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As a result of recombination, adjacent nucleotides can have different paths of genetic inheritance and therefore the genealogical trees 
for a sample of DNA sequences vary along the genome. The structure capturing the details of these intricately interwoven paths of 
inheritance is referred to as an ancestral recombination graph (ARG). Classical formalisms have focused on mapping coalescence and 
recombination events to the nodes in an ARG. However, this approach is out of step with some modern developments, which do not 
represent genetic inheritance in terms of these events or explicitly infer them. We present a simple formalism that defines an ARG 
in terms of specific genomes and their intervals of genetic inheritance, and show how it generalizes these classical treatments and 
encompasses the outputs of recent methods. We discuss nuances arising from this more general structure, and argue that it forms an 
appropriate basis for a software standard in this rapidly growing field.
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Introduction
Estimating the genetic genealogy of a set of DNA sequences under 
the influence of recombination, usually known as an ancestral re-
combination graph (ARG), is a long-standing goal in genetics. 
Broadly speaking, an ARG describes the different paths of genetic 
inheritance caused by recombination, encapsulating the resulting 
complex web of genetic ancestors of a set of sampled genomes. 
Recent breakthroughs in large-scale inference methods 
(Rasmussen et al. 2014; Kelleher et al. 2019b; Speidel et al. 2019; 
Schaefer et al. 2021; Wohns et al. 2022; Zhan et al. 2023; Zhang 
et al. 2023; Deng et al. 2024) have raised the realistic prospect of 
ARG-based analysis becoming a standard part of the population 
and statistical genetics toolkit (Hejase et al. 2020). Applications 
using inferred ARGs as input have begun to appear (Osmond 
and Coop 2021; Fan et al. 2022; Guo et al. 2022; Hejase et al. 2022; 
Fan et al. 2023; Ignatieva et al. 2023; Link et al. 2023; 
Nowbandegani et al. 2023; Zhang et al. 2023; Deraje et al. 2024; 
Grundler et al. 2024; Huang et al. 2024; Korfmann et al. 2024) and 
many more are sure to follow (Harris 2019, 2023).

Although it is widely accepted that ARGs are important, there 
is some confusion about what, precisely, an ARG is. In its origin-
al form, developed by Griffiths and colleagues, the ARG is an 
alternative formulation of the coalescent with recombination 
(Hudson 1983a), where the stochastic process of coalescence 

and recombination among ancestral lineages is formalized as a 
graph (Ethier and Griffiths 1990; Griffiths 1991; Griffiths and 
Marjoram 1996, 1997). Subsequently, an ARG has come to be 
thought of as a data structure (Minichiello and Durbin 2006), i.e. 
describing a realization of such a random process, or an inferred 
ancestry of a sample of genomes. The distinction between sto-
chastic process and data structure is not clear cut, however, and 
subfields use the term differently (Appendices A and B). The 
term “ARG,” therefore, has many different meanings, varying 
over time and depending on context. There is, however, an emer-
ging consensus to use the term in quite a general sense (e.g. Hejase 
et al. 2020; Mathieson and Scally 2020; Schaefer et al. 2021; Fan et al. 
2023; Harris 2023; Zhang et al. 2023), informally encompassing the 
varied structures output by modern simulation and inference 
methods (Rasmussen et al. 2014; Palamara 2016; Haller et al. 
2019; Kelleher et al. 2019b; Speidel et al. 2019; Baumdicker et al. 
2022; Zhang et al. 2023). There is currently no formal definition 
or systematic discussion that unifies these different structures, 
however, stifling progress in this vibrant research area.

In this perspective, we provide a simple formal definition of an 
ARG data structure which generalizes classical definitions and en-
compasses the output of modern simulation and inference meth-
ods. We show that different levels of approximation are possible 
using this structure, illustrated via examples. The proposed ARG 
definition is the basis of the widely used tskit library which 
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provides a powerful software platform for ARG-based analysis 
and, we argue, would be a useful community standard. This per-
spective is intended for “ARG practitioners,” who we hope will find 
the detailed examples, technical appendices, and comprehensive 
bibliography useful. Readers seeking an introduction to ARGs and 
their applications are directed to Lewanski et al. (2024) and Brandt 
et al. (2024).

Genome ARGs
We define a genome as the complete set of genetic material that a 
child inherits from 1 parent. A diploid individual, therefore, car-
ries 2 genomes, 1 inherited from each parent (we assume diploids 
and consider nuclear autosomal DNA here for clarity, but the de-
finitions apply to organisms of arbitrary ploidy). We will also use 
the term “genome” in its more common sense of “the genome” 
of a species, and hope that the distinction will be clear from the 
context. We are not concerned here with mutational processes 
or observed sequences, but consider only processes of inherit-
ance, following the standard practice in coalescent theory. We 
also do not consider structural variation, and assume that all 
samples and ancestors share the same genome coordinate space.

A genome ARG (gARG) is a directed acyclic graph in which 
nodes represent haploid genomes and edges represent genetic in-
heritance between an ancestor and a descendant. The topology of 
a gARG specifies that genetic inheritance occurred between ances-
tors and descendants, but the graph connectivity does not tell us 
which parts of their genomes were inherited. In order to capture 
the effects of recombination we “annotate” the edges with the gen-
ome coordinates over which inheritance occurred. This is suffi-
cient to describe the effects of inheritance under any form of 
homologous recombination (such as multiple crossovers during 
a single round of meiosis, gene conversion events, and many 
forms of bacterial and viral recombination).

We can define a gARG formally as follows. Let N = {1, . . . , n} be 
the set of nodes representing the genomes in the gARG, and S ⊆ N 
be the set of sampled genomes. Then, E is the set of edges, where 
each element is a tuple (c, p, I) such that c, p ∈ N are the child and 
parent nodes and I is the set of disjoint genomic intervals over 
which genome c inherits from p. Thus, each topological connection 
between a parent and child node in the graph is annotated with a 
set of inheritance intervals I. Here, the terms parent and child are 
used in the graph sense; these nodes, respectively, represent ances-
tor and descendant genomes, which can be separated by multiple 
generations. We will use these 2 sets of terms interchangeably.

How nodes are interpreted, exactly, is application dependent. 
Following Hudson (1983a), we can view nodes as representing ga-
metes, or we can imagine them representing, for example, the 
genomes present in cells immediately before or after some in-
stantaneous event (Appendix D). A node can represent any gen-
ome along a chain of cell divisions or can be interpreted as 
representing one of the genomes of a potentially long-lived indi-
vidual. In many settings, nodes are dated, i.e. each node u ∈ N is 
associated with a time τu, and how we assign precise times will 
vary by application. The topological ordering defined by the direc-
ted graph structure and an arrow of time (telling us which direc-
tion is pastwards) is sufficient for many applications, however, 
and we assume node dates are not known here. In practical set-
tings, we will wish to associate additional metadata with nodes 
such as sample identifiers or quality-control metrics. It is, there-
fore, best to think of the integers used here in the definition of a 
node as an identifier, with which arbitrary additional information 
can be associated.

As illustrated in Fig. 1, the gARG for a given set of individuals is 
embedded in their pedigree. The figure shows the pedigree of 8 
diploid individuals and their 16 constituent genomes (each con-
sisting of a single chromosome), along with paths of genetic inher-
itance. Here, and throughout, nodes are labeled with uppercase 
alphabetical letters rather than integer identifiers to avoid confu-
sion with genomic intervals. Thus individual d1 is composed of 
genomes A and B, which are inherited from its 2 parents d3 and 
d4. Each inherited genome may be the recombined product of 
the 2 genomes belonging to an individual parent. In this example, 
genome B was inherited directly from d4 ’s genome G without re-
combination, whereas genome A is the recombinant product of 
d2 ’s genomes E and F crossing over at position 2. Specifically, gen-
ome A inherited the (half-closed) interval [0, 2) from genome E and 
[2, 10) from genome F. These intervals are shown attached to the 
corresponding graph edges. The figure shows the annotated pedi-
gree with realized inheritance of genomes between generations 
(a), the corresponding gARG (b), and finally the corresponding se-
quence of local trees along the genome (c). The local trees span the 
3 genome regions delineated by the 2 recombination breakpoints 
that gave rise to these genomes; see Appendix E for details on how 
local trees are embedded in an ARG.

