrix creation: compressed computation (le�), result

matrix reconstruction (right). Note that the code motion is enabled.

tensor is stored in an = dimensional C++ array. Further optimizations such as multithreading and

vectorization are also left for the future.

Example - Vector Self-Outer-Product. The outer product of a vector with size = by itself in

STUR is defined as follows.

~ (8, 9) := G (8) ∗ G ( 9) G* (8) := 0 ≤ 8 < = G' (8, 8
′) := ∅ G� (8) := G (8) ∗ (0 ≤ 8 < =)

Based on Figure 10 and Figure 11, the output structure is:
~* (8, 9) := (0 ≤ 8 < =) ∗ (0 ≤ 9 < =) ∗ (8 ≤ 9)

:= 0 ≤ 8 ≤ 9 < =
~' (8, 9, 8

′, 9 ′) := (0 ≤ 8 < =) ∗ (0 ≤ 9 < =) ∗ (8 > 9) ∗ (8′ = 8) ∗ ( 9 ′ = 9)
:= (0 ≤ 9 < 8 < =) ∗ (8′ = 8) ∗ ( 9 ′ = 9)

~� (8, 9) := G (8) ∗ (0 ≤ 8 < =) ∗ G ( 9) ∗ (0 ≤ 9 < =) ∗ (0 ≤ 8 < =) ∗ (0 ≤ 9 < =) ∗ (8 ≤ 9)
:= G (8) ∗ G ( 9) ∗ (0 ≤ 8 ≤ 9 < =)

The structure is fed to the code generator, and compressed computational loop nests are generated

based on the compressed tensor of ~. Since all the elements in the matrix ~ should be accessible in

the end, the reconstruction code is generated based on the redundancy map of the output. Figure 12

shows the computation and reconstruction code snippets for this program.

5.6 Frontend

StructTensor provides two frontends for the users. The first frontend allows users to perform

linear algebra operations defined in Figure 7 using predefined structures provided in Figure 8.

Examples provided in Section 5.3 use this frontend. The second frontend allows the user to generate

code for arbitrary sum-of-products (SoP) tensor computations given an arbitrary SoP unique set

and redundancy structure, following the STUR grammar. The example provided in Section 5.4

utilizes this frontend.

To be more specific, StructTensor requires the following information as input for STUR:

• Tensor computation expression (required)

• Dimension information of input tensors (required): The size of each dimension of the tensor,

without which, code generation is impossible.

• Unique set of input tensors (optional): Bounds over all unique non-zero elements of the tensor

should be provided in the unique set. If the unique set is not provided, we assume that the

tensor is fully dense.

• Redundancy map of input tensors (optional): The mapping from repetitive non-zero values

to their unique corresponding values should be provided in the redundancy map. If the

redundancy map is not provided, we assume that there is no redundancy structure.

StructTensor uses STUR as its frontend language. The tensor computation expression, unique

sets, redundancy maps, and compressed tensors are expressed in this language. The dimension

information is provided as a list of symbols rather than fixed static values, as StructTensor is not
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"2(8, 2>;) := 5 (8) ∗ 5 ( 9) ∗ 5 (:) ∗
(2>; = 9 ∗ = + :)

5* (8) := 0 ≤ 8 < =

(a) Input computation and unique set.

"2* (8, 2>;) := 5* (8) ∗ 5* ( 9) ∗ 5* (:) ∗
(2>; = 9 ∗ = + :) ∗ (0 ≤ 8 ≤ 9 ≤ : < =)

"2� (8, 2>;) := 5� (8) ∗ 5* (8) ∗ 5� ( 9) ∗5* ( 9) ∗ 5� (:)∗
5* (:) ∗ (2>; = 9 ∗ = + :) ∗ (0 ≤ 8 ≤ 9 ≤ : < =)

(b) Unoptimized unique set and compressed tensor.

"2� (8, 2>;) := (0 ≤ 8 < =) ∗
(8 ≤ 9 < =) ∗
( 9 ≤ : < =) ∗
(2>; = 9 ∗ = + :) ∗
5 (8) ∗ 5 ( 9) ∗ 5 (:)

(c) Optimized compressed tensor.

for ( in t i = 0 ; i <n ; ++ i ) {

for ( in t j = i ; j <n ; ++ j ) {

for ( in t k= j ; k<n ; ++k ) {

in t c o l = j ∗ n + k ;

M2[ i ] [ c o l ] = f [ i ] ∗ f [ j ] ∗ f [ k ] ;

} } }

(d) Generated C++ code.

Fig. 13. Step-by-step code generation procedure from inputs for"2 in covariance matrix creation.

limited to fixed-sized tensors as opposed to frameworks such as LGen [Spampinato and Püschel

2016] and EGGS [Tang et al. 2020b]. All intermediate and output tensors’ structures are inferred

following our program reasoning rules using the mentioned input information.

