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Developmental neural model
A developmental neural model of word perception
Richard M. Golden

Department of Psychology
Brown University
Providence, RI 02912

The Interactive Activation model (McClelland & Rumelhart, 1981; Rumelhart &
McClelland, 1982) has been successfully applied to a broad range of phenomena in the
"letter-within-word" perception literature. A unique aspect of the Interactive
Activation (IA) model is that all processing is based upon very simple local
computations similar in spirit to the types of computations that might be performed by
neurons. These simple local computations however, give rise to interesting global
behaviors at the network level. The IA model operates by attempting to satisfy a
great many local constraints between and within a set of letter and word "nodes."
These local constraints, nevertheless, are explicitly given to the IA model. How might
such constraints evolve over time if learning were incorporated into the IA model?

In this paper, a specific member of the class of neural models known as
Brain-State-in-a-Box (BSB) models (Anderson, 1983; Anderson, Silverstein, Ritz, &
Jones, 1977) is suggested as a useful approach for considering the development of
visual letter within word perception. Interestingly enough, recent theoretical results
(Golden, 1985; Hopfield, 1984) indicate that the dynamic behavior of the BSB and IA
models share important qualitative similarities. The BSB formalism, however, is
comparatively simpler than the TA formalism, makes interesting reaction time
predictions, and provides a formal framework for considering how the effects of
experience create and organize letter and word representations. More specifically,
using both reaction time and letter recognition accuracy as dependent variables, the
BSB model suggests how the effects of experience influence the development of the
ability to use information about orthographic redundancy (Juola, Schadler, Chabot, &
McCaughey, 1978; Lefton & Spragins, 1974) and case type (McClelland, 1976;
Pollatsek, Well, & Schindler, 1975).

Description of the neural model

The testing dynamics of the model. The Brain-State-in-a-Box model is based upon
a few neurophysiological assumptions. The first assumption is that essential
information about the environment is assumed to be coded by a set of neuronal firing
frequencies (Anderson, 1983; Anderson et al., 1977). If there are M neurons in the
system, the momentary activation pattern across the neuronal set is characterized by
an M-dimensional state vector in which the ith element of the state vector represents
the firing frequency of the ith neuron in the system minus the spontaneous firing
frequency of that neuron. The magnitude of the state vector represents the current
signal strength while the direction of the state vector indicates the identity of the
activation pattern. The second assumption states that, in general, the current firing
rate of a neuron may be approximately represented by the linear combination of the
firing rates of the other neurons in the system and a set of "synaptic connectivity
coefficients." The connectivity coefficients are an attempt to model the degree of
synaptic efficacy between pairs of neurons within the system. Using matrix notation,
these coefficients are arranged in a matrix such that the ijth element of the matrix
represents the connection strength between the ith and jth neurons in the system.
The state vector at discrete time slice t + 1 may now be rewritten as the state vector
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at discrete time slice t plus the state vector at discrete time slice t multiplied by the
matrix. The third assumption of the model is that each neuron possesses a maximum
and minimum firing rate. This final assumption introduces an essential non-linearity
into the previous linear system and gives the model an exceptionally rich range of
behavior. This assumption is also the motivation behind the model’s nickname since it
essentially confines the M-dimensional state vector within the space of an
M-dimensional box or hypercube (for additional details see Anderson et al., 1977).

The dynamics of the system are relatively straightforward. An initial pattern of
neural activity is amplified using positive feedback until all neurons within the system
have obtained their maximum or minimum firing rates. More formally, one cycle
through the system may be written as:

S@i + 1) = TRUNC[AS() + S(i)] = TRUNC[(A + DS@)] (1)

where I is the identity matrix, the notation S(i) indicates the activity vector after the
ith feedback cycle, A is the synaptic connectivity matrix, and the TRUNC function
sets all vector elements whose magnitudes are above some maximum firing frequency
equal to that maximum firing frequency and all vector elements whose magnitudes
are below some minimum firing frequency equal to that minimum firing frequency.