Event ARGs
A classical view of an ARG data structure, described explicitly in 
several publications (e.g. Wiuf and Hein 1999b; Gusfield 2014; 
Hayman et al. 2023), interprets nodes not as genomes but as his-
torical events (but see Parida et al. 2011 and Zhang et al. 2023 for 
notable exceptions). This event ARG (eARG) encoding is the basis 
of the output formats created by multiple ARG inference tools 
(e.g. Song and Hein 2004; Song et al. 2005; Rasmussen et al. 2014; 
Heine et al. 2018; Ignatieva et al. 2021). In this encoding, there are 
2 types of internal node in the graph, representing the most recent 
common ancestor and recombination events in the history of a 
sample. At common ancestor nodes, the inbound lineages merge 
into a single ancestral lineage with 1 parent, and at recombination 
nodes a single lineage is split into 2 independent ancestral 
lineages. Recombination nodes are annotated with the corre-
sponding crossover breakpoints, and these breakpoints are used 
to construct the local trees. This is done by tracing pastwards 
through the graph from the samples, making decisions about 
which outbound edge to follow through recombination nodes 
based on the breakpoint position (Griffiths and Marjoram 1996). 
Figure 2 shows an example of an eARG with 3 sample genomes 
(A, B, and C), 3 common ancestor events (E, F, and G) and a single 
recombination event (node D) with a breakpoint at position x. 
Assigning a breakpoint to a recombination node is not sufficient 
to uniquely define the local trees, and either some additional or-
dering rules (e.g. Griffiths and Marjoram 1996) or explicit informa-
tion (e.g. Gusfield 2014; Ignatieva et al. 2021) is required to 
distinguish the left and right parents. We assume in Fig. 2 that D 
inherits genetic material to the left of x from E and to the right 
of x from F.

While this approach of annotating recombination nodes with a 
breakpoint in an eARG is a concise and elegant way of describing 
realizations of the coalescent, it has limitations. The eARG encod-
ing explicitly models only 2 different types of event; thus anything 
that is not a single crossover recombination or common ancestor 
event must be incorporated either in a roundabout way using 
these events, or by adding new types of event to the encoding. 
For example, gene conversion (Wiuf and Hein 2000) could be ac-
commodated either by stipulating a third type of event (annotated 
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by 2 breakpoints and corresponding traversal conventions for re-
covering the local trees) or by 2 recombination nodes joined by a 
zero-length edge. The gARG encoding described in the previous 
section offers a simpler and more direct solution.

Aside from these practical challenges, there is also a deeper is-
sue with the implicit strategy of basing an ARG data structure on 
recording events and their properties (e.g. the crossover break-
point for a recombination event). This approach requires all 
events to be recorded explicitly, and does not provide an obvious 
mechanism for aggregating multiple, potentially unresolvable, 
events. As datasets approach the population scale (e.g. Bycroft 
et al. 2018; Turnbull et al. 2018; Hayes and Daetwyler 2019; 
Karczewski et al. 2020; Ros-Freixedes et al. 2020; Tanjo et al. 2021; 
Halldorsson et al. 2022) representing such uncertainty directly 
through the data structure is a useful alternative to classical 
methods based on probabilistic sampling.

Ancestral material and sample resolution
Ancestral material (Wiuf and Hein 1999a, 1999b) is a key concept 
in understanding the overall inheritance structure of an ARG. It 
denotes the genomic intervals ancestral to a set of samples on 
the edges of an ARG. For example, in Fig. 1, we have 4 sample gen-
omes, A–D. As we trace their genetic ancestry into the previous 
generation (E–H), we can think of their ancestral material propa-
gating through the graph pastwards. In the region [2, 7), there is 
a local coalescence where nodes A and C find a common ancestor 
in F. Thus, in this region, we have 3 genome segments that are an-
cestral to the 4 samples. Figure 1a illustrates this by (shaded) an-
cestral material being present in only 3 nodes (F, G, and H) in this 
region, while node E is blank as it carries nonancestral material. 
This process of local coalescence continues through the graph, 
until all samples reach their most recent common ancestor in 
node N.

The process of tracking local coalescences and updating seg-
ments of ancestral material is a core element of Hudson’s seminal 
simulation algorithm (Hudson 1983b; Kelleher et al. 2016). The 
ability to store resolved ancestral material is also a key distinction 
between the eARG and gARG encodings. Because an eARG stores 
only the graph topology and recombination breakpoints, there is 

no way to locally ascertain ancestral material without traversing 
the graph pastwards from the sample nodes, resolving the effects 
of recombination and common ancestor events.

Efficiently propagating and resolving ancestral material for a 
sample through a preexisting graph is a well-studied problem, 
and central to recent advances in individual-based forward-time 
simulations (Haller et al. 2019; Kelleher et al. 2018). In contrast to 
the usual “retrospective” view of ARGs discussed so far, these 
methods record an ARG forwards in time in a “prospective” man-
ner. Genetic inheritance relationships and mutations are recorded 
exhaustively, generation-by-generation, leading to a rapid build- 
up of information, much of which will not be relevant to the 
genetic ancestry of a future population. This redundancy is period-
ically removed using the “simplify” algorithm (Kelleher et al. 2018), 
which propagates and resolves ancestral material. Efficient simpli-
fication is the key enabling factor for this prospective-ARG-based 
approach to forward-time simulation, which can be orders of 
magnitude faster than standard sequence-based methods (see 
Appendix G for other applications of ARG simplification). We refer 
to a gARG that has been simplified with respect to a set of samples, 
such that the inheritance annotations on its edges contain no non-
ancestral material, as sample-resolved.

Any eARG can be converted to a sample-resolved gARG via a 
2-step process illustrated in Fig. 3. The first step is to take the input 
eARG (Fig. 3a), duplicate its graph topology, and then add inherit-
ance annotations to each of the gARG’s edges (Fig. 3b) as follows. If 

a b c

Fig. 1. An example gARG embedded in a pedigree. a. Diploid individuals (shaded backgound squares / circles), visualized in a highly inbred pedigree and 
labeled d1–d8, contain both paternal and maternal genomes labeled A–P. Black lines show inheritance paths connecting genomes in the current 
generation (A–Dd) with their ancestors. Genomes A–C are the product of 2 independent meioses (recombination events, with italicised breakpoint 
positions) between the paternal genomes E and F, and regions of genome inherited are shown with shaded color. Genomes are shaded such that where, 
backwards in time, they merge into a common ancestor, the merged region is darker. b. The corresponding gARG along with inheritance annotations on 
all edges (partial inheritance in bold). c. The corresponding local trees.

a b

Fig. 2. A classical eARG. a. Standard graph depiction with breakpoint x 
associated with the recombination node D. Nodes E, F, and G are common 
ancestor events. b. Corresponding local trees to the left and right of 
breakpoint x (note these are shown in the conventional form in which only 
coalescences within the local tree are included hence D is omitted; see 
Appendix E for a discussion of this important point).
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a given node is a common ancestor event, we annotate the single 
outbound edge with the interval [0, L) , for a genome of length L. If 
the node is a recombination event with a breakpoint x, we anno-
tate the 2 outbound edges, respectively, with the intervals [0, x) 
and [x, L). These inheritance interval annotations are clearly in 
one-to-one correspondence with the information in the input 
eARG. They are also analogous to the inheritance intervals we 
get on the edges in a prospective gARG produced by a forward- 
time simulation, which are concerned with recording the direct 
genetic relationship between a parent and child genome and are 
not necessarily minimal in terms of the ancestral material of a 
sample. Thus, the final step is to use the “simplify” algorithm to re-
solve the ancestral material of the samples (Fig. 3c).

The sample-resolved gARG of Fig. 3c differs in some important 
ways to the original eARG (Fig. 3a). Firstly, we can see that some 
nodes and edges have been removed entirely from the graph. 
The “grand MRCA” Q is omitted from the sample-resolved gARG 
because all segments of the genome have fully coalesced in K 
and P before Q is reached. Likewise, the edge between G and J is 
omitted because the recombination event at position 5 (repre-
sented by node G) fell in nonancestral material. More generally, 
we can see that the sample-resolved gARG of Fig. 3c allows for “lo-
cal” inspection of an ARG in a way that is not possible in an eARG. 
Because the ancestral material is stored with each edge of a gARG, 
the cumulative effects of events over time can be reasoned about, 
without first “replaying” those events. Many computations that 
we wish to perform on an ARG will require resolving the ancestral 
material with respect to a set of samples. The gARG encoding al-
lows us to perform this once and to store the result, whereas the 
eARG encoding requires us to repeat the process each time.

A diversity of structures
A key goal of this perspective is to highlight the heterogeneity of 
the graph structures inferred by modern ARG inference methods. 
To illustrate this point, Fig. 4 shows the output of KwARG (Ignatieva 
et al. 2021), ARGweaver (Rasmussen et al. 2014), tsinfer (Kelleher 
et al. 2019b), and Relate (Speidel et al. 2019) on the classical 
(Kreitman 1983) dataset. The ARGs in Fig. 4a and b are precise es-
timates (Appendix H), with each node corresponding to a common 

ancestor or recombination event, or equivalently, either having 2 
children or 2 parents. In contrast the ARGs in Fig. 4c and d do not 
have this clear-cut interpretation, and the nodes can simultan-
eously have more that than 2 children and more than 2 parents. 
Another dimension of variability among the ARGs is that the first 
3 methods infer nodes that have a “coalescence span” greater than 
0 and less than 100%, indicating that there are nodes that are 
“locally unary” (Appendix F), but mark a coalescence between 
lineages elsewhere along the sequence.