5.7 Pu�ing It All Together

We provide a step-by-step elaboration on inference and code generation of the motivating example

(Section 3). We only show the procedure for "2 where "2 = f ⊗ E42 (f ⊗ f); "1 and "3 are

handled similarly. First, the representation of"2 as well as inputs structure is provided to STUR

(cf. Figure 13a). Then, STUR generates the unoptimized unique set and compressed tensor for"2

computation (cf. Figure 13b) by following the generalized version of the first rule (self-outer product

of vectors) in Figure 10. After optimization, the representation in Figure 13c is obtained.

As mentioned in Section 4, all tensor expressions in STUR are provided as a sum of products.

"2� (8, 2>;) only has one product inside its body. The code generator reads the body and extracts all
the variables inside it (8 , 9 , : , and 2>; ). Then, the code generator proceeds to detect the boundaries for

each variable, which are as follows: 8 → (0, =), 9 → (8, =),: → ( 9, =), and 2>; → ( 9∗=+:, 9∗=+:+1).
Here 0 → (;>F4A,D??4A ) means that ;>F4A ≤ 0 < D??4A . As the next step, loops, if conditions, or

assignments will be generated based on the detected boundaries. This will result in the generation

of the three-level nested loops (cf. Figure 13d, white background). The last boundary (for variable

col) is of the form D??4A = ;>F4A + 1, which corresponds to an assignment (cf. Figure 13d, light

gray background). Finally, the computation is generated for the expression (cf. Figure 13d, dark

gray background), which results in the code provided in Section 3 and Figure 13d is generated.

6 SOUNDNESS OF STRUCTURE INFERENCE

We present a simple and more mathematical view of what unique sets and redundancy maps

compute. We then derive several properties that they satisfy. Furthermore, we state a soundness

theorem for our structure inference, formally anchoring the fact that they do not lose information

and compute the same as the original tensor.

6.1 Abstract View on the Tensor Compression Problem

We can view the problem of representing a tensor in a compressed way as follows. Let T=1,...,=: (R)
be the real vector-space of =1 × . . . × =: real tensors. Given a fixed ) ∈ T=1,...,=: (R), the problem is

finding a pair of linear maps (') , %) ) : T=1,...,=: (R) → T=1,...,=: (R) such that the following simple

equation holds:
') ◦ %) () ) = ) (3)
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We call such a pair (') , %) ) a solution to the reduction problem for ) . The intuition is that %)
represents a projection, %) () ) represents a compressed version of ) , and ') ensures that this

compression is lossless. Note that there are many solutions to this problem, e.g., %) could simply be

the identity, and we are naturally interested in solutions that approximately minimize the number

of non-zeros elements of the compressed tensor %) () ). Finding optimal solutions is also feasible

but would make us lose time overall for the final computations we are interested in.

Note that, as %) and ') are linear, they can be represented by =1 × . . .×=: ×=1 × . . .×=: tensors.

In this work, we will restrict to the cases where %) , ') can be represented with tensors valued in

the Boolean semiring ({0, 1}, +,×) where + is max and × is min. Both satisfy that, when seen as

matrices, the sum of the elements on each row is at most 1. With the correspondence between

{0, 1}-valued matrices and relations between finite sets, such matrices represent partial (the sum

of the elements on a column can be 0) injective (the sum of the elements on a row is at most one)

relations ({0,1}-valued matrix). We further impose %) to be a projection. In such a case, %) will be

an orthogonal projection and will verify %) ◦ %) = %) (an orthogonal projection is automatically a

partial injective relation). Any partial injective relation � is a morphism and will therefore satisfy

� (� + �) = � (�) + � (�). It will satisfy the additional nice property that � (� ⊙ �) = � (�) ⊙ � (�)
for all �, �, where ⊙ is the Hadamard product. In fact, partial injective relations are characterized

as those {0, 1}-valued matrices � such that � (� ⊙ �) = � (�) ⊙ � (�) for all vectors �, �.
We denote by ⌊−⌋ : T=1,...,=: (R) → T=1,...,=: (R) the function sending a real A at position (81, . . . , 8: )

to 1 at the same position if A ≠ 0, and to 0 otherwise. Note that this extends amonoid homomorphism

(R,×, 1) → ({0, 1},×, 1) but this is not a linear transformation as it does not commute with addition,

i.e. ⌊� + �⌋ ≠ ⌊�⌋ + ⌊�⌋ in general. It still implies that ⌊) ⊗ (⌋ = ⌊) ⌋ ⊗ ⌊(⌋, ⌊) ⊕ (⌋ = ⌊) ⌋ ⊕ ⌊(⌋
and ⌊) ⊙ (⌋ = ⌊) ⌋ ⊙ ⌊(⌋, where ⊗ is the Kronecker product, and ⊕ the direct sum. Additionally,

for any partial injective relation � and any �, we have ⌊� (�)⌋ = � (⌊�⌋).
We indistinguishably use tensors and the linear maps they represent, assuming fixed bases of

the underlying vector spaces at play. From the abstract setting, the tensors )* ,)',)� we infer for a

tensor ) , and use in our unified IR, are derived as follows:

)* := ⌊%) () )⌋ )' := ') − %) )� := %) () ) (4)
In other words, )* is the support of the compressed tensor )� = %) () ), and )' is, up to a small

optimization, the support of the tensor representation of ') . From Equation 3 and the definitions

of )* ,)',)� (Equation 4), we obtain several properties that are key in reconstructing ) , and useful

for optimizations.

