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A B S T R A C T

Introduction and Objectives: Despite the huge clinical burden of MASLD, validated tools for early risk stratifi-
cation are lacking, and heterogeneous disease expression and a highly variable rate of progression to clinical
outcomes result in prognostic uncertainty. We aimed to investigate longitudinal electronic health record-
based outcome prediction in MASLD using a state-of-the-art machine learning model.
Patients and Methods: n = 940 patients with histologically-defined MASLD were used to develop a deep-learn-
ing model for all-cause mortality prediction. Patient timelines, spanning 12 years, were fully-annotated with
demographic/clinical characteristics, ICD-9 and -10 codes, blood test results, prescribing data, and secondary
care activity. A Transformer neural network (TNN) was trained to output concomitant probabilities of 12-,
24-, and 36-month all-cause mortality. In-sample performance was assessed using 5-fold cross-validation.
Out-of-sample performance was assessed in an independent set of n = 528 MASLD patients.
Results: In-sample model performance achieved AUROC curve 0.74−0.90 (95 % CI: 0.72−0.94), sensitivity
64 %-82 %, specificity 75 %−92 % and Positive Predictive Value (PPV) 94 %-98 %. Out-of-sample model valida-
tion had AUROC 0.70−0.86 (95 % CI: 0.67−0.90), sensitivity 69 %−70 %, specificity 96 %−97 % and PPV
75 %−77 %. Key predictive factors, identified using coefficients of determination, were age, presence of type 2
diabetes, and history of hospital admissions with length of stay >14 days.
Conclusions: A TNN, applied to routinely-collected longitudinal electronic health records, achieved good per-
formance in prediction of 12-, 24-, and 36-month all-cause mortality in patients with MASLD. Extrapolation
of our technique to population-level data will enable scalable and accurate risk stratification to identify peo-
ple most likely to benefit from anticipatory health care and personalized interventions.
© 2024 Fundación Clínica Médica Sur, A.C. Published by Elsevier España, S.L.U. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Keywords:

Metabolic dysfunction-associated steatotic
liver disease
Electronic health records
Artificial intelligence
Deep Learning
Prognostic model
ficial intelligence; BMI, body
dney disease; DNN, deep neu-
cellular carcinoma; ICD, Inter-
sfunction-associated steatotic
lic fatty liver disease; NASH,
n of Interventions and Proce-

llowfield).

blished by Elsevier España, S.L.U. This is an open access article under the CC BY-NC-ND license
1. Introduction

Metabolic dysfunction-associated steatotic liver disease (MASLD),
previously termed nonalcoholic fatty liver disease (NAFLD) [1,2], is
defined as the presence of hepatic steatosis in conjunction with at least
one cardiometabolic risk factor (obesity, hypertension, type 2 diabetes,
dyslipidemia) but no discernible secondary causes, including substan-
tial alcohol intake, medications known to cause steatosis, or inherited
metabolic conditions [3,4]. Around 25 % of people with hepatic steato-
sis progress to metabolic dysfunction-associated steatohepatitis
(MASH), which is characterized by hepatocellular ballooning and lobu-
lar necroinflammation, and an increased risk of fibrosis, cirrhosis,
hepatic decompensation, hepatocellular carcinoma (HCC), and all-
cause mortality [3]. The global burden of MASLD is increasing at an
alarming rate [5], with a worldwide prevalence of up to 32.4 % [6]. The
health economic impacts of MASLD are considerable, including annual
direct medical costs of $103 billion ($1613 per patient) in the United
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States (US) and €35 billion (€1163 per patient) in the Europe-4 coun-
tries (Germany, France, Italy, and the United Kingdom) [7].