A key feature of the gARG encoding is that it enables these vary-
ing levels of precision to be represented. These ideas are illustrated 
in Fig. 5, which shows different levels of “simplification” (Appendix 
G) of the same underlying simulated ARG. The full ARG, with all co-
alescent and recombination events represented by separate gen-
omes, is shown in Fig. 5a. Simpler representations can be formed 
by removing “unknowable” nodes such as those in singly connected 
graph components (Fig. 5b) and collapsing multiple recombina-
tions into a single child or multiple coalescences into a single par-
ent (Fig. 5c). Finally, Fig. 5d is a “fully simplified” ARG, in which only 
coalescences in local trees are retained. Note that while ARGs of 
this type (produced by default by the msprime simulator, for ex-
ample) lack a significant level of detail, they still retain the key fea-
ture of shared node identity across local trees.

This ability to represent an ARG to differing degrees of precision 
is a powerful feature. In particular, when inferring ARGs from gen-
ome sequencing data, the timing, positions, and even the number 
of recombination events is generally not possible to infer precise-
ly. For example, under coalescent-based models, the proportion of 
recombination events that change the ARG topology grows very 
slowly with sample size (Hein et al. 2004), and of those events 
only a small proportion are actually detectable from the data, as-
suming human-like mutation and recombination rates (Myers 
2002; Hayman et al. 2023). Even when a recombination event is de-
tectable, its timing and breakpoint position can only be inferred 
approximately, depending on how much information can be elu-
cidated from mutations in the surrounding genomic region. A 
gARG can encode a diversity of ARG structures, including those 
where events are recorded explicitly, and those where they are 
treated as fundamentally uncertain and thus not explicitly in-
ferred (Appendix H).

a b c

Fig. 3. Converting the Wiuf and Hein (1999b, Fig. 1) example to a sample-resolved gARG. a. The original eARG; nodes represent sampling, common 
ancestor, and recombination events (small shaded, small blue, and large red rectangles respectively); the latter contain breakpoint positions. b. The 
corresponding gARG with breakpoints directly converted to edges annotated with inheritance intervals. c. The sample-resolved gARG resulting from 
simplifying with respect to the sample genomes, A, B, and C. Dashed lines show edges that are no longer present (in practice, nodes G, J, and Q would also 
be removed). Coalescence with respect to the sample is indicated by shaded bars, as in Fig. 1a; nodes N, O, P, Q have truncated bars showing that local 
ancestry of entirely coalesced regions is omitted. Line thickness is proportional to the genomic span of each edge. Nodes representing recombination 
events are retained for clarity, but could be removed by simplification if desired.
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Implementation and efficiency
The gARG encoding can lead to highly efficient storage and pro-
cessing of ARG data, and has been in use for several years. The 
succinct tree sequence data structure (usually known as a “tree 
sequence” for brevity) is a practical gARG implementation focused 
on efficiency. It was originally developed as part of the msprime 
simulator (Kelleher et al. 2016) and has subsequently been ex-
tended and applied to forward-time simulations (Haller et al. 
2019; Kelleher et al. 2018), inference from data (Kelleher et al. 
2019b; Wohns et al. 2022; Zhan et al. 2023), and calculation of 
population genetics statistics (Ralph et al. 2020). The succinct 
tree sequence encoding extends the basic definition of a gARG pro-
vided here by stipulating a simple tabular representation of nodes 
and edges, and also defining a concise representation of sequence 
variation using the “site” and “mutation” tables. The key property 
of the succinct tree sequence encoding that makes it an efficient 
substrate for defining analysis algorithms is that it allows us to se-
quentially recover the local trees along the genome very efficient-
ly, and in a way that allows us to reason about the differences 
between those trees (Kelleher et al. 2016; Ralph et al. 2020).

The tskit library is a liberally licensed open-source toolkit that 
provides a comprehensive suite of tools for working with gARGs (en-
coded as a succinct tree sequence). Based on core functionality writ-
ten in C, it provides interfaces in C, Python and Rust. Tskit is mature 
software, widely used in population genetics, and has been incorpo-
rated into numerous downstream applications (e.g. Haller and 
Messer 2019; Speidel et al. 2019; Adrion et al. 2020; Terasaki Hart 
et al. 2021; Baumdicker et al. 2022; Fan et al. 2022; Guo et al. 2022; 
Mahmoudi et al. 2022; Fan et al. 2023; Ignatieva et al. 2023; 
Korfmann et al. 2023; Nowbandegani et al. 2023; Petr et al. 2023; 
Rasmussen and Guo 2023; Tsambos et al. 2023; Zhang et al. 2023; 
Korfmann et al. 2024; Tagami et al. 2024). The technical details of 

tskit, and how it provides an efficient and portable platform for 
ARG-based analysis, are beyond the scope of this manuscript.

Discussion
Tremendous progress has been made in recent years on the long- 
standing problem of ARG inference, there is now a range of practic-
ally applicable methods available. Methods targeting large-scale 
datasets tend to simplify the inference problem by making a single, 
deterministic best-guess (Kelleher et al. 2019b; Speidel et al. 2019; 
Zhan et al. 2023; Zhang et al. 2023) (but see Deng et al. 2024 for re-
cent developments in capturing uncertainty using a Bayesian 
framework, for relatively small sample sizes). Even under strict 
parsimony conditions and for small sample sizes the number of 
plausible ARGs compatible with a given dataset is vast, and it is, 
therefore, not clear that generating many guesses when sample 
sizes are large will achieve much in terms of capturing uncer-
tainty. An alternative approach to is to incorporate uncertainty en-
countered during inference into the returned ARG. The gARG 
encoding described here enables particular kinds of uncertainty 
to be incorporated directly into the topology: nodes that have 
more than 2 children (polytomies) represent uncertainty over the 
ordering of coalescence events (Appendix D), and those that 
have more than 2 parents represent uncertainty over the ordering 
of multiple recombination events (Appendix G). Development of 
other methods to capture, for example, uncertainty about node 
ages and recombination breakpoint positions, is an important as-
pect of future work. How this uncertainty can be used in down-
stream applications is an open question.

Another important avenue for future work is to develop im-
proved methods to evaluate and benchmark inference quality. 
In most cases, ARG inference is evaluated by simulating data 

a b c d

Fig. 4. Inference of sample-resolved ARGs for 11 Drosophila melanogaster DNA sequences over a 2.4 kb region of the ADH locus (Kreitman 1983). Results for 
4 different methods: a. KwARG; b. ARGweaver; c. tsinfer; and d. Relate, converted to the standard tskit gARG encoding. See Appendix I for details of these 
methods. Edge colors indicate time of the edge’s child node (lighter: older; darker: younger), with width proportional to genomic span. Vertical and 
horizontal positions of graph nodes are arbitrary. Bottom row graphics show the genome positions, relative to the start of the ADH gene, for each graph 
edge from the corresponding ARG. Edge intervals are drawn as horizontal lines, stacked in time order (edges with youngest children at the bottom); 
vertical dashed lines denote breakpoints between local trees.
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from a known ground truth ARG, and comparing this to the in-
ferred version via pairwise comparison of local trees along the 
genome using tree distance metrics (e.g. Robinson and Foulds 
1981; Kendall and Colijn 2016), as described by Kuhner and 
Yamato (2015a). In comparing tree-by-tree along the genome, 
the effects of recombination are incorporated in an indirect man-
ner through the correlations between the local trees, instead of 
directly taking into account the persistence of nodes and edges 
across multiple trees. The performance of tree distance metrics 
varies by application (Kuhner and Yamato 2015b), and the correct 
approach to handling subtleties such as polytomies is an open 
question (Kelleher et al. 2019b; Zhang et al. 2023). Tree distance 

metrics often have O(n2) time complexity or worse and therefore 
cannot be applied to the very large sample sizes currently of inter-
est. A recent trend has been to move away from such tree 
distance-based approaches and to examine more properties of 
the inferred ARGs, such as distributions of pairwise MRCA times 
(Brandt et al. 2022), waiting distances between local trees (Deng 
et al. 2021), and the genomic span of an edge or clade of samples 
(Ignatieva et al. 2023). In each case, simulation studies demon-
strated substantial differences between these quantities in simu-
lated and reconstructed ARGs that were not captured using 
tree-by-tree comparisons. Evaluations to-date have almost all 
been based on ground truth data from highly idealized 

a

b

c

d

Fig. 5. Levels of ARG simplification. a. An example gARG simulated from a diploid Wright–Fisher model. b. Remove all singly connected graph 
components (e.g. diamonds such as JLMN). c. Remove nodes that never represent coalescences, i.e. are unary everywhere (e.g. N and R). d. Rewrite edges to 
bypass nodes in local trees in which they are unary (often described as “fully simplified”). In each case, the graph is shown on the left and corresponding 
local trees on the right. In the interest of visual clarity, inheritance intervals are not shown on the graph edges; Supplementary Fig. 1 shows the graphs 
with these inheritance intervals included. Graph nodes are colored by the number of parents and shaded according to the proportion of their span over 
which they are coalescent; see the text for more details.
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simulations, with sample sizes limited to at most a few thou-
sand (typically much fewer). Beyond the effects of very simplis-
tic error models (e.g. Kelleher et al. 2019b), the effects of the 
richness of real data at biobank-scale on ARG inference are al-
most entirely unknown. The development of ARG evaluation 
metrics that take into account more of the global topology and 
can be applied to large ARGs would be a valuable and timely 
addition to the field. Using ARGs simulated from observed pedi-
gree data (Anderson-Trocmé et al. 2023) as ground-truth would 
also add a valuable dimension to our understanding of how well 
methods perform when faced with realistic population and 
family structure.