Proposition. The following properties are valid equations, where x is the list of free variables:

(1) )* (x) ∗)' (x, x
′) = ∅. This optimization ensures that unique elements should not be mapped

to any other element by )' .

(2) )� (x) = )* (x) ∗) (x) is the equation defining the compressed tensor in our IR.

(3) )� (x) ∗)' (x, x
′) = ∅. Elements that are stored in the compressed format should only exist in

the unique set.

(4) )* (x) ∗)* (x) = )* (x). This is another simple optimization.

(5) ) (x) = )� (x) +)' (x, x
′) ∗)� (x

′). This is the reconstruction process of the tensor ) given

its compressed format )� , its unique set )* , and its redundancy map )' . This captures the

key lossless property of the contraction.

Proof Sketch. Note the following extra elementary properties that we will use in the proofs.

� ⊙ ⌊�⌋ = � for any � and % (�) ⊙ � = � ⊙ % (�) = % (�) ⊙ % (�) for any �, � and orthogonal

projection % (which is a restatement of a well-known characterization of orthogonal projections in

terms of inner products).

(2)
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) ⊙ )* = ) ⊙ ⌊%) () )⌋ definition of )*

= ) ⊙ %) (⌊) ⌋) property of partial injective relation %)

= %) () ) ⊙ %) (⌊) ⌋) Property of orthogonal projection %)

= %) () ⊙ ⌊) ⌋) property of partial injective relation %)

= %) () ) = )� fundamental property of ⌊−⌋, definition of )�

(3) is easily obtained from (1) and the fact that )' commutes with ⌊−⌋.
(4) )* ⊙ )* = ⌊%) () )⌋ ⊙ ⌊%) () )⌋ definition of )*

= %) (⌊) ⌋) ⊙ %) (⌊) ⌋) property of partial injective relation %)

= %) (⌊) ⌋ ⊙ ⌊) ⌋) property of partial injective relation %)

= %) (⌊) ⌋) = )* property of ⌊−⌋, definition of )*

(5) )� +)' ()� ) = %) () ) + (') − %) ) (%) () )) definition of )',)�

= %) () ) + ')%) () ) − %)%) () ) linearity

= %) () ) +) − %) () ) = ) Equation 3, %)%) = %) , simplification

6.2 Soundness Results

Given a tensor ) , we write I) : (') , %) ) → ()* ,)',)� ) for the mapping sending a pair of linear

maps verifying Equation 3 to the tensors defined by Equation 4. We say that ()* ,)',)� ) implements

the solution (') , %) ) to the reduction problem for ) .

In this work, we never explicitly construct %) and ') , but we do inductively define implemen-

tations ()* ,)',)� ) of solutions to the reduction problem for ) , by induction on the structure of

) . The first natural question is therefore whether the inferred tuple ()* ,)',)� ) is sound, that is
whether it is obtained as the implementation of a solution for the reduction problem for ) . This is

a sufficient condition, as by Property 5 above we can reconstruct ) from such a tuple ()* ,)� ,)').
Theorem. Let ", # be tensors. Assume given pairs ('" , %" ) and ('# , %# ) that are solutions to
the reduction problem for " and # , respectively. Let ("* , "', "� ) and (#* , #', #� ) be their

respective implementations. Further, assume that ) is given by the premise of an inference rule

from Figure 10. Then, there exists a solution (') , %) ) for the reduction problem for ) such that its

implementation ()* ,)',)� ) is given by the conclusion of the inference rule corresponding to ) ’s

definition.

Proof Sketch. We sketch the proof for some of the important cases. For the second rule, let %) :=

%"⊗%+ and') := '"⊗') . Then')%) () ) = ('"⊗') ) (%"⊗%) ) ("⊗+ ) = '"%" (")⊗'+ %+ (+ ) =
" ⊗ + = ) . In addition, ⌊%) () )⌋ = ⌊%" (") ⊗ %+ (+ )⌋ = ⌊%" (")⌋ ⊗ ⌊%+ (+ )⌋ = "* ⊗ +* = )* .

Finally,

') − %) = '" ⊗ '+ − %" ⊗ %+

= ("' + %" ) ⊗ (+' + %+ ) − %" ⊗ %+

= "' ⊗ +' + %" ⊗ +' +"' ⊗ %+

Now, note that we define %" to be the orthogonal projections onto"* , i.e. %" can be represented

as %" = "* ⊙ (−). This can be represented in STUR as"* (z) ∗ (I = I
′). The first rule is proved

from the second by noting that (" ⊗")8<+8′, 9=+9 ′ = "8, 9 ∗"8′, 9 ′ = "8′, 9 ′ ∗"8, 9 = (" ⊗")8′<+8, 9 ′=+9
when" is an<×= matrix. This immediately generalizes to the case where" is an arbitrary tensor.