Although the past four decades have witnessed major advances in
the biological understanding of MASLD and the mechanisms driving
the pathogenesis of cirrhosis and HCC, there has been little transla-
tion to improved clinical outcomes [8]. This can be explained, in part,
by the lack of approved therapy [9] and the heterogeneous natural
history of the MASLD, which includes extra-hepatic manifestations
such as cardiovascular disease (CVD) and chronic kidney disease
(CKD) that can further increase disease burden and contribute to the
risk of all-cause mortality [10]. Indeed, in many series, the leading
cause of death in individuals with MASLD is CVD, followed by extra-
hepatic cancers, and then liver-related mortality [11], highlighting
the importance of a holistic approach to the management of this
patient population. Moreover, there is an urgent need to embed
effective strategies within primary care, as well as hepatology serv-
ices, to enable early risk stratification and evidence-based treatment
initiation to curtail MASLD-associated morbidity and mortality.

The increased availability of electronic health records (EHRs)
opens new opportunities to develop predictive case-finding algo-
rithms that facilitate effective MASLD surveillance [12]. EHR adoption
has reached near-universal levels in the US and the European Union
in both acute care hospitals and primary care [13]. Moreover, studies
have shown the potential utility of applying artificial intelligence (AI)
and machine learning (ML) algorithms to EHR data to improve the
early detection, diagnosis, and management of many conditions, par-
ticularly cardiometabolic diseases [14,15]. However, despite the pro-
liferation of machine-readable datasets, the development and scaling
of predictive models have been limited. The complexities of real-
world clinical data, replete with thousands of potential predictor var-
iables and missing values, are seen as the key barriers to implementa-
tion [16-18]. Deep neural networks (DNNs) have emerged as robust
tools with applications to sequence prediction within mixed modality
data sets [17-20]. The key advantages of DNN methods are their abil-
ity to handle large volumes of relatively noisy data, including errors
in labels, as well as large numbers of input variables [18].

Because liver-related outcomes in MASLD are strongly associated
with the severity of liver fibrosis [21,22], existing risk stratification is
anchored to the histological stage or non-invasive assessment of
fibrosis using surrogate markers [23-25], but such approaches may
not reflect the complexity and multimorbidity of MASLD. Further-
more, despite the increasing application of AI and ML tools to MASLD
disease management, predictive analysis has largely focused on diag-
nosis and screening [26,27], as well as disease quantification [28,29].
Therefore, there is a critical need for a reliable and accessible risk
stratification approach for broad clinical outcomes of interest, such as
all-cause mortality, to enable early/proactive community interven-
tions such as lifestyle adjustments and future care planning.

In this work, we test the hypothesis that a simple Transformer
neural network, trained on routinely collected in-patient and out-
patient data from people with MASLD, can be used effectively to pre-
dict individuals at an increased risk of all-cause mortality.
2. Patients and Methods

2.1. Study populations

The SteatoSITE retrospective dataset was drawn from a popula-
tion representing 12 of the 14 territorial Health Boards in Scotland
and consists of n = 940 histologically defined patients (55.4 % men
and 44.6 % women; median body mass index 31.3; 32 % with type 2
diabetes) covering the complete MASLD severity spectrum. Detailed
characteristics of the SteatoSITE cohort have been published [30]. For
the validation study, a nested case-control design was used on an
independent non-biopsy MASLD patient population (n = 528
2

patients) from NHS Greater Glasgow and Clyde (GG&C) collected
between 2002 and 2021.

For SteatoSITE, cases with a liver tissue sample acquired between
January 2000 and October 2019 and a histological diagnosis of NAFLD
(MASLD) were included. The other inclusion/exclusion criteria were:
men or women; >18 years of age at the time of tissue sampling; all
ethnic groups, socio-economic backgrounds, and health status; dead
or alive at the time of inclusion into data commons; no documented
history of chronic liver disease of any non-MASLD etiology, including
alcohol-related liver disease, chronic viral hepatitis, hemochromato-
sis, Wilson disease, autoimmune hepatitis, primary biliary cholangi-
tis, primary sclerosing cholangitis; and patients with excessive
alcohol use documented within the clinical data supplied on the
specimen request form (>21 units/week for men, >14 units/week for
women); or histological features suggesting a secondary non-MASLD
diagnosis.

The SteatoSITE dataset was used for model training and in-sample
validation using five-fold cross-validation. During each cross-valida-
tion run, the dataset was partitioned into training, validation, and
testing subsets such that the distribution of age, gender, and out-
comes were stratified across each partition. To avoid data leakage
across data partitions, we ensured that there were no overlapping
patient identifiers.