Interest in ARG inference methods and downstream applica-
tions is burgeoning, with exciting developments arriving at 
ever-increasing pace. Without agreement on basic terminology 
and some standardization on data formats, however, the ARG 
revolution may falter. For ARG-based methods to achieve main-
stream status, we require a rich supporting software ecosystem. 
Ideally, this would comprise a wide range of inference methods 
specialized to different organisms, inference goals, and types 
and scales of data. If these diverse inference methods share a 
common, well-defined data format, their outputs could then 
be processed by many different downstream applications with-
out the productivity-sapping problems of converting between 
partially incompatible formats (Excoffier and Heckel 2006). 
Earlier efforts to standardize ARG interchange shared this vi-
sion, but did not succeed (Cardona et al. 2008; McGill et al. 
2013). Current methods tend to tightly couple both ARG infer-
ence and downstream analysis within the same software pack-
age, which is ultimately not compatible with the widespread 
use of ARGs for routine data analysis, and a healthy and diverse 
software ecosystem. The gARG encoding described here is a sig-
nificant generalization of classical concepts, capable of describ-
ing even the bewildering complexity of contemporary datasets 
and encompassing a wide range of approximate ARG structures, 
and would be a reasonable basis for such a community inter-
change format.

Rigorously defining interchange formats (e.g. Kelleher 
et al. 2019a) is difficult and time-consuming, and no matter 
how precise the specification, in practise it is the implementations 
that determine how well methods interoperate. The BAM read 
alignment format (Li et al. 2009) is an instructive example. 
Originally developed as part of the 1000 Genomes project 
(1000 Genomes Project Consortium 2015) to address the frag-
mented software ecosystem that existed at the time (Danecek 
et al. 2021), BAM has since become ubiquitous in bioinformatics 
pipelines. The excellent interoperability between methods ex-
changing alignment data is largely attributable to the success 
of htslib (Bonfield et al. 2021), the software library that 
implements BAM and several other foundational bioinformatics 
file formats. Today, there are thousands of software projects 
using htslib (Bonfield et al. 2021), and it is this shared use of 
community software infrastructure that guarantees the smooth 
flow of data between applications. The emerging ARG software 
ecosystem could similarly benefit from the adoption of such 
shared community infrastructure to handle the mundane and 
time-consuming details of data interchange. The tskit library 
is a high-quality open-source gARG implementation, with pro-
ven efficiency and scalability (e.g. Anderson-Trocmé et al. 2023; 
Zhan et al. 2023), that is already in widespread use. Adopting it 
as a community standard may ease software implementation 
burden on researchers, freeing their time to address the many 
fascinating open questions and challenges that exist.

Data availability
All code used to generate figures and run analyses is available 
on GitHub at https://github.com/tskit-dev/what-is-an-arg-paper.

Supplemental material available at GENETICS online.
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Appendix A: Ancestral graphs: a brief 
history
The coalescent (Kingman 1982a, 1982b; Hudson 1983b; Tajima 
1983) models the ancestry of a sample of genomes under an idea-
lized population model, and provides the theoretical underpin-
ning for much of contemporary population genetics. It is a 
stochastic process, where each random realization is a genea-
logical tree describing the genetic ancestry of the sample. 
Numerous extensions to the model have been proposed (Hudson 
1990; Hein et al. 2004; Wakeley 2008), incorporating many 
evolutionary processes. Hudson (1983a) first incorporated recom-
bination into the coalescent process, providing several fundamen-
tal analytical results and describing the basic simulation 
algorithm, still in widespread use (Hudson 2002; Kelleher et al. 
2016; Kelleher and Lohse 2020; Baumdicker et al. 2022). In the 
1990s, Griffiths and colleagues revisited the coalescent with re-
combination from a different perspective, formulating it as a sto-
chastic process where each realization is encoded as a graph 
(Ethier and Griffiths 1990; Griffiths 1991; Griffiths and Marjoram 
1996, 1997). They referred to both the stochastic process and 
its random realizations as the ancestral recombination graph 
(ARG). Although mathematically equivalent, it is important to 
note that the Griffiths and Hudson formulations of the coalescent 
with recombination are not identical; in particular, a direct imple-
mentation of the ARG process as originally described requires ex-
ponential time to simulate (see Appendix B for details). However, 
ARGs provided a way to reason about and infer recombinant 
ancestry as a single object, in a way that is not possible within 
Hudson’s framework, which emphasized instead the collection 
of local trees along the genome resulting from recombination.

Subsequent work on ARGs proceeded in broadly 3 main direc-
tions: (1) exploring the mathematical properties of the coalescent 
with recombination and related stochastic processes; (2) inferring 
evolutionary parameters under (approximations to) this model, 
either with or without explicitly reconstructing the genealogy of 
the sample; and (3) treating the ARG as a discrete graph, ignoring 
the generating stochastic process, and studying its properties 
from a computational and algorithmic perspective.
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An extensive body of work has been developed from studying 
the coalescent with recombination and other related graph- 
valued stochastic processes from a mathematical perspective. In 
particular, the Ancestral Selection Graph (ASG) (Krone and 
Neuhauser 1997; Neuhauser and Krone 1997) uses a similar ap-
proach to model natural selection instead of recombination. 
Unlike the ARG process, the ASG imposes a hard distinction be-
tween the stochastic process, which constructs a random 
ARG-like graph, and an observable realization, which is a single 
tree sampled from the graph in a nonuniform way to encode de-
sired patterns of natural selection. Constructions of ASG-like sto-
chastic processes encoding various forms of selection, often in 
parallel with recombination or other genetic forces, are an area 
of considerable and ongoing theoretical interest (e.g. Donnelly 
and Kurtz 1999; Neuhauser 1999; Fearnhead 2001, 2003; 
Etheridge and Griffiths 2009; Baumdicker and Pfaffelhuber 2014; 
González Casanova and Spanò 2018; Koskela and Wilke 
Berenguer 2019).

Early work on inference under the coalescent with recombin-
ation focused on the problem of inferring the parameters of the 
stochastic process, where the ancestry was regarded as a latent 
parameter to be averaged out (e.g. Griffiths and Marjoram 1996; 
Kuhner et al. 2000; Nielsen 2000; Fearnhead and Donnelly 2001). 
These methods met with limited success because the state space 
of ARGs is overwhelmingly large, and lacks a simple geometry or 
neighborhood structure for inference or sampling methods to ex-
ploit. Several breakthroughs in this direction were achieved 
through formulating simplified but more tractable approxima-
tions to the full model (McVean and Cardin 2005; Marjoram and 
Wall 2006; Li and Durbin 2011; Paul et al. 2011; Schiffels and 
Durbin 2014). The related problem of sampling genealogies com-
patible with a given dataset under the coalescent with recombin-
ation also proved notoriously difficult computationally; progress 
in explicitly inferring genealogies at scale has similarly been 
achieved through resorting to principled approximations 
(Rasmussen et al. 2014; Mahmoudi et al. 2022; Deng et al. 2024), 
or moving away from the coalescent with recombination al-
together and seeking to infer a single plausible ARG (e.g. 

Minichiello and Durbin 2006; Kelleher et al. 2019b; Speidel et al. 
2019).

There has also been substantial interest in formulating and an-
swering fundamental questions about properties of the ARG as a 
discrete graph structure, focusing on the ARG topology without 
considering either branch lengths or indeed the generating pro-
cess. The first prominent problem was calculating (lower bounds 
on) the minimum number of recombinations required to recon-
struct a valid genealogy for a given sample (Myers and Griffiths 
2003), and constructing the corresponding minimal (parsimoni-
ous) ARGs (Song and Hein 2003; Lyngsø et al. 2005; Song et al. 
2005). These problems are NP-hard in general (Wang et al. 2001), 
and progress has been achieved through studying various con-
strained special cases of ARGs (e.g. Gusfield et al. 2004) and other 
more general types of phylogenetic networks (Huson et al. 2010). 
The focus has been on algorithmic and combinatorial results 
(Gusfield 2014) that are often not of direct relevance to the infer-
ence problems described above.