The third rule is straightforward. For the fourth rule, we have ) = " ⊕ + . Let ') := '" ⊕ '+ and

%) := %" ⊕ %+ . The remainder of the proof is the same as for rule 2, where we replace ⊗ by ⊕. □
As a direct corollary of the theorem above, we obtain the soundness of our structure inference.
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Table 1. Tensor kernels for StructTensor evaluation. In MTTKRP, 9 is fixed for tensor � . TACO allows

specifying if each dimension is Sparse (() or Dense (�). TACO (Smart) is the most efficient storage format.

Kernel Structure of � �* in STUR TACO (Smart)

TTM Diagonal (plane) (0 ≤ 8 < =8 ) ∗ (8 = 9 ) ∗ (0 ≤ ; < =; ) (�, (, � ) ∗ (�,� ) → (�, (, � )
�(8, 9, : ) := Fixed 9 (0 ≤ 8 < =8 ) ∗ ( 9 = � ) ∗ (0 ≤ ; < =; ) (�, (, � ) ∗ (�,� ) → (�, (, � )

� (8, 9, ; ) ∗� (:, ; ) Upper half cube (0 ≤ 8 < =8 ) ∗ (8 ≤ 9 < = 9 ) ∗ (0 ≤ ; < =; ) (�, (, � ) ∗ (�,� ) → (�, (, � )
THP Diagonal (plane) (0 ≤ 8 < =8 ) ∗ (8 = 9 ) ∗ (0 ≤ ; < =; ) (�, (, � ) ∗ (�,�,� ) → (�, (, � )

�(8, 9, : ) := Fixed 8 (8 = � ) ∗ (0 ≤ 9 < = 9 ) ∗ (0 ≤ ; < =; ) ((, �, � ) ∗ (�,�,� ) → ((, �, � )
� (8, 9, : ) ∗� (8, 9, : ) Fixed 9 (0 ≤ 8 < =8 ) ∗ ( 9 = � ) ∗ (0 ≤ ; < =; ) (�, (, � ) ∗ (�,�,� ) → (�, (, � )

MTTKRP Fixed 8, 9 (8 = � ) ∗ (0 ≤ : < =: ) ∗ (0 ≤ ; < =; ) ((, �, � ) ∗ (�,� ) ∗ (�,( ) → ((, � )
�(8, 9 ) := � (8, :, ; ) Fixed 8 (8 = � ) ∗ (0 ≤ : < =: ) ∗ (0 ≤ ; < =; ) ((, �, � ) ∗ (�,� ) ∗ (�,� ) → ((, � )
∗� (:, 9 ) ∗� (;, 9 ) Fixed 9 (0 ≤ 8 < =8 ) ∗ (0 ≤ : < =: ) ∗ (0 ≤ ; < =; ) (�,�,� ) ∗ (�,� ) ∗ (�,( ) → (�, ( )

SpMV Leslie (8=0) ∗ (0≤ 9<= 9 ) + (1≤8<=8 ) ∗ ( 9=8 − 1) (�, ( ) ∗ (� ) → (� )
�(8 ) := Upper triangular (0 ≤ 8 < =8 ) ∗ (8 ≤ 9 < = 9 ) (�, ( ) ∗ (� ) → (� )

� (8, 9 ) ∗� ( 9 ) Diagonal (0 ≤ 8 < =8 ) ∗ (8 = 9 ) (�, ( ) ∗ (� ) → (� )

Corollary [Soundness of Inference]. Let ) := 5 (",+ ) be given by a premise of an inference

rule from Figure 10. Assume Property (5) holds for ",+ . Then, Property (5) holds for ) , where

)* ,)' are computed by the conclusion of the same inference rule.

A fundamental optimization is inlining definitions, which is sound in our language.

Proposition [Substitution Lemma]. Let )1 (x) := �1 (x, x
′) and )2 (~) := �2 (~,~

′).
Then )2 (x) := �2 [�1/)1] (x, x

′, ~′) is semantically valid whenever x′ ∩~′
= x ∩~′

= ∅. Note that
a substitution such as ) ∗ ( [)1 +)2/(] = ) ∗ ()1 +)2) introduces temporary parentheses, and the

code renormalizes the term to ) ∗)1 +) ∗)2.

7 EXPERIMENTAL RESULTS

In this section, we experimentally evaluate StructTensor by considering several tensor processing

kernels over different tensor structures. We focus on structured tensor computations targeting

machine learning applications on a large volume of data. We study the following questions:

• How advantageous is symbolic sparsity over dynamic sparsity for tensors and matrices?

• Does StructTensor perform better than the state-of-the-art tensor processing frameworks

for real-world structured computations after leveraging the redundancy structure?

• How do the optimizations benefit StructTensor?

• Is it worthwhile to perform the computation over a compressed tensor and then decompress

the result in real-world applications?