The NHS GG&C dataset comprised of patient EHRs obtained
between 2000 and 2019 and followed similar inclusion and exclusion
criteria to SteatoSITE, although the clinical diagnosis was based on
the International Classification of Diseases − Tenth Revision (ICD-10)
codes (K76.0 [NAFLD, all] and K75.8 NASH). The NHS GG&C dataset
was used for out-of-sample model validation.

Notably, ICD diagnostic coding for inpatient and outpatient epi-
sodes and procedures (OPCS Classification of Interventions and Pro-
cedures (OPCS-4)) for both study populations followed recent expert
consensus guidelines for using administrative coding in EHR-based
research of MASLD [31].

We categorized the cause of death based on the methods used by
Simon et al. [32]. The following ICD-10 and OPCS-4 codes were used
for the cause-specific categories: HCC (’C220, ’C2200, ’C2290, ’C22990);
cirrhosis (Y830, T864, K74, K72, K767, I8* (includes other decompen-
sation causes and post-transplant complications)); non-HCC cancer
(any C code apart from those for HCC); cardiovascular disease (any I
code apart from I8* (varices)); other (none of the above). Addition-
ally, we filtered sequentially down the hierarchy of cause of death
information and used the first non-other code that appeared.
2.2. Data representation and ground truthing

Each patient’s longitudinal EHR vector was split into an Observa-
tion and Prediction Window (Fig. 1). The Index Date for case patients
was calculated as the date 12, 24, or 36 months before the patient’s
date of death. The Index Date for controls was calculated as the date
12, 24, or 36 months before the last EHR entry. The Observation Win-
dow comprised all EHR vectors during a ten-year period in the run-up
to the Index Date. Only data in the Observation Window was used to
represent the patient during model training, validation, and testing.

Patient features used in predictive modelling are shown in Table 1.
For each patient, two feature vector representations were generated.
The first representation consisted of static features − age, gender,
and ethnicity. The second representation reflected dynamic features
associated with inpatient and outpatient activity over a five-year
period of the Observation Window. This temporal input vector was
discretized into twelve exponentially increasing time bins, such that
the most recent time points were assigned to the shortest time bin. If
a feature (e.g., ICD-10 codes) within an Observation Window con-
tained multiple values, the most frequent value was retained. In cases
where a numerical feature (e.g., BMI) contained multiple entries



Fig. 1. Schematic representation of an EHR vector. The patient’s timeline is represented by horizontal arrows and each data point is depicted by colour-coded tokens. Predictive
models were trained on the data in the Observation Window (10 years), whilst a binary outcome of all-cause mortality was used as a ground truth. A&E, emergency department;
U&Es, urea and electrolytes; FBC, full blood count, LFT, liver function tests; ACE inhibitor, angiotensin-converting enzyme inhibitor; BMI, body mass index.

I. Drozdov, B. Szubert, I.A. Rowe et al. Annals of Hepatology 29 (2024) 101528
within one observation window, an average was calculated. Missing
values were filled by forward propagation.

Numerical data was scaled to a range between 0 and 1, whilst cat-
egorical data was represented as 32-dimensional vectors of a large
Table 1
Features of the patient EHR used as inputs into the predictive model.

Data Type Description

Age Patient age at Index Date
Gender Patient gender at Index Date
Ethnicity Patient ethnicity at Index Date
Medications British National Formulary (BNF) Subsection codes
Laboratories Serum analytes: urea, estimated glomerular filtration rate

(eGFR), creatinine, sodium, potassium, hemoglobin,
neutrophils, lymphocytes, platelets, total bilirubin, ala-
nine aminotransferase, aspartate aminotransferase,
alkaline phosphatase, gamma-glutamyltransferase

Hospitalisations All ICD-9/10 and OPCS-4 codes associated with admission,
Length of stay associated with admission, Primary clini-
cal speciality

A&E Attendances ICD-9/10 and OPCS-4 codes associated with attendances
Outpatients Appointment speciality, ICD-9/10 and OPCS-4 codes asso-

ciated with each appointment
Vital Signs Systolic blood pressure, body mass index (BMI)

3

pre-trained language model trained on n = 2067,531 full text PubMed
articles totalling n = 224,427,218 sentences [33,34].
2.3. Model training

Given significant variation in length and density of patient records
(e.g., vital sign measurements in an intensive care unit vs. outpatient
clinic), we formulated a simple Transformer architecture with multi-
head attention [35], to take advantage of such data.