The initial state vector S(0) is presented to the system by applying equation (1) to
S(0) to generate S(1). The state vector S(1) is then applied to equation (1) to generate
S(2). These iterations continue until S(i) = S(i + 1). At this point, all the elements of
the system state vector are firing at their minimum or maximum firing rates. Since
in this situation the state vector has reached one of the hypercube corners, we will call
this state vector a corner vector. If the state vector arrives at the "correct”
hypercube corner, then the stimulus is assumed to have been properly categorized.
The number of iterations required to arrive at a hypercube corner is taken as the
system’s reaction time.

The training algorithm. In typical simulations of the model, we assume that the
period over which learning occurs is extremely long, relative to the period over which
the model is tested. Therefore, for simplicity, learning is not permitted when the
model is tested. The learning assumption implemented in this model is based upon a
proposal by Hebb (1949) that states if two neurons within a neural network
simultaneously fire, then a change in the nervous system occurs such that if one of
the two neurons fires at a future date the probability that the other neuron will fire
tends to increase.

During the training phase, a stimulus and response vector pair are randomly
selected from the stimulus set. The stimulus vector is then perturbed with random
noise and passed through (1) several times. The transformed stimulus vector and the
corresponding response vector are then used to modify the matrix. Using linear
algebra, the learning assumption is described by the following equation:

Apew = Agg + 7(g - SEg - SE)T @)

where S(K) is the stimulus vector after K iterations through equation (1), Anqw is the
updated synaptic connectivity matrix, A is the original matrix, g is the desired
response of the system, and y is a scalar between zero and one. For the simulations
reported here, the value of K remained constant and was always equal to seven,

Equation (2) therefore describes how the synaptic efficacy between individual
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neurons within the system evolves over time as stimulus and response vectors are
presented to the model. The exact form of (2) is not critical. Any learning rule that
biases the coefficients of the connectivity matrix such that the stimuli within the
training set become eigenvectors (associated with large positive eigenvalues) of the
matrix will suffice (Golden, 1985).

Neural encoding of the stimuli. The assignment of "neural activation patterns” to
specific symbols is as important to the formulation of the letter within word model as
the basic BSB mechanism itself. A unique 28-dimensional state vector was assigned
to each of the upper-case and lower-case forms of the nine most frequent letters of the
English alphabet using a letter feature encoding scheme. A stimulus representing a
letter string could then be represented by concatenating four 28-dimensional letter
subvectors. Thus, four-letter words, pseudowords, and nonwords were represented by
112-dimensional vectors.

Theory

Although the proposed model superficially seems rather homogeneous, a great
deal of structure exists in the synaptic connectivity matrix after learning has
occurred. This specific internal structure is due to two factors. First, the system
state vector is a list of position-specific letter features. And second, the learning
algorithm effectively extracts frequently appearing pair-wise feature correlations from
the stimuli learned by the model. Therefore, the matrix contains two distinct types of
synaptic weights or pair-wise letter feature correlations. One set of synaptic weights
are referred to as the within-letter feature correlations. The second set of weights are
referred to as between-letter feature correlations. The within-letter feature correlations
in the matrix correspond to the system’s knowledge of the spatially redundant
information in words. The between-letter feature correlations correspond to the
system’s knowledge of the transgraphemic information in words.

By definition, a nonword is a state vector that has not been "learned" by the
system. Such a vector can nevertheless be categorized by the BSB model since the
within-letter feature correlations can independently amplify the familiar letter
subvectors representing the nonword stimulus, despite interference from the
between-letter feature correlations. When a word or pseudoword is presented to the
system, both the between-letter and within-letter feature correlations cooperatively
amplify the system state vector. Words, however, tend to be recognized faster and
more accurately than pseudowords since fewer between-letter feature correlations
contribute to the amplification process during pseudoword recognition. Also note that,
within the framework of this model, the superiority of letter recognition for same-case
relative to mixed-case stimuli is exactly analogous to the word-pseudoword advantage.

Consider now the major effects characterizing the developmental behavior of the
model. First, as the system’s experience with words increases, letters are recognized
faster and more accurately within words, pseudowords, and nonwords. And second,
the ability to use information about the orthographic regularities within words
develops very quickly. The first effect is a direct consequence of the number of times
a given pair of letter features was presented to the system during the learning trials.
The rapid acquisition of the ability to detect orthographic information occurs because
useful letter feature correlations, obtained from only a few words, are used to
categorize many other words possessing those feature correlations.