The goal of this historical overview is to illustrate that the 
meaning of the term “ARG” now strongly depends on the context 
in which it is used, and can mean both the stochastic process 
that generates genealogies in the presence of recombination 
(e.g. Nordborg 2000; Birkner et al. 2013; Wilton et al. 2015; 
Griffiths et al. 2016), as well as the concrete realization of ancestry 
from a process (e.g. Gusfield 2014; Mathieson and Scally 2020; 
Brandt et al. 2022).

Appendix B: The big and little ARG
Here, we review 2 important stochastic processes that construct 
ARGs: the “Big” ARG process of Griffiths and Marjoram (1997), 
and the “Little” ARG process of Hudson (1983a). The Big ARG pro-
cess is mathematically simpler but is computationally intractable 
due to generating a vast number of ancestors which contribute no 
genetic material to the initial sample. The Little ARG process 
avoids nongenetic ancestors at the cost of more complex dynam-
ics and state space. We also demonstrate that applications relying 
on the grouping of inheritance pathways into ancestral lineages, 

a b

Fig. A1. a. A realization of the graph traversed by Hudson’s algorithm started from a sample of 3 chromosomes with m discrete sites each at time t = 0, and 
propagated until time T. The MRCA on the genetic interval [v, w) is reached at event B, while that on [0, v) is reached at event C. The nonancestral segment 
[v, w) above a contributes to the rate of effective recombinations because it is trapped between ancestral segments. The 2 columns titled CA and RE are 
the respective rates of mergers and recombinations when the recombination rate is ρ. b. A corresponding realization of a Big ARG, which augments 
Hudson’s algorithm by tracking nonancestral lineages. The result is a simpler state space and dynamics, at the cost of extra nodes and edges, highlighted 
in red, which do not affect the local tree at any site. Recombination positions are labeled alphabetically in time, and their ordering along the genome is 
y < v < x < w, of which the first only appears in panel b. There are 2 separate recombination events at link w.
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such as likelihood-based inference under the coalescent, requires 
that the ARG data structure be interpreted in a model-specific 
way.

A generic state of the Little ARG process consists of a finite col-
lection of lineages L, each of which is a list of disjoint ancestry seg-
ments (ℓ, r, a), where [ℓ, r) is a half-closed genomic interval and a 
is an integer tracking the number of samples to which the lineage 
is ancestral over that interval. We also usually track the node as-
sociated with each segment, but that is not important for our pur-
poses here so we omit it to lighten notation. The initial condition 
for a sample of n genomes of length m consists of n lineages of the 
form {(0, m, 1)}. The process traverses a series of common ances-
tor and recombination events backwards in time. Recombination 
events happen at rate ρν/(m − 1), where ρ ≥ 0 is a per-genome re-
combination rate and

ν =


x∈L

max
(ℓ,r,a)∈x

r − min
(ℓ,r,a)∈x

ℓ − 1
 

is the number of available “links” surrounded by ancestral mater-
ial. At a recombination event we choose one of these links uni-
formly and break it, replacing the original lineage in L with 2 
new lineages containing the ancestral material to the left and 
right of the break point, respectively.

Common ancestor events occur at rate |L|2. In a common an-
cestor event, 2 uniformly sampled lineages have their segments 
merged into a single ancestor lineage, which is added to L. If 
the lineages have overlapping intervals of ancestry, say, (ℓ, r, a1) 
and (ℓ, r, a2), a coalescence occurs. The result is a segment 
(ℓ, r, a1 + a2), and if a1 + a2 < n it is included in the ancestor lineage. 
Otherwise, if a1 + a2 = n, we have found the most recent common 
ancestor of all samples in the interval [ℓ, r) and do not need to 
simulate its history any further. Nonoverlapping intervals from 
the 2 lineages are included in the ancestor lineage without 
changes. Eventually, we find resultant lineages in which all seg-
ments have fully coalesced, and so the number of extant lineages 
gradually falls to zero.

In the Big ARG process each edge in the graph corresponds to an 
extant lineage and nodes are events in the process. The n initial 
leaf nodes are sampling events. Common ancestor events 
occur at rate |L|2. When a common ancestor event happens, 2 uni-
formly chosen lineages merge into a common ancestor lineage. 
Recombination events happen at rate |L|ρ. Here, we choose a lin-
eage (i.e. edge) uniformly, and a breakpoint 0 < x < m uniformly 
on its genome. We terminate the edge at a node, record the break-
point, and start 2 new edges from this node. The process then con-
tinues until there is only 1 lineage left (the grand most recent 
common ancestor, GMRCA), which is guaranteed to happen in fi-
nite time because of the quadratic rate of coalescing vs. linear rate 
of branching.

The state space of the Big ARG process is much simpler than 
that of the Little ARG process, which greatly facilitates mathemat-
ical reasoning. This simplicity comes at a substantial cost, how-
ever, if we wish to use it as a practical means of simulating 
recombinant ancestries. The number of events in the Big ARG all 
the way back to the GMRCA is O(eρ) (Griffiths and Marjoram 
1997), whereas the number of events required to simulate the 
Little ARG is O(ρ2) (Hein et al. 2004; Baumdicker et al. 2022). This 
disparity arises because the majority of the events in the Big 
ARG are recombination events which occur outside of ancestral 
material, and these do not have any bearing on the ancestry of 
the initial sample. Because we don’t keep track of the distribution 

of ancestral material during the process, we generate a vastly 
larger graph.

Figure A1 illustrates the more complex state space of the Little 
ARG process, as well as the extra events which occur in the Big 
ARG process. Moreover, it depicts the rates of common ancestors 
and recombination events in each interval of time of the realiza-
tions. In order to evaluate these rates, e.g. for likelihood-based in-
ference (Baumdicker et al. 2022; Mahmoudi et al. 2022), it is 
necessary to know the number of lineages and number of extant 
links available for recombination in each time interval. Some re-
presentations may not provide this information. For example, in 
the gARG encoding depicted in Fig. 3c, it is clear that a recombin-
ation takes place between nodes I, K, and J. But the exact time of 
the recombination event is ambiguous: it could take place at 
any time between node I and its parents and produce the same 
gARG. Because a recombination increases the number of extant 
lineages by 1 (in the rootward direction of time), the number of 
lineages during the same time interval is ambiguous as well. In 
fact, this information cannot be recovered from the gARG encod-
ing used in Fig. 3c without an extrinsic convention. For the basic 
coalescent with recombination, it is sufficient to create 2 gARG 
nodes at the time of the recombination event, with the interpret-
ation that the 2 rootward edges from node I in Fig. 3c belong to the 
same lineage until the time of nodes K and J, and split into 2 sep-
arate lineages at that time point. Similarly, the trapped, nonan-
cestral links along that lineage remain available for effective 
recombination (i.e. one which splits up ancestral material) for 
the same time interval. This interpretation is highlighted in 
Fig. A1 by drawing only 1 vertical edge between a recombinant 
child and its 2 parents.

Appendix C: Survey of ARG inference 
methods
The problem of reconstructing ARGs for samples of recombining 
sequences has been of interest since the ARG was first defined. 
Early methods focused on finding parsimonious ARGs, i.e. those 
with a minimal number of recombination events (Hein 1990). 
Two main approaches emerged: “backwards-in-time” (Lyngsø 
et al. 2005) and “along-the-genome” (Song and Hein 2003, 2005). 
Backwards-in-time approaches start with a data matrix and re-
duce it to an empty matrix through row and column operations 
corresponding to coalescence, mutation, and recombination 
events, which construct an ARG from the bottom up (Song et al. 
2005; Wu 2008; Thao and Vinh 2019; Ignatieva et al. 2021). 
Along-the-genome approaches begin from an initial local tree at 
a single focal site. Moving the focal site along the genome changes 
the local tree via a subtree prune-and-regraft (SPR) operation 
whenever a recombination is encountered (Hein 1993; Wu 2011; 
Mirzaei and Wu 2017). Rasmussen and Guo (2023) focus on parsi-
monious fusion of local trees into an ARG, while the method de-
scribed by Cámara et al. (2016) is based on topological data 
analysis. Reconstructing a parsimonious ARG for a given data 
set is NP-hard (Wang et al. 2001), so parsimony-based methods re-
sort to heuristics and are limited to analyzing at most hundreds of 
sequences. Hence, a number of methods aim to balance computa-
tional efficiency with reconstruction of “reasonable,” rather than 
parsimonious ARGs (Minichiello and Durbin 2006; Parida et al. 
2008; Kelleher et al. 2019b; Speidel et al. 2019; Schaefer et al. 
2021; Zhang et al. 2023).

An alternative approach is to treat the ARG as a latent param-
eter to be averaged out by Monte Carlo methods, based either on 
importance sampling (Griffiths and Marjoram 1996; Fearnhead 
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and Donnelly 2001; Jenkins and Griffiths 2011) or MCMC (Kuhner 
et al. 2000; Nielsen 2000; Kuhner 2006; Wang and Rannala 2008, 
2009; O’Fallon 2013; Vaughan et al. 2017; Mahmoudi et al. 2022). 
These methods operate on representations of the “Little ARG” 
(see Appendix B), and are computationally expensive, being ap-
plicable to at most hundreds of samples consisting of tens or hun-
dreds of kilobases with human-like parameters. State-of-the-art 
methods rely on cheaper, approximate models (Didelot et al. 
2010; Heine et al. 2018; Hubisz and Siepel 2020; Hubisz et al. 
2020; Medina-Aguayo et al. 2020; Deng et al. 2024). The most scal-
able method, SINGER, can be applied to hundreds of human gen-
omes (Deng et al. 2024).