Input layers of the Transformer network were adjusted to concur-
rently use time-invariant and time-dependent features. Multiple
inputs were concatenated along a horizontal axis and passed to four
transformer encoder blocks with multi-head attention. Four attention
heads were used with head size fixed at 256. The classification head
of the network consisted of a global average pooling layer, followed
by a dense layer with rectified linear unit [36] activation and a drop-
out layer. A softmax activation function was applied to the final dense
layer.

The number of neurons in the penultimate dense layer and the
dropout rate were tuneable hyperparameters optimized during train-
ing using the Hyperband algorithm [37], with the best set of parame-
ters corresponding to the lowest sparse categorical cross-entropy
loss on the validation set. The number of neurons was selected from



Table 2
Demographic characteristics of the training and testing sets.

Variable Training Set Testing Set p-value

Age 55 (+/- 13.5) 66.3 (+/- 14.4) 0.0001*
Gender 0.16**
Male 55.4 % 45 %
Female 44.6 % 55 %

Ethnicity 0.12**
Asian, Asian British, Asian 2.34 % 5.58 %
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the range of [32, 512], and the dropout rate took values from the
range [0, 0.2].

Training was performed with batch size of 512 using an Adam
optimizer with a learning rate of 1 £ 10�4 while minimizing the cat-
egorical cross-entropy loss.

The network was trained to output probabilities of mortality fol-
lowing 12-, 24-, and 36-month prediction windows. Training was ter-
minated early if validation loss did not improve after ten consecutive
epochs.
Welsh
Black, Black British, Black
Welsh, Caribbean or African

0.11 % 0 %

Mixed or Multiple 0 % 0.24 %
White 62.98 % 59.39 %
Other 0 % 5.79 %
Unknown 34.57 29 %

Type 2 Diabetes 32 % 30 %
BMI 32.82 (+/-7.94) 32.95 (+/-7.96) 0.76**
Number of Deaths 225 (23.94 %) 196 (37.12 %)

* two-tailed unpaired t-test.
** Chi-squared test.
2.4. Statistical analysis

Model performance was assessed using the area under the
receiver operating characteristic (AUROC) curve, overall accuracy,
sensitivity, specificity, and positive predictive value (PPV). For
AUROC measures, 95 % confidence intervals (CIs) were calculated
empirically using 2000 bootstrap samples. CIs for sensitivity,
specificity, and positive predictive value are exact Clopper-Pear-
son CIs. Patient demographics were compared across the training/
validation, internal testing, and clinical evaluation sets using
ANOVA for continuous variables and Chi-square for categorical
variables. p-values < 0.05 were considered as statistically signifi-
cant.

Dimensionality reduction was performed using the Ivis algo-
rithm [38]. Briefly, prior to analysis, categorical variables were
one-hot encoded, whilst numerical variables were scaled to val-
ues between 0 and 1. The dataset was reduced to two compo-
nents using the ‘maaten’ twin neural network architecture and
default Ivis hyperparameter values. To identify the salient fea-
tures captured by the Transformer model, we calculated the coef-
ficient of determination (R2) between low-dimensional
representations of the model global average pooling layer and
training set features. Where categorical features were used, their
numerical representation was extracted from the model’s feature
embedding layer.

Model probabilities were evaluated using the reliability diagram
[39] and the calibration_curve function in the scikit-learn library
[40]. Predicted probabilities were binned into ten discrete intervals,
and the mean predicted probability and the true frequency of the
positive class were plotted for each interval.