The model also makes a prediction regarding the development of alternating case
effects. As experience with words increases, the advantage of letters within
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same-case stimuli, relative to mixed-case stimuli, should increase at a fast rate in the
initial stages of development and more slowly in the later stages. A theory suggesting
that the effects of alternating case are located at the "level of single letter
discriminability"” (Adams, 1979, p. 154; also see McClelland & Rumelhart, 1981),
might not make these predictions.

Computer simulation results

In the first set of experiments, the synaptic coefficients were initialized to zero
and then letter stimuli were "taught" to the system with (2). After 1500
presentations of letter stimuli, the system was tested using a set of test stimuli. The
test stimulus set consisted of 1176 different mixed-case and same-case words,
pseudowords, and nonwords. The reaction time of the system for correctly
categorizing each of the initial state vectors representing letter strings was then
recorded. The above testing procedure was then repeated after the system had
experienced 200 more presentations of word stimuli. Finally, the training of the
system upon word stimuli was continued for an additional 800 learning presentations
and again the testing procedure was repeated.

The simulation results are summarized in Figure 1. The reaction time of the
model for recognizing four letter strings, like human subjects, tended to decrease with
age and experience (Juola et al., 1978). In addition, the qualitative effects of a rapid
acquisition of orthographic knowledge that becomes increasingly fine-tuned over a
relatively longer period of time is also observed (Juola et al., 1978). In addition, as
letter strings become more orthographically regular, letters in same-case stimuli are
recognized faster than letters in mixed-case stimuli. These latter reaction time results
have also been observed in the experimental literature (Pollatsek et al., 1975; Taylor,
Miller, & Juola, 1977).

Figure 2 summarizes the results of a similar sequence of simulations where letter
recognition errors were used as the dependent measure. In these latter simulations
the model made frequent identification errors because of the addition of interfering
factors (a mask and additive noise) in the testing procedure. Again, the basic
qualitative effects observed in the human experimental literature were also observed
in the simulations. Words were recognized more efficiently than pseudowords, which
were recognized more efficiently than nonwords, and same-case stimuli were
recognized more efficiently than mixed-case stimuli. The simulations also
demonstrate a case-type by orthography interaction. Such an effect, although in
agreement with reaction time studies of this phenomena and accuracy data obtained
by McClelland (1976), was not observed by Adams (1979). The rapid acquisition of
orthographic knowledge by the model has also been observed using decision tasks
involving human subjects (Lefton & Spragins, 1974; Rosinski & Wheeler, 1972).

Summary

A developmental version of the Interactive Activation model has been proposed
based upon a neural network model suggested originally by Anderson et al. (1977).
The developmental BSB model offers a formal theory that motivates the use and
connection of letter and word nodes in the IA model. To explicitly illustrate these
statements, some simulations of the BSB model were then studied. The results of the
computer simulations were compatible with the experimental literature. Effects of
orthography and case type were observed to increase in magnitude as the system’s
experience with word-like stimuli was extended.
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Appendix 1

Vector Encodings of Letter Stimuli

The following table indicates the assignment of specific letter subvectors to
letters. The assignment of a vector coding to a letter was based upon an
extension of Gibson’s (1969, p. 88) abstract letter feature set. For example, the
first eight elements of the letter subvector representing E are given by
(+1,+1,+1,+1,-1,-1,-1,-1). For convenience, letter subvectors are described
using hexadecimal notation by treating negative vector elements as zeros and
positive vector elements as ones. Thus, the above eight-dimensional component of
the letter subvector specifying E is represented as F0 using hexadecimal (base
16) notation. The letter subvector encodings using hexadecimal notation are
provided below.