Methods to sample ARGs generate a “cloud” of estimates, and 
Kuhner and Yamato (2017) provide an approach to generate a 
set of consensus breakpoints and local trees from such a cloud. 
The approach is based on examining the recombination break-
points in all of the input ARGS, and including those that are in 
at least k of the input ARGs (with some additional filtering criteria) 
in the output. Within the resulting intervals, a consensus local 
tree is then generated using standard phylogenetic methods.

Appendix D: Cell lineages and ARGs
In eukaryotes, ARGs are a result of the cellular processes of mitosis 
and meiosis. Mitosis leads to common ancestor events, and mei-
osis leads to recombination events (both crossover and gene con-
version). Figure A2 shows a schematic of the events and the 
genomes (chromosome icons) that occur in the cellular germline 
of a simplified, diploid multicellular hermaphrodite eukaryote 
with partially overlapping generations. Here, an event is not repre-
sented by a specific genome. Rather, genomes can be associated 
with, or “tag”, events above (ancestral to) or below (descended 
from) them. For example, tagging the 2 genomes above a recom-
bination event leads to the 2 node representation seen in Figs. 1a
and A1, whereas tagging the genome below a recombination event 
leads to the more conventional graphs in Figs. 3, 4a and b.

The schematic illustrates an important point about the biologic-
al reality of polytomies. Three lineages coalesce in the left-hand 
genome of individual d10 , but do so as the result of 2 successive bi-
furcations. This is necessarily so, because the only known method 
of reproducing DNA is by (semiconservative) duplication. Whether 
this polytomy is resolvable depends on the available mutational 
data. Mutations can occur along any cell lineages. For example, a 
mutation in the first cell division ofd10 could be shared between 
the 2 gametes produced by the cells in the left half ofd10 but not 
shared by the right-hand gamete. With enough mutations, each 
round of mitotic germline genome duplication within a single 
multicellular organism could in principle be distinguished.

Appendix E: ARGs and local trees
The relationship between an ARG and its corresponding local 
trees is subtle and important. A fundamental property of genetics 
is that a given DNA nucleotide is inherited from exactly 1 
parent genome, both at an organismal and cell-by-cell level 
(Appendix D). These paths of single-parent inheritance give rise, 
by definition, to a tree structure. As a result of recombination, ad-
jacent nucleotides can have different paths of inheritance, and an 
ARG encodes the entire ensemble of local trees along the genome 
for a given set of sample nodes. Precisely defining the process by 
which local trees are extracted from an ARG is essential to our un-
derstanding of how ARGs and local trees are related, and we re-
quire a concrete mathematical structure to describe the local 

trees. It is important to note that although the following discus-
sion is phrased in terms of the gARG encoding, the arguments ap-
ply equally to eARGs because any eARG can be converted to a 
gARG without loss of information (section Ancestral material and 
sample resolution).

Oriented trees provide a convenient formalism to capture these 
parent–child relationships in a well-defined combinatorial object. 
Let π1, . . . , πn be a sequence of integers, such that πu denotes the 
parent of node u, and πu = 0 if u is a root (Knuth 2011, p. 461). 
This encoding is particularly useful to describe evolutionary trees 
because parent–child relationships are important but the ordering 
of children at a node is not (Kelleher et al. 2013, 2014, 2016). Thus, 
for a given gARG with nodes {1, . . . , n} and edges E (section Genome 
ARGs), we recover the local tree at position x as follows. We begin 
by setting πu = 0 for each 1 ≤ u ≤ n. Then, for each sample node in S 
we trace its path pastwards through the ARG for position x, and re-
cord this path in π. Specifically, at a given node u, we find an edge 
(c, p, I) ∈ E such that u = c and x ∈ I, and set πc ← p. We then set 
u← p, and repeat until either πu ≠ 0 (indicating we have traversed 
this section of the ARG already on the path from another sample) 
or there is no matching outbound edge (indicating we are at a 
root). Note that the local trees for an ARG are “sparse” (Kelleher 

Fig. A2. Cellular inheritance of a single chromosome in a diploid 
population. Individuals (blue) contain diploid cells (white circles 
enclosing a homologous pair of chromosomes). For clarity, only 2 rounds 
of mitotic germ-line cell division are shown per individual, and meiosis is 
not illustrated in detail. Lines show prospective inheritance paths for all 
chromosomes. Solid lines show all possible retrospective ancestry paths 
for 4 chosen chromosomes (indicated by square black “sampling events”) 
sampled from 3 diploid individuals (d1, d2, d3) in the current generation. 
Ancestral recombination events and coalescence events are shown as red 
and blue squares, respectively. A realized ARG path for the lower arm of 
the sampled chromosomes is highlighted as a thick solid line, passing 
through a set of potential gARG nodes (green). This ARG involves a single 
recombination event and 4 coalescence events (highlighted as deep red 
and blue squares within individuals d5, d10 , and d13). ARG lineages also 
show gametic genomes, contained within shaded circles. As in Fig. 1a, 
inherited regions within the sampled chromosome arm are shaded by the 
number of descendant samples.
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et al. 2016), because many ancestral nodes will not be reachable 
from the samples at a given position (so their corresponding en-
tries in π will be zero).

This combinatorial approach provides at least one novel in-
sight, clarifying the fundamental relationship between ARGs 
and local trees. Suppose we are given a gARG defined by a set of 
nodes and edges. There is no requirement on the structure of 
this ARG beyond the basic definitions: it could correspond to an 
ARG in which every recombination event is exactly specified 
(e.g. Fig. 3) or one in which local trees are entirely disjoint (i.e. 
only the sample nodes are shared between them). If we are given 
the sequence of local trees for this gARG encoded as an oriented 
tree, along with the genome interval covered by each tree, we 
can recover the original gARG exactly. More formally, suppose 
we are given the local tree πx

1, . . . , πx
n for each nucleotide position 

1 ≤ x ≤ L on a genome of length L. Then, the edges of the “local 
ARG” for this tree is given by Ex = {(u, πx

u, {x}) ∣ πx
u ≠ 0}. Because the 

ARG edges are defined by (c, p, I) tuples, where the set I defines 
the positions over which node c inherits from parent p, we can 
then simply combine the “local ARGs” for each position x to re-
cover precisely the same set of edges as the original ARG. Thus, 
under this definition, there is a one-to-one correspondence be-
tween an ARG and the sequence of local trees that it encodes.

This is not the prevailing view, however. Kuhner and Yamato 
(2017) argue that the “interval-tree” representation of an ARG 
(the local trees and the genome intervals they cover) “does not 
contain all of the information in the underlying ARG: it lacks the 
number of recombinations occurring at each site, the times at 
which recombinations occurred, and the specific sequences in-
volved as recombination partners.” Shipilina et al. (2023) discuss 
the same ideas, and note that the “full ARG… contains more infor-
mation than the series of tree sequences along the genome”. 
These statements that an ARG contains more information than 
its local trees are true if we represent local trees in their conven-
tional forms, but these forms discard important information 
that is available in an ARG.

There are 2 properties of how evolutionary trees are conven-
tionally represented that lead to this disagreement about the rela-
tionship between local trees and an ARG. Firstly, the internal 
nodes of evolutionary trees are usually considered to be unlabeled, 
or equivalently, labeled by the leaves which they subtend. The 
same canonical labeling cannot be used for internal ARG nodes 
because the leaves they subtend will typically vary by genomic 
position. If we do not label the tree nodes in a way which is persist-
ent across the sequence of local trees in the ARG, we lose the fact 
that the same ancestors sometimes persist across multiple trees. 
Defining ARG nodes as integers and using the oriented tree encod-
ing explicitly labels internal nodes, and makes the relationship be-
tween tree and ARG nodes clear and precise.

The second property of how evolutionary trees are convention-
ally represented that is unhelpful in the context of ARGs is their 
focus on branching points (coalescences), i.e. nodes that have 2 
or more children. As the introductory paragraph of this section 
emphasized, parent–child relationships are what fundamentally 
define a tree, and branching points can be seen as incidental. 
This is reflected by the oriented tree encoding which simply stores 
the local parent–child relationships, and does not, for example, 
directly tell us how many children a particular node has. The local 
tree at a given position records the path through the ARG; if this 
path omits nodes that are not branching points (such as E in 
Fig. 1), information about the ARG is lost. We expand on this point 
in Appendices F and G where we which discuss “locally unary” 
nodes and the simplification process.