All statistical tests were carried out using the SciPy module (ver-
sion 1.7.3) for Python (version 3.9.14).
Table 3
Frequencies of the primary causes of death in the training and testing sets.

Training Set Testing Set

Cardiovascular-specific
(ICD10: I01-I99)

18.1 % (12.9 % including
resections)

23.9 %

Hepatocellular Carcinoma
(ICD10: C22.0, C22.9,
C22.99)

6.3 % (9.3 % including resec-
tions)

2.5 %

Cirrhosis-specific (ICD10:
K74)

23.6 % (13.3 % including
resections)

2.5 %

Cancer-specific (ICD10: C00-
C99, excluding C22.0,
C22.9, C22.99)

33.1 % (52.0 % including
resections)

28.5 %

Other causes 18.9 % (12.4 % including
resections)

42.6 %
2.5. Ethical statement

Unified transparent approval for unconsented data inclusion in
the multimodal pan-Scotland SteatoSITE database [30] was pro-
vided by the West of Scotland Research Ethics Committee 4 (Ref-
erence: 20/WS/0002; 18th February 2020), Public Benefit and
Privacy Panel for Health and Social Care (PBPP; Reference: 1819
−0091; 4th June 2021), Institutional Research & Development
departments and Caldicott Guardians. Delegated research and
ethics approvals for the validation cohort study were granted by
the Local and Advisory Committee at NHS Greater Glasgow and
Clyde (NHS GG&C). The cohort and de-identified linked data were
prepared by the West of Scotland Safe Haven at NHS GG&C. In
Scotland, patient consent is not required where routinely col-
lected patient data are used for research purposes through an
approved Safe Haven. For that reason, informed consent was not
required and was not sought. All research was conducted follow-
ing both the Declarations of Helsinki (2013) and Istanbul (2018),
and Good Clinical Practice principles. This study was conducted
and reported in accordance with the TRIPOD (Transparent Report-
ing of a multivariable prediction model for Individual Prediction
or Diagnosis) guidelines.
4

3. Results

3.1. Training and testing dataset characteristics

Demographic and phenotypic characteristics of the training and
testing cohorts are shown in Table 2. Patient age in the training set
was significantly younger than the testing set (two-tailed unpaired t-
test, p = 0.0001), whilst there were no significant differences in BMI
(two-tailed unpaired t-test, p = 0.76) or the frequencies of gender or
ethnicity distributions (chi-square, p = 0.12−0.16).

The most common cause of death in both the training and testing
sets was extra-hepatic cancer (Table 3). In the training set (Steato-
SITE), liver-related mortality (cirrhosis and HCC) was the second
most common cause of death, followed by cardiovascular deaths,
similar to the findings of a large nationwide cohort study of over
10,000 patients with biopsy-confirmed NAFLD [32]. In contrast, in
the testing set (GG&C non-biopsy cohort) cardiovascular deaths
were higher. This likely reflects the different composition of the
respective populations. One was a secondary care cohort based on
clinically indicated tissue sampling (biopsy, resection, or explant),
so there is inherent spectrum bias towards cases with more severe
liver disease, whereas the other represents a more generalizable
MASLD cohort, reflected in the observed cause of death frequencies
that are more consistent with data from other community-
diagnosed population studies [41,42]. Notably, a substantial number
of deaths did not fall into any of these categories and were classified
as ‘other’.
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3.2. Prediction of all-cause mortality

The Transformer neural network was trained and validated using
five-fold cross-validation in the SteatoSITE dataset. Dimensionality
reduction of the global average pooling layer confirmed the model’s
propensity to learn the target class (Fig. 2A). The model achieved an
AUROC of 0.90 (95 % CI: 0.86−0.94), 0.85 (95 % CI: 0.79−0.90), and
0.73 (95 % CI: 0.69−0.79) for the prediction of 12-, 24, and 36-month
mortality, respectively.