7.1 Experimental Setup

We use a server with 18.04.5 LTS Ubuntu equipped with 10 cores 2.2 GHz Intel Xeon Silver 4210

CPU, and 220 GB of main memory. C++ code is compiled with GCC 7.5.0 using C++17 and -O3,

-pthread, -mavx2, -ffast-math, and -ftree-vectorize flags. All experiments are run on a single thread,

and the average run time of five runs is reported. As the competitors, we use the latest version of

TACO3 [Kjolstad et al. 2017], Numpy 1.23.4 [Harris et al. 2020], PyTorch 1.12.1 [Paszke et al. 2019],

and TensorFlow 2.10.0 [Abadi et al. 2015] with and without the XLA backend.

7.2 Sparsity Structure

To evaluate the effectiveness of StructTensor for the sparsity structure, we consider four tensor

and matrix kernels: Tensor Times Matrix (TTM), Tensor Hadamard Product (THP), Matricized

Tensor Times Khatri-RAllo Product (MTTKRP), and Sparse Matrix-Vector Multiplication (SpMV).

All of the selected kernels play an important role in real-world computation; for example, population

growth can be modeled by multiplying a Leslie structured matrix by an age vector (cf. Figure 14).

3https://github.com/tensor-compiler/taco/tree/2b8ece4c230a5f
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Fig. 14. Tensor operation kernels run time comparison using different sparsity structures. The naïve imple-

mentation and NumPy show similar performance. In most cases, StructTensor shows significantly be�er

performance in comparison with all other competitors, including the best sparse format used in TACO.

StructTensor is evaluated against NumPy, PyTorch, TensorFlow (w/ and w/o the XLA backend),

and TACO with three different formats: fully dense, fully sparse, and smart. In the smart version,

we use the most efficient sparse format for TACO based on the sparsity of input and output tensors

at each dimension. Table 1 shows the definition of these kernels, the different input structures we

considered, their representation in STUR, and the data format at each dimension for TACO (Smart).4

Additionally, we consider a naïve version that does not leverage the symbolic structure. Note that

TACO is the only framework that features an appropriate sparse data layout. The remaining

frameworks are only suitable for dense computation and do not perform as well on sparse kernels.

Therefore, we focus on comparing our framework to TACO.

Figure 14 represents the run time of each implementation on each kernel. In all kernels i) the naïve

implementation performs similar to NumPy, ii) TACO dense outperforms the naïve implementation

and NumPy by a small margin, iii) TACO smart is outperforming all other competitors as well as

other data format selections for TACO as expected, and iv) StructTensor outperforms (in 10 out

of 12 experiments) or performs on par with TACO smart (despite generating a more optimized

4The output data format in MTTKRP for both dimensions in TACO (Smart) for the case of fixed 8, 9 and all cases of TACO

(Sparse) should be ((, ( ) . However, because of a bug in TACO (GitHub Issue #518), we had to use (�,( ) or ((, � ) instead.
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code). In all of these experiments, an efficient input data layout that only keeps unique elements is

provided for inputs, and code motion is applied for StructTensor.

A major advantage of StructTensor over TACO is the compilation-time knowledge of the

sparsity patterns, while TACO needs to handle it at runtime. Therefore, the generated code by

StructTensor has direct access to tensor elements, while TACO uses indirect access. Furthermore,

having direct access can activate the compiler’s auto-vectorization and enhance the computation

further for StructTensor, while this is absent for TACO. We confirmed the application of auto-

vectorization of the kernels shown in Figure 14 by 1) using GCC auto-vectorization detection flags

(e.g., -fopt-info-vec-all) and 2) confirming the usage of AVX instructions (e.g., vmulsd, vpaddd,

etc.) in the generated assembly code. As an example, consider the THP kernel, where � is a diagonal

on the first two dimensions (8 = 9 in �(8, 9, :)). The generated code by StructTensor compared to

the code generated by TACO for the smart version (that uses (dense, sparse, dense) for the tensor �

and the output tensor) is as follows:

/ / S t r u c t T e n s o r g e n e r a t e d c od e

for ( in t i = 0 ; i <min ( s i z e I , s i z e J ) ; ++ i ) {

auto &cm1 = A[ i ] ;

auto &cm2 = C[ i ] ;

auto &cm3 = cm1 [ i ] ; / / j = i ;

auto &cm4 = cm2 [ i ] ; / / j = i ;

for ( in t k =0 ; k< s i z eK ; ++k )

cm3 [ k ] += ( B[ i ∗ s i z eK +k ] ∗ cm4 [ k ] ) ;

}

/ / TACO g e n e r a t e d c od e ( smar t f o rma t )

i n t 3 2 _ t jA = 0 ;

for ( i n t 3 2 _ t i = 0 ; i < s i z e I ; i + + ) {

for ( i n t 3 2 _ t jB=pos [ i ] ; jB <pos [ i + 1 ] ; jB ++ ) {

i n t 3 2 _ t j = c rd [ jB ] ;

i n t 3 2 _ t jC = i ∗ s i z e I + j ;

for ( i n t 3 2 _ t k =0 ; k< s i z eK ; k++) {

i n t 3 2 _ t kA = jA ∗ s i z eK + k ;

i n t 3 2 _ t kB = jB ∗ s i z eK + k ;

i n t 3 2 _ t kC = jC ∗ s i z eK + k ;

A_va l s [kA] = B_va l s [ kB ] ∗ C_va l s [ kC ] ;

}

jA ++ ;

} }

As shown in the generated code, StructTensor directly accesses the tensor elements. However,

TACO retrieves the sparse elements using their position (pos) and coordinate (crd) mappings.