It is important to make the distinction here between the local 
trees that can be derived from a known ARG (as just discussed), 
and an ARG that can be derived from a sequence of estimated local 
trees. The ARG inference method Espalier (Rasmussen and Guo 
2023) is illustrative in this context. It begins by splitting an input 
sequence alignment into segments that are assumed to be nonre-
combining. Within each segment, an initial local tree is estimated 
using standard phylogenetic methods. By necessity, these local 
trees will contain internal nodes that are unlabeled and consist 
only of branching points: there is no information shared between 
the independent tree estimation steps across segments. Part of 
the task of stitching these trees together into an ARG is then, es-
sentially, to generate labels for the internal nodes, and decide 
which nodes persist across multiple local trees. Espalier ap-
proaches this task by identifying maximal subtrees that do not 
change between pairs of adjacent local trees and then heuristical-
ly exploring the space of possible rearrangements of these sub-
trees. To derive details about recombination events, Espalier 
then attempts to infer the precise SPR operations (Hein 1990; 
Song 2003, 2006) induced by recombination between these partial-
ly reconciled local trees. Inferring the SPRs between leaf-labeled 
trees is NP-hard (Hein et al. 1996; Allen and Steel 2001; 
Bordewich and Semple 2005), but it is unclear what the complex-
ity is when there is a degree of internal node sharing between 
trees. The combinatorial formulation of ARGs and local trees pro-
vided here may help clarify these fundamental questions.

Appendix F: Locally unary nodes
As discussed in Appendix E, the local tree at a given position x is 
best seen as the path through the ARG at that position, defined 
by the oriented tree πx

1, . . . , πx
n. This path does not directly contain 

information about branching points, and defining a node’s arity 
(number of child nodes) is therefore useful. The “local arity” of a 
node is the number of children it has in the local tree at position 
x, i.e. ax

u = |{v : πx
v = u}| for each 1 ≤ u ≤ n. The “ARG arity” of a 

node u is the number of children it has in the graph topology, 
i.e. au = |{v : (v, u, I) ∈ E}|. Thus, the local arity is less than or equal 
to the ARG arity (more precisely, 0 ≤ ax

u ≤ au), and the local arity of 
a node may change as we move along the genome.

This distinction between ARG and local arity is mainly of inter-
est when we consider nodes that have a single child: those that are 
unary. For the example in Fig. 1, nodes G and H are ARG-unary 
(Fig. 1b), and are consequently also unary in the local trees 
(Fig. 1c). On the other hand, node F has 2 children in the graph, 
but is binary only in the local tree covering the interval [2, 7), re-
presenting the coalescence of samples A and C in this genome re-
gion. Over the interval [0, 2) no coalescence occurs, but we still 
record the fact that genome C inherits from F in the local tree. 
Thus, node F has a single child in this interval: it is locally unary. 
In the same figure, E is binary in the graph, being a common ances-
tor of A and C, but is locally unary in all trees in which it is present. 
This is because no ancestral material coalesces in E: A inherits 
genetic material from the far left-hand end of E, while C only in-
herits the (disjoint) right-hand end.

By definition, ARG-unary nodes have 1 child but can have 1 or 
more parents. A node with 1 child and only 1 parent represents 
a “pass-through” node: these occur where we wish the record 
the passage of ancestral material through a known node. For ex-
ample, in simulations it is sometimes useful to record the passage 
of ancestral material through known pedigree individuals regard-
less of whether common ancestry occurs. Nodes with 1 child and 2 
parents arise when we model a recombination event using a single 
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node in the classical manner (e.g. Fig. 3). It is also possible for sam-
ple nodes to be ARG-unary, for example in inferences from longi-
tudinal datasets where genetic data is sampled at many 
timepoints and recombination is rare, e.g. SARS-CoV-2 (Zhan 
et al. 2023).

More generally, locally unary nodes, which can have 1 or more 
children in the graph, are a common and important feature of 
many different types of ARG. As discussed in Appendix E, without 
these nodes marking the passage of ancestral material through 
specific ancestors, the local trees lack information about events 
other than local coalescence. For example, the local trees for the 
classical event ARG depicted in Fig. 2b follow the usual conven-
tions and do not include any information about the recombination 
that occurred at node D. Given these 2 local trees in isolation we 
lack specific information about the recombination. Explicitly re-
cording that node D lies on the branch joining B to E in the left- 
hand tree, and B to F in the right-hand tree resolves all ambiguity, 
and makes the collection of local trees exactly equivalent to the 
corresponding ARG. Unary nodes are a vital link between ARGs 
and local trees, and we cannot fully reason about how a local 
tree is embedded in an ARG without them.

Appendix G: Levels of simplification
ARG simplification is a powerful tool. In general, we can think of 
simplification as the process of removing nodes and rewriting 
edges (and their inheritance annotations) to remove various types 
of redundancy, much of which revolves around the presence of 
unary nodes (Appendix F). This successive removal of redundancy 
through a series of simplification steps is shown in Fig. 5.

The ARG in Fig. 5a is the output of a backwards-time Wright– 
Fisher simulation for a sample of 2 diploid individuals (population 
size N = 10), and follows a similar process to the methods de-
scribed by Nelson et al. (2020). As we proceed backwards in time, 
generation by generation, the extant lineages choose parents ran-
domly. With a certain probability recombination occurs, and the 
ancestral material of a lineage is split between the 2 parental gen-
omes. Local coalescence occurs when lineages with overlapping 
ancestral material choose the same parent genome. Note that in 
this simulation we do not explicitly model recombination events 
via an ARG node, but simply record the outcome of a recombination 
via edges to the parent’s 2 genomes. Thus, a recombinant node 
such as G in Fig. 5 may also correspond to a coalescence. The dis-
tinction of using a single node to represent a recombination event, 
as is done in Fig. 3, or 2 to represent the parent genomes, as in 
Fig. 5, is often not important. Either is possible in the gARG encod-
ing, and the most convenient approach will vary by application. 
Note also that node K in Fig. 5 has 3 children. Polytomies like 
this are a natural feature of such a Wright–Fisher model. See 
Appendix D for a discussion of the ultimate biological interpret-
ation of these topological considerations.

The graph visualizations in Fig. 5 have three novel features 
which require some explanation. Firstly, edge weights (the thick-
ness of the lines joining nodes) correspond to the length of the in-
heritance intervals they are annotated with. This allows us to 
distinguish edges that persist across many local trees from those 
that are less influential (contrast the edge (G, H) with (G, I) in 
Fig. 5a). Secondly, node colors denote the number of parents that 
they have in the graph, allowing us to easily see roots (those with 
zero parents), recombinants (those with 2 parents) and more com-
plex situations arising from simplification (see below). Thirdly, the 
shading intensity of a node denotes the “coalescent span,” the 
fraction of the node’s span (the length of genome in which it is 

reachable from the samples in the local trees) over which it has 
more than 1 child. Nodes which are never locally unary, therefore, 
have a coalescent span of 100%, whereas nodes in which ancestral 
material never coalesces have a coalescent span of 0%.

Returning to the main topic of this section, Fig. 5a is the original 
simulation output, in which we retain all nodes involved in recom-
bination or common ancestry events. This is the true history, and 
contains a very high level of detail, some of which may be consid-
ered redundant (or, from another perspective, unobservable). In 
Fig. 5a, the local trees (right) contain many unary nodes, fewer 
as we successively simplify (Fig. 5b and c), until we reach Fig. 5d, 
where there are none.

The first level of simplification that we can perform is based 
only on the graph topology. An example of graph topology that 
we may consider redundant (or nonidentifiable) is a “diamond” 
(Rasmussen et al. 2014) in which the 2 parent nodes of a recombin-
ation immediately join again into a common ancestor (e.g. J, L, M 
and N in Fig. 5a). Unless we are specifically interested in the recom-
bination event or these ancestral genomes, the diamond can be re-
placed by a single edge without loss of information. More 
generally, any subgraph that is singly connected in both the leaf-
ward and rootward direction (a “super-diamond”) can be replaced 
by 1 edge. This definition includes the case of a node that has 1 in-
bound and 1 outbound edge, such as nodes F and H. Figure 5b
shows the result of this type of graph topology simplification.

Simplifying away diamonds will remove many unary nodes 
from the local trees, but there can still be nodes that are unary 
in all of the local trees. In particular, a node can represent a re-
combinant with multiple parents in the graph but only a single 
child (e.g. node N in Fig. 5b), or can represent a common ancestor 
with multiple children in the graph but in which no coalescence 
takes place in the local trees (node R in Fig. 5b). The distinction be-
tween the “common ancestry” of 2 or more genomes in an ances-
tral genome and the “coalescence” which may or may not occur in 
the local trees is important (Hudson 1983b; Kelleher et al. 2016). 
Consider E in Fig. 5a, for example. We can see from the graph 
that it is a common ancestor of samples A and B, but it does not 
correspond to any coalescence in the local trees to the left of pos-
ition 44, and is, therefore, unary in these three trees. Such nodes 
are not singly connected in the graph, but are nevertheless unary 
in all of the local trees. The operation to remove them, therefore, 
requires knowledge not just of the graph topology but also of the 
ancestral material associated with the edges. As we see in Fig. 5c, 
removal of recombinant nodes can produce graph nodes with 
more than 2 parents (e.g. node E); and likewise, removal of com-
mon ancestor but noncoalescent nodes can produce graph nodes 
with more than 2 children (e.g. node S). Both cases represent the 
merged effects of multiple evolutionary events in a single node 
(genome), and the ARG no longer contains the intermediate gen-
omes corresponding to those events (see also Appendix D).