Binarizing predicted cases and controls using an operating point
of probability of mortality ≥ 50 %, resulted in sensitivity of 64 %-82 %
(95 % CI: 69 %-94 %) specificity of 75 %-92 % (95 % CI 72 %-95 %), and
PPV of 94−98 % (95 % CI: 91 %-100 %). Model probabilities were well
Fig. 2. Transformer neural network performance in prediction of all-cause mortality in
(Ivis) embedding of the global average pooling layer values in the trained transformer neura
ours represent the presence and absence of all-cause mortality in a 12−36 month predictiv
average SteatoSITE cohort mortality probabilities and proportion of true positives within ea
month predictive windows. C) Bar plot showing model input features and their respective co
pooling layer explained by each feature. ALB, albumin: EGFR, estimated glomerular filtration
ferase; BP, blood pressure; ALP, alkaline phosphatase; CREA, creatinine; HB, hemoglobin;
approach site/laterality of main procedure; SPEC, code for speciality; A&E, Accident and Eme
trophils.
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calibrated, with a Pearson’s R2-values of 0.94−0.99 (two-sided p-
value = 9.9 = 10�4 − 8.3 = 10�2, Fig. 2B).

Model performance generalized well to the out-of-sample dataset,
with AUROCs of 0.86 (95 % CI: 0.85−0.90), 0.80 (95 % CI: 0.79−0.88),
and 0.70 (95 % CI: 0.67−0.74) for prediction of mortality after 12, 24,
and 36 months respectively. Binarizing predicted cases and controls
using an operating point of probability of mortality ≥ 50 %, resulted
in sensitivity of 69−70 % (95 % CI: 67 %-75 %), specificity of 96−97 %
(95 % CI 94 %-98 %), and PPV of 75 %-77 % (95 % CI: 74 %-81 %)
(Table 4).

Coefficients of Determination (see Methods) were calculated for
every input feature. Features that correlated the most with the global
average pooling layer of the model were serum albumin (R2 = 0.89),
the SteatoSITE dataset. (A) Scatterplot shows two-dimensional twin neural network
l network. Each point represents a single patient in the testing set. Blue and orange col-
e window respectively. (B) Calibration plots demonstrating the relationship between
ch probability bin. Green, blue, and orange lines reflect model outputs for 12-, 24-, 36-
efficient of determination (R2) values. Values reflect variance within the global average
rate; AST, aspartate aminotransferase; BMI, body mass index; ALT, alanine aminotrans-
DIAG1, code for main diagnosis; DIAG2−4, codes for other diagnosis; OP1B, code for
rgency; BNF, British National Formulary; K, potassium; LYM, lymphocytes; NEUT, neu-



Table 4
Model performance metrics across internal training and external testing sets. Model operating
point was set to ≥50 % (probability of all-cause mortality). 95 % CIs are shown in parentheses.
AUROC = Area under Receiver Operating Characteristic Curve.

AUROC Sensitivity Specificity PPV

SteatoSITE
1-year 0.90 (0.86−0.94) 82 % (80 %-86 %) 92 % (89 %-95 %) 98 % (95 %-100 %)
2-year 0.85 (0.79−0.90) 78 % (76 %-80 %) 89 % (86 %-94 %) 95 % (93 %-98 %)
3-year 0.73 (0.69−0.79) 64 % (63 %-69 %) 75 % (72 %-79 %) 94 % (91 %-97 %)

NHS GG&C
1-year 0.86 (0.85−0.90) 70 % (69 %-73 %) 97 % (95 %-98 %) 77 % (75 %-81 %)
2-year 0.80 (0.79−0.88) 69 % (68 %-72 %) 96 % (94 %-98 %) 75 % (74 %-79 %)
3-year 0.70 (0.67−0.74) 69 % (67 %-71 %) 96 % (94 %-98 %) 76 % (74 %-80 %)
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estimated glomerular filtration rate (R2 = 0.75), and aspartate amino-
transferase (AST) levels (R2 = 0.67), as well as BMI (R2 = 0.63), age at
index date (R2 = 0.58), and systolic blood pressure (R2 = 0.55) (Fig. 2C).