7.3 Redundancy Structure

We consider 7 structuredmatrix and tensor kernels that correspond to the tasks of one-dimensional

full convolution of a kernel of size 16 with a signal, creating and addition of covariance matrices for

three machine learning models: linear regression, polynomial regression degree-2, and polynomial

regression degree-3. The computation of the convolution kernel is modeled as sparse-matrix vector

multiplication (SpMV) of a Toeplitz structured matrix with a dense vector. As the competitors, we

consider TACO (fully dense, fully sparse, and smart formats), PyTorch, TensorFlow (w/ and w/o

the XLA backend), NumPy, and a naïve implementation without leveraging the structure. We also

evaluate the built-in kernel of Python frameworks for the one-dimensional full convolution kernel.

Figure 15 shows the run time comparison. The first two plots illustrate the performance com-

parison of one-dimensional full convolution using different frameworks with both 1) built-in

convolution functions (if exist) and 2) implementing it as a SpMV of Toeplitz structured matrix

with the signal. The Toeplitz structure used for the kernel contains both sparsity and redundancy

structures. StructTensor outperforms all other frameworks significantly in the SpMV implemen-

tation. The second best performance is for TACO in the smart format using a (dense, sparse) layout

and the vector using a dense layout. Leveraging existing sparsity in the Toeplitz matrix enhances

TACO’s performance. Moreover, StructTensor outperforms the built-in convolution functions of

all Python frameworks. Crucially, it is competitive with the built-in convolution function provided

by the Numpy library, which has a hand-tuned implementation.

The next six plots in Figure 15 illustrate the run time of different regression models using various

frameworks. The inputs to these kernels are dense vectors corresponding to continuous features.
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Fig. 15. The run time comparison of one-dimensional full convolution and the covariance matrix creation

and addition for linear regression and polynomial regression degree-2 and degree-3 with dense and sparse

feature vectors. In all kernels, StructTensor significantly outperforms the competitors thanks to avoiding

redundant computation. It is also competitive with the built-in convolution function provided by Numpy.

The missing numbers mean that the process was killed due to a segmentation fault. For example,

TACO in fully dense and fully sparse formats can only handle the polynomial regression degree-2

up to 200 and 175 features, respectively, because it gets killed for more than that (due to excessive

memory allocation). The smart format of TACO for these kernels is the same as the dense format

of TACO; therefore not shown on the plots separately. In all kernels, StructTensor outperforms

all other competitors. For the kernels with more redundancy (i.e., polynomial regression degree-2

and degree-3), the performance gap between StructTensor and competitors increases due to an

increase in repetitive computation.

The last six plots in Figure 15 show the performance of the same regression kernels by using

sparse feature vectors (33.3% sparsity) corresponding to categorical features. Previous kernels
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Fig. 16. Impact of different optimizations for six kernels. The length of the vector in the one-dimensional

convolution kernel, population growth model, and SpMV is 18 . The kernel size for the convolution is 16.

Each dimension of THP, TTM, and MTTKRP has a size of 1 .

only contain redundancy patterns; however, these kernels leverage both sparsity and redundancy

patterns. The smart format of TACO for these kernels is the same as the sparse format of TACO;

therefore not shown on the plots separately. StructTensor outperforms all the competitors by up

to 6 orders of magnitude despite the lack of data-layout optimizations, loop tiling, and vectorization.

The sparse version of TACO is the runner-up thanks to leveraging the existing sparsity in the input

vectors. The run time of all other competitors is similar to their run time in the regression kernels

with dense feature vectors since they still perform the computation over all elements of the inputs.

7.4 Optimization Impact

We evaluate the effectiveness of StructTensor and the impact of optimizations against the naïve

implementation for six kernels: 1) THP with a plane diagonal structure (cf. Table 1), 2) TTM where

the 9 index is fixed (cf. Table 1), 3) SpMV with upper triangular structure, 4) MTTKRP where

the 8 index is fixed (cf. Table 1), 5) one-dimensional full convolution using Toeplitz matrix, and

6) population growth model employing a Leslie matrix. Memory peak is computed using the

massif [Nethercote et al. 2006] tool of Valgrind [Nethercote and Seward 2007].

As shown in Figure 16, StructTensor performs up to 4 orders of magnitude faster than a naïve

implementation of all six kernels, even without any optimizations. Enabling code motion either

improves the performance by a great ratio (e.g., TTM, SpMV, MTTKRP) or has a negligible impact

(e.g., THP, convolution, population growth model). Storing unique elements of the sparse tensor in

an array data layout can sometimes cause performance degradation (e.g., convolution) by limiting

the compiler optimization opportunities existing in the primary layout. In other kernels, data layout

modification removes the zero elements and gets rid of unnecessary dimensions of the sparse

tensor, and has a consistently positive impact on run time. Utilizing both optimization techniques

enhances performance significantly for all kernels.