The remaining nodes are MRCAs of some subset of the samples 
at some positions along the genome. We still have some unary 
nodes in the local trees, but these nodes will correspond to a co-
alescence in at least 1 other local tree. For example, node K is un-
ary in the 4th tree of Fig. 5c, but is either binary or ternary in all 
other local trees (recall this is a Wright–Fisher simulation). The fi-
nal level of simplification is to alter the edge annotations such 
that, although no nodes are removed from the graph, all unary 
nodes disappear from the local trees (Fig. 5d). Note that although 
this last stage produces simpler local trees, by removing informa-
tion about the exact paths taken by lineages through the graph, 
we lose potentially useful information about shared edges 
between trees. The msprime simulator, and the version of 
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Hudson’s algorithm described by Kelleher et al. (2016), produce 
ARGs that are fully simplified (i.e. contain no locally unary nodes). 
It is not difficult, however, to update these methods to record in-
formation about the passage of ancestral material through gen-
omes under a range of conditions.

Appendix H: Precision of recombination 
information
As illustrated in Fig. 5, successive levels of ARG simplification re-
duce the amount of information about the history of the sample 
that is stored. Some of the information lost, e.g. “diamond” re-
moval (Fig. 5a), seems like a reasonable tradeoff for a simpler 
structure. The consequences of other simplifications, however, 
are more subtle and relate directly to what can be known about re-
combination events and the levels of precision that we should 
seek to infer about them.

The ARGs in Fig. 5 contain different numbers of local trees (6, 5, 
5, and 4, respectively, for a–d). When we move from a to b the local 
trees for the intervals [44, 61) and [61, 87) are merged because the 
only differences between them are their paths through nodes L 
and M. These nodes that participated in the diamond are removed 
from the ARG, and we have lost all information about the corre-
sponding recombination at position 61. Other nodes (e.g. O and P) 
have also been removed but these represent the parents of recombi-
nants. The recombinant nodes themselves (e.g. N) are still present, 
and represent precise information about the time, genomic loca-
tion and lineages involved in the recombination event.

Figure 5c has the same number of local trees as Fig. 5b, but has 
less precise information about recombination. Continuing the 
previous example, node N has been removed from the graph be-
cause it was unary in all of the local trees; its outbound edges to 
S and Q have effectively been “pushed down” to E (which is re-
tained because it is the coalescent parent of A and B over the inter-
val [44, 100)). We have, therefore, lost precision about the timing of 
this recombination event, and know only that it must have oc-
curred between the times of node E and Q.

Figure 5d removes all unary nodes from the local trees, and fur-
ther reduces the precision of recombination information. Node E 
has not been removed from the graph because it is coalescent in 
the final tree, but we no longer know that the recombination event 
at position 30 was ancestral to it, or have any indication of its tim-
ings. Furthermore, trees for [44, 87) and [87, 100) were only distin-
guishable by the passage of the former tree through nodes E and Q, 
and so the recombination on node G at position 87 has been lost 
entirely.

Appendix I: Example inferred ARGs
The scalability gains made by recent ARG inference methods such 
as Relate (Speidel et al. 2019) and tsinfer (Kelleher et al. 2019b) 
have been, in part, due to inferring lower levels of precision about 
recombination than classical methods. Neither method infers ex-
plicit recombination events, and therefore their outputs cannot be 
described using the classical eARG formalisms (section Event 
ARGs). Nonetheless, both methods produce estimates in which 
nodes and edges persist across multiple trees, creating inherit-
ance graphs which fit naturally into the gARG formulation. To il-
lustrate the varying levels of information captured by current 
methods, and some qualitative differences between them, Fig. 4
shows graphical depictions of example ARGs produced by 4 tools 
using substantially different inference strategies.

The first 2 methods explicitly infer recombination events. 
KwARG (Ignatieva et al. 2021) is a parsimony-based approach which 
searches the space of plausible ARGs, outputting minimal ones 
using heuristics. ARGweaver (Rasmussen et al. 2014) on the other 
hand is model-based, sampling from a discretized version of the 
SMC (McVean and Cardin 2005; Marjoram and Wall 2006). Note 
that both KwARG and ARGweaver produce many ARGs, and those 
shown in Fig. 4 are arbitrarily selected examples. While the second 
2 methods both produce a single best-guess estimate and do not 
explicitly infer recombination events, they are based on quite dif-
ferent principles. Tsinfer works in a 2-step process, first generat-
ing ancestral haplotypes via heuristics and then inferring 
inheritance relationships between them using the Li and 
Stephens model (Li and Stephens 2003). Relate first reconstructs 
local tree topologies across the genome, using a variant of the Li 
and Stephens model to estimate the ordering of coalescence 
events in each tree, and then estimates branch lengths using 
MCMC with a coalescent-based prior. See Appendix C for more de-
tails on these and other inference methods.

Inferred ARGs are based on the Kreitman (1983) dataset, a 
standard benchmark in the classical ARG literature. It consists 
of 43 biallelic SNPs spanning 2.4 kb of the D. melanogaster ADH lo-
cus on chromosome 2L. Where required for inference purposes we 
assume mutation and recombination rates of 5.49 × 10−9 and 
2.40463 × 10−9 per site per generation (Comeron et al. 2012; 
Schrider et al. 2013) and a constant effective population size of 
1,720,600 (Li and Stephan 2006), as provided by the stdpopsim 
catalog (Adrion et al. 2020; Lauterbur et al. 2023). Software versions 
were KwARG v1.0, ARGweaver-D (2019), tsinfer v0.3.1, and 
Relate v1.1.9. Full details and code for generating these figures 
are available on GitHub (see Data availability).

Considering Fig. 4, we can see that there is substantial variation 
in the number of recombination breakpoints inferred by different 
methods, with e.g. ARGweaver suggesting far more than the 7 re-
quired for this dataset under minimal parsimony assumptions 
(Song and Hein 2003). A sense of the amount of recombination 
in each ARG is provided by the node coloring scheme, which 
shows the number of parents for each node. In Fig. 4a and b, 
each recombination event corresponds to a node with exactly 2 
parents and 1 child. As these methods explicitly infer a recombin-
ation event for each breakpoint, the number of breakpoints equals 
the number of 2-parent (brown) nodes. In contrast, Fig. 4c and d do 
not have this straightforward relationship between the number of 
nodes with multiple parents and number of breakpoints along the 
genome. In both ARGs the number of breakpoints is smaller than 
the number of multiple-parent ARG nodes, showing that several 
multiple-parent nodes must share breakpoint positions. There 
are also ARG nodes with multiple parents and multiple children, 
where 1 or more recombinations have been pushed down onto a 
more recent node. As a consequence, it may be difficult to con-
dense each transition between trees in these ARGs into a set of 
SPR operations.

Shading within nodes in Fig. 4 indicates the fraction of the 
node’s span over which it is coalescent (Appendix F). For example, 
brown nodes in Fig. 4a and b are clear because there is no local co-
alescence at these recombination nodes (they are “ARG-unary,” 
and so local coalescence is impossible). The significant number 
of partially shaded nodes in Fig. 4a–c demonstrates that the 
KwARG, ARGweaver, and tsinfer ARGs all contain locally unary 
nodes. Another difference between methods highlighted in this 
figure is the presence of polytomies, which only tsinfer creates. 
The most obvious example involves nodes Fr-F, Wa-F, and Af-F, 
which happen to have identical sequences. Because KwARG, 
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ARGweaver, and Relate require bifurcating trees by design, each 
picks an arbitrary order of branching (hence Fig. 4a and b disagree 
in this order, and Fig. 4d even shows different orders in different 
trees).

The bottom row of Fig. 4 shows the extent to which graph edges 
persist along the genome. All 4 methods infer nodes and edges 
that are shared between multiple trees, to varying degrees. For ex-
ample, all of the methods infer that Af-f, Fr-f, and Wa-f form a 
clade along the entire sequence. In particular, we can see both 

tsinfer and (to a lesser extent) Relate have edges that span 
multiple tree boundaries, indicating that they are not inferring a 
series of unrelated local trees. However, in comparison to KwARG 
and ARGweaver neither method results in extensive node sharing 
in the oldest time periods. Overall, Fig. 4 shows that tsinfer and 
Relate ARGs contain a level of detail that lies somewhere be-
tween a sequence of unrelated local trees on one extreme and 
an ARG with precisely specified recombination events on the other 
(Fig. 4a and b).
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