Model misclassifications in the out-of-sample testing set were
interpretable. For example, at 36-month probability of mortality ≥
50 %, the model identified n = 49 false positive cases. Of these, n = 11
patients (22.4 %) and n = 13 (26.5 %) had recent diagnoses (within
twelve months) of ‘acute myocardial infarction’ (I21.9) and ‘athero-
sclerotic heart disease of native coronary artery’ (I25.1). Furthermore,
n = 22 (44.9 %), n = 9 (18.3 %), and n = 16 (32.6 %) patients had at least
a three-year history of lipid regulators, beta adrenoreceptor blockers,
and antiplatelet drug usage. Finally, n = 25 patients (51 %) had in-
patient stays under Cardiology services as their primary specialty.

Conversely, at probability of 36-month mortality ≥ 50 %, the
model identified n = 38 false negative cases. Of these, the most com-
mon diagnoses upon discharge over a ten-year Observation Window
were, were ‘urinary tract infection, site unspecified’ (n = 27 patients
[71.1 %], N39.0) and ‘unspecified acute lower respiratory infection’
(n = 22 patients [57.9 %], J22.X). The most common primary specialty
amongst the false negative cases was General Medicine (n = 35
patients, 92.1 %) and General Surgery (n = 24 patients, 63.1 %). Finally,
the most frequently prescribed medication classes were non-opioid
analgesics (n = 35 patients, 92.1 %) and antidiabetic drugs (n = 19
patients, 50.0 %).

4. Discussion

MASLD is a global public health problem with multisystem and
multidisciplinary implications [43]. However, techniques for accu-
rately predicting the risk of adverse clinical outcomes in patients
with MASLD, such as liver biopsy [44] or dynamic changes in imaging
measurements [45,46], rely on patient engagement and healthcare
resource utilization. Here, we demonstrate that a simple Transformer
neural network model, trained on routinely collected secondary care
data, produced well-calibrated probabilities and achieved good dis-
criminatory power in an out-of-sample dataset within a long (up to
3-year) predictive window, with AUROC of 0.70−0.86 (95 % CI: 0.67
−0.90) for all-cause mortality.

The training and out-of-sample testing sets were comparable in
terms of gender and ethnicity distributions, as well as BMI ranges.
Patients in the training set were significantly younger than the test-
ing set (55 vs. 66.3 years, Table 2). However, this discrepancy did not
adversely influence model performance. Notably, the cardiovascular-
specific cause of death was significantly more prevalent in the testing
set, compared to the training cohort (23.9 % vs. 12.9 %), which may
contribute to the increased overall prevalence of deaths in the out-
of-sample set (23.94 % vs. 37.12 %).

The mortality classifier used in this study is a Transformer neural
network (TNN) [35]. Traditionally, the Transformer architecture was
extensively applied to natural language processing, achieving state-
of-the-art performance in text annotation [33], named entity
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recognition [47], and representation learning [48]. More recently, the
utility of the Transformer architecture was explored in longitudinal
EHRs, demonstrating a striking capacity to parse heterogeneous data
sequences and predict multiple clinical trajectories [49,50], consider-
ably outperforming conventional ML techniques. The propensity of
this technique to handle large volumes of relatively noisy data,
including errors in labels, as well as large numbers of input variables
[18], makes it an attractive tool for interrogation of real-world EHRs.

Machine learning models have traditionally targeted the detec-
tion of MASLD in the general population using routinely collected
medical records. For example, a simple coarse trees model that uti-
lized fasting C-peptide levels and waist circumference identified
MASLD with 74.9 % accuracy in n = 3235 individuals [26]. Similarly,
large-scale analyses (n = 1016−73,190 patients) of EHRs in secondary
care settings predicted MASLD with AUROC 0.83−0.92 [51,52].