As shown in Figure 16, the memory peak can be reduced by simply changing the input data

layout, while code motion has no effect on it, as expected. Storing only the unique elements in all
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Fig. 17. Run time of in-database machine learning over Favorita (6 continuous features) and Retailer (13

continuous features) datasets. The small version of these datasets contains 25% of rows. Here, we compute

the covariance matrix of linear and polynomial regression degree-2 over the join of multiple relations.

Reconstruction time is negligible; thus, it is not visible on the chart.

six kernels resulted in a significant decrease in the memory peak. In kernels where modifying the

data layout can cause performance degradation, memory compression can pay off. For instance, in

the case of one-dimensional convolution, a data layout transformation results in almost 2x worse

performance, while the memory peak improves by ∼7200x.

7.5 End-to-End Experiments

We evaluate StructTensor on an in-database machine learning task. This benchmark does not

compare StructTensor to other frameworks since the end-to-end experiment is built on top

of covariance matrix creation and addition, which are benchmarked separately against all other

competitors (cf. Figure 15). We use StructTensor to create a covariance matrix for linear and

polynomial regression degree-2. We consider the following real-world datasets: Retailer [Khamis

et al. 2020] with 13 continuous features and Favorita [Favorita 2017] with 6 continuous features.

Both of them have a small (consisting of 25% of the data elements) and full version. StructTensor

is compared with a naïve implementation that does not leverage the redundancy structure.

We use the idea of a semi-ring covariance matrix data-structure [Nikolic and Olteanu 2018;

Shaikhha et al. 2022] for both implementations. A semi-ring is a type of data structure that includes

a domain � , two associative binary operators (+) for addition and (*) for multiplication, and identity

elements (0) for addition and (1) for multiplication. The addition operator must be commutative,

and both left and right multiplication must be distributive over addition. Additionally, any element

in � multiplied by 0 must equal 0. We employed and extended the definition of the semi-ring

covariance matrix provided by [Shaikhha et al. 2022]. This data structure pushes aggregates before

joins, which heavily improves both memory consumption and run time. In a semi-ring covariance

matrix, different degrees of interaction are decoupled and stored separately. This means that for

polynomial regression degree-2 (cf. Section 3), we store degree-2 ("1), degree-3 ("2), and degree-

4 ("3) interactions separately. Furthermore, degree-3 interactions are calculated twice in both

(f ⊗ E42 (f ⊗ f)) and (E42 (f ⊗ f) ⊗ f ). As the naïve version does not use the structure information, it

cannot detect such coarse-grained redundancy information.

Figure 17 represents the run time of StructTensor in comparison with the naïve version.

StructTensor produces a structure-aware code that reduces the computations by avoiding re-

dundant computation. Hence, there should be a reconstruction phase that rebuilds the final result

and put all elements that have not been computed in their corresponding positions based on the

redundancy map, which is negligible in comparison with the rest of the computation.
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Table 2. Comparison of different tensor processing frameworks. FS: Fixed-size, SY: Symbolic.

Framework LA TA Dense Sparse Redundancy Loop Opts.

Dense TA (TensorFlow)    # #  

Dense LA (BLAS)  #  # #  

Sparse TA (TACO, SPLATT)     #  

Sparse LA (MKL, OSKI)  #   #  

Static Sparse LA (EGGS)  #  G# (FS) G#  

Structured LA (LGen)  #  G# (FS)   

Symbolic Sparse LA (Sympiler) G# #   (SY) G#  

StructTensor    G# (SY)  G#

8 RELATED WORK

Table 2 compares various optimized linear and tensor algebra frameworks. These frameworks vary

in their applications, support of data layouts, structure awareness, supported structures, approach

to capturing the structure, and loop optimization levels. We will elaborate on them in this section.

Dense Tensor Algebra. Polyhedral frameworks such as isl [Verdoolaege 2010] provide advanced

scheduling and code generation capabilities. CLooG [Bastoul 2004] provide efficient loop nest code

generation for dense and affine tensor algebra computations. These polyhedral frameworks are

used in tensor compilers. Tensor Comprehension [Vasilache et al. 2018] uses isl and provides a

polyhedral-based DSL supporting generalized Einstein notation that leads to optimized Cuda code

generation for dense deep learning computation. PolyBlocks [PolyMage 2023] also uses isl and the

MLIR infrastructure to transform high-level Python code to an optimized low-level GPU code.

TensorFlow [Abadi et al. 2015] provides dense tensor operation for large-scale machine learning

applications.5 All these works provide efficient kernels for dense linear and tensor algebra but for

structured tensors, still, they do unnecessary and/or redundant computations.

Sparse Tensor Algebra. The sparse polyhedral framework [Strout et al. 2018] extends the abil-

ity of polyhedral compilation to support sparse tensor algebra as well [Mohammadi et al. 2019].