E FOO03F3F e CoCFo30
T FO00333F t FO3FOFF
A CF033CF a 00C3030

(o) 00CO30F o 00C0300

N 33000CF n 30300C0

R 33C30CF r 303F0F0

I 30003CF i 30003F0

S 000CCOF s 000CCO00
H F0033CF h 30300CF

X 0F0330F



Developmental neural model

Appendix 2

Letter string stimuli selection

Word, pseudoword, and nonword letter strings were used as word vectors in
the following experiments. The word stimuli were selected based upon moderate
frequency of occurrence in the English language, and were constructed using only
the nine most frequent letters in the English alphabet. The word stimuli were
then scrambled, and the scrambled letter strings ranked using a spatial
redundancy (i.e., using the likelihood that a particular letter would occur at a
given spatial position within a word) table obtained by analyzing the original set
of word stimuli (see Mason, 1975, for additional details).

Word Stimuli (ordered row-wise by decreasing frequency): THAT THIS INTO
THAN THEN HERE AREA SEEN RATE SOON NEAR EAST SORT REST
HEAR HAIR SENT NOTE TEST ONES SHOT NONE RISE HEAT THIN ROSE
NINE TONE RAIN ARTS SITE SETS NOSE ONTO TREE SEAT HERO REAR
ASIA HANS IRON ANNE EASE HATE RARE EARS OHIO HOST SEES
HORN ROOT SONS TONS NOON STAR TORN HITS TIRE NEAT RENT
NEST TENT TOES THEE EARN HERS SINS HIRE TIES TORE HATS NEON
SHOE ROAR TROT ROSS TEAR SEAS SORE HINT HOOT HOSE IONS THOR
TOSS TRIO SANE ANNA ANTS HEIR OATS RENO RIOT STIR TART OATH
SITS TEEN

Pseudoword Stimuli(ordered row-wise by decreasing spatial redundancy):
TENE TERE TETS TORS SENE TOSE TEOS TEIS SESE SONT SEST TETN
RETS TASE TENR SOST THNE TONR TEAN TESN TOSN SOET SARE TEHE
SETN TOEN NETS TISE TESR REAT ROES TOOR OENS AETS HONR SOSN
TOER THOS NORT SOTR NEES NOOS SAES ROIT NOES RETN HAST TERA
SOHE RAAE NOOT SONO HESR EONT SOSR EORS NEET TNOE SAET
TROE AEES NOET HEOR TATR REAN HAET TNOS AOST HEER SOER
REON SIST NARE EORT SOHT TRIE TRAT RAST HIST HOTO TEAH TEHN
SIET SETA TOSH TNET SNAE HTNE RAET HERA HETA TOOH TAHT
TAER SROE HASN SESA SERH

Nonword Stimuli (ordered row-wise by decreasing spatial redundancy): IRES
AHSN OHNR TSRA OISN OTSS EASR SRTA SNTA OTAS ESSE ITSE IHTN
INOT TROI OAHT SNEO ERET EOSH ORIT ESAE NSET HTRO HREO HTNA
HSTO TSRI RAIH ESST ERTN STRA ANAN EISR ESAT HTTA EHSR ISST
HTNI EHOR RTTO OHTO ANEN ERAN RNEO EHER ONEN ISET HSEO
ERON STRI EATH ONNO OTNR ETTN THER ESTN INEN ARER OTSN
ENNO ATTR AISA HTSI EHRA EHTA ORTO OSSN IRNO OSTR AHRI OTEN
ASEN EIRH ISSN IRTO ENNA OTNO OSNO ARNI ORRA EHRI ENRA ERRA
ENTA OTER ITNO OSER RTOI OHOI NROI ITER ONTI ETRA ESTA OIHO
ESSA OTAH ASAI
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EXPERIMENT 1 - REACTION TIME DATA

REACTION TIME (ITERATIONS)
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Figure 1. Reaction time plotted as a function of case type, orthography, and learning
trials for Experiment 1. Solid lines indicate same-case stimuli. Dashed lines indicate
mixed-case stimuli.



EXPERIMENT 2 - ACCURACY DATA
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Figure 2. The proportion of correctly recognized letters plotted as a fungtion of case
type, orthography, and learning trials for Experiment 2. Solid lines indicate
same-case stimuli. Dashed lines indicate mixed-case stimuli.
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