The assumption behind current diagnostic algorithms in MASLD is
that liver disease is the principal threat for these patients, whilst the
weight of evidence indicates it is not [53]. Leveraging large, diverse,
multidimensional datasets in MASLD and applying sophisticated
methods such as AI/ML tools or multi-state modelling [54] will eluci-
date novel subphenotypes with disease trajectories reflecting vari-
able susceptibility to liver-related and/or non-liver-related
outcomes. Additionally, the availability of ‘upstream’ risk stratifica-
tion tools that consider the whole patient history could assist in
developing a new paradigm for community-based prognostication in
MASLD that captures key demographic influences (such as age, gen-
der, ethnicity, and deprivation index) and embraces comorbidity and
polypharmacy. This strategy aligns with a growing shift in govern-
ment policy in many countries towards a more preventative and
anticipatory approach to the management of long-term conditions
such as MASLD; the value of which is maximized when it is targeted
at patients who are most likely to benefit.

In this work we achieve a good balance between prediction win-
dow length (one to three years) and model performance (out-of-sam-
ple AUROC 0.70−0.86). Indeed, shorter prediction windows provide
limited therapeutic benefit, with underlying disease mechanisms
becoming less modifiable, whilst longer prediction windows may
result in many false positives, rendering proactive therapeutic or life-
style intervention less practicable [55,56].

We utilized a data-driven strategy to delineate the salient features
captured by our model by computing the coefficient of determination
(R2) between low-dimensional representations of the model global
average pooling layer and input features. Although several algo-
rithms exist to explain black box models [57,58], they are limited to
lower-dimensional tabular data. Our approach, validated in medical
imaging [59], attempts to explain features captured within the
unstructured temporal information. Variability in albumin levels and
eGFR over the ten-year observation window accounted for 90 % and
75 % of the variance in the model’s global average pooling embedding
layer, respectively. Recently, a multicenter study (n = 229 patients
from 22 hospitals) demonstrated that an annual decline in serum
albumin concentration in patients with MASLD is associated with
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adverse events, including gastroesophageal varices leading to rupture
or requiring preventive intervention, hepatic failure leading to
hepatic encephalopathy, HCC, other organ malignancy, and cardio-
vascular events [60]. Similarly, in n = 18,073 UK Biobank participants
identified to have CKD, MASLD was associated with an increased risk
of cardiovascular events, all-cause mortality, and end-stage kidney
disease [61]. These studies corroborate the utility of the coefficient of
determination to identify important learnt features in complex black
box models.

Our Transformer model presents several advantages. First, it was
trained on a diverse population using routinely collected EHRs on a
national scale, covering the full MASLD severity spectrum. This offers
a robust inclusion criterion for a population-level risk stratification
algorithm. Second, model probabilities were well calibrated and gen-
eralized well to an out-of-sample population. Finally, an accurate
inference at three-year prediction window resolution offers an
opportunity for a timely, low-cost preventative intervention in the
general population.

Our study also had limitations. First, we chose all-cause mortality
as our initial clinical outcome of interest, as this is a hard endpoint
that is free from bias. Future work will extend our approach to liver-
specific outcomes. Second, the training set was relatively small
(n = 940 patients) and may not represent the full breadth of clinical
activity in MASLD patients, although all stages of the disease were
equally represented. Furthermore, larger evaluation cohorts would
provide insight into model performance and potential biases across
different strata of the population (e.g., ethnicity, age groups, and dep-
rivation indices) [62]. This presents an urgent requirement to validate
model generalizability in other systems outside Scotland. This should
be feasible due to the routine availability of model features and is
currently our primary focus of research. Next, the retrospective
nature of this study resulted in a level of class balance that may not
represent real-world prevalence. Therefore, any future validation
should involve a prospectively selected cohort of patients. Finally,
despite our work on coefficient of determination, the black-box
nature and the dimensionality of training data make interpretation of
our model unintuitive. This can pose a challenge to clinical imple-
mentation.

5. Conclusions

In conclusion, we show that a simple Transformer model utilizing
routinely collected EHRs may offer a robust tool for community-
based risk stratification of MASLD patients at an increased risk of all-
cause mortality. Integration of such models into health and social
care systems could assist primary care physicians in the targeting of
anticipatory interventions at the individual patient level, refine sec-
ondary care referral pathways, and assist more broadly in service
planning. Future work will require a prospective validation study,
which would allow for evaluation of the algorithm when exposed to
real-world class distributions, assessing its effect on workflow safety
and operational efficiency.
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