TACO [Kjolstad et al. 2017] handles sparse and dense computation over tensor algebra. JAX [Brad-

bury et al. 2018] has preliminary support for sparse tensors based on a TACO-inspired design in the

MLIR infrastructure. However, unlike StructTensor, none of these works supports redundancy-

aware computation. Moreover, sparsity is handled in run time, leading to irregular memory access

that are hard to optimize for the compiler [Tang et al. 2020a] (cf. Section 7.2).

Specialized Sparse Linear Algebra. [Augustine et al. 2019] take a different approach by breaking

the irregular sparsity patterns into sub-computations with regular structures so they can remove

indirect access and provide vectorization to the linear algebra code. EGGS [Tang et al. 2020a]

further specializes the computation to a sparsity pattern and creates the expression tree of the

result by unrolling the entire computation. Performing common-subexpression elimination over

the expression tree can partially remove redundancies, but cannot detect symmetric-style patterns.

StructTensor infers redundancy patterns at compilation time to specialize the generated code.

Structured Linear Algebra. LGen [Spampinato and Püschel 2016] proposes a polyhedral-based

technique for code generation of small-scale structured linear algebra. They provide i) a predefined

set of operations required for basic linear algebra, ii) a predefined set of matrix structures, iii)

inference rules for the combination of the defined structures and operations, and iv) a fixed-size

polyhedral set and polyhedral map to maintain the unique elements (called SInfo) and redundancy

information (called AInfo) respectively. However, it does not support higher-order tensor compu-

tations and is limited to fixed-size small-scale matrices. To extend LGen to support higher-order

5There is limited support for sparse tensor processing in TensorFlow, but it was shown to be suboptimal [Chou et al. 2018].
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tensors, one should redesign their intermediate representation and add support for more generalized

tensor computations such as Einsum. To handle the variable size computation for higher-order

tensors, one should extend the representation of polyhedral sets/maps to parametric lengths.

Sympiler [Cheshmi et al. 2017] utilizes symbolic analysis at compile-time (similar to Struct-

Tensor) to produce high-performance code (e.g., using parallelisation, tiling, etc.) for structured

variable-size matrix computations involving sparse data. However, it is limited to specific kernels

(e.g., sparse direct solvers) and only captures the structure for matrices. To extend their system for

higher-order tensors, a wider range of structures, or computing other kernels, the user must provide

i) the symbolic inspector (acts similar to StructTensor’s unique set inference), ii) a specific inspec-

tion strategy for that specific structure, and iii) how it can be coupled with the specific numerical

kernels and the internal AST of Sympiler. However, in StructTensor one can perform arbitrary

generalized Einsum computations empowered by structure inference using program reasoning. As

opposed to StructTensor, Sympiler does not use any kind of generalized program reasoning to

provide the inspector set but rather asks the user to provide it for the specific structure and kernel

inside the Sympiler’s code. That said, one can see StructTensor and Sympiler as complementing

each other; StructTensor provides unique set inference for higher-order tensor expressions and

can generate the AST of Sympiler to benefit from the optimizations provided by Sympiler. To the

best of our knowledge, no previous work supports structure for higher-order tensors.

Declarative Data Processing Languages. STUR is closely connected to logic languages (e.g.,

Datalog and Prolog) with two main differences: STUR i) does not allow recursive definitions, and

ii) enables aggregations over tensors in addition to sets. Dyna [Eisner and Filardo 2010] extends

Datalog by adding support for maps to real numbers in addition to maps to boolean values (i.e.,

sets). FAQ [Khamis et al. 2016] is the main source of inspiration for STUR, which allows for a

combination of different semi-rings. The main focus of FAQ has been on efficient algorithms for

evaluating sparse tensor contractions appearing in database query engines [Khamis et al. 2020] (e.g.,

worst-case optimal joins). STUR provides additional constructs for arithmetic operations over the

indices and restricting the ranges, which are crucial for efficient structured tensor computations.

9 CONCLUSION & OUTLOOK

In this paper, we presented StructTensor, a compiler for structured tensor algebra. We considered

two classes of structures: (1) sparsity patterns, and (2) redundancy structures. We proposed STUR,

a unified IR that is expressive enough for tensor computation and captures both forms of structures.

We have shown the soundness of transformations and inference rules. Finally, the experimental

results show that StructTensor outperforms the state-of-the-art tensor processing libraries.

We see three future directions. First, StructTensor focuses on structure-specific optimizations,

and except for code motion, does not support advanced loop transformations such as tiling. Such

optimizations are used for unstructured block structure that is necessary for deep learning ap-

plications such as sparse neural networks. It would be also interesting to use polyhedral-based

optimizations to generate efficient loop nests. Second, gradient and Jacobian computations can also

result in structured tensors. The integration of sparse automatic differentiation [Shaikhha et al.

2023] in StructTensor is an interesting direction. Finally, for storing output compressed tensors,

we currently use = − 3 arrays, and allocate the memory for the entire uncompressed tensor. Using

better layouts can significantly reduce the memory pressure, and possibly improve data locality